SOME NEW CONSTRUCTIONS OF LINEAR CODES INCLUDING A WIDE FAMILY OF MDS CODES | ||
Journal of Algebraic Systems | ||
مقاله 15، دوره 7، شماره 2، فروردین 2020، صفحه 291-300 اصل مقاله (115.94 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2019.7004.1343 | ||
نویسندگان | ||
A. Rafieepour؛ M. Mazrooei* | ||
Department of Mathematical Sciences, University of Kashan, P.O. Box 87317- 53153, Kashan, Iran. | ||
چکیده | ||
Let $\mathbb{Z}_p$ be the finite field of integers modulo $p$, where $p>3$ is a prime integer. This paper presents new constructions of linear codes over $\mathbb{Z}_p$. Based on our construction, linear codes of length $p-1$, including a wide family of MDS codes, and codes of length $(p-1)^2$ are constructed. we shall discuss the parameters of the codes defined while describing a generator matrix for the first family. | ||
کلیدواژهها | ||
Finite Fields؛ Linear Codes؛ MDS codes | ||
آمار تعداد مشاهده مقاله: 517 تعداد دریافت فایل اصل مقاله: 717 |