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A NOTE ON (C.(X) VIA A TOPOLOGICAL RING
R. MOHAMADIAN, M. NAMDARI*¥, H. NAJAFIAN AND S. SOLTANPOUR

ABSTRACT. Let C.(X) (resp., C¥(X)) denote the functionally
countable subalgebra of C(X) (resp., C*(X)), consisting of
all functions (resp., bounded functions) with countable image.
C.(X) (resp., C*(X)) as a topological ring via m.-topology (resp.,
m}-topology) and u.-topology (resp., u’-topology) is investigated
and the equality of the latter two topologies is characterized.
Topological spaces which are called N-spaces are introduced and
studied. It is shown that the m.-topology on C.(X) and its relative
topology as a subspace of C(X) (with m-topology) coincide if and
only if X is an N-space. We also show that X is pseudocompact if
and only if it is both a countably pseudocompact, and an N-space.

1. INTRODUCTION

Throughout this paper all given topological spaces X, are Tychonoff.
C(X) (resp., C*(X)) denotes the ring of all real-valued (resp., bounded
real-valued) continuous functions on X. The subring of continuous
(resp., bounded continuous) functions with countable range on the
space X, is denoted by C.(X) (resp., C¥(X)). In recent years C.(X)
and C!(X) have been studied widely, by Karamzadeh and his
colleagues, see [0, 7, 2]. We aim to investigate the similarities and
differences between the ring C'(X) (resp., C*(X)) and its function-
ally countable subring via m.-topology (resp., m}-topology) and wu.-
topology (resp., ui-topology), see also [I, 12]. It is shown that m}-
topology on C*(X) coincides with its relative topology as a subspace
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of C.,, (X). We introduce and study N-spaces, and show that a pseu-
docompact space X is an N-space. We will also observe that the
me-topology on C.(X) and its relative topology as a subspace of
C(X) with the m-topology coincide if and only if X is an N-space.
Pseudocompact spaces versus N-spaces are also investigated. We
notice that C,,(X) (resp., C;(X)) is completely metrizable and C,, (X)
is metrizable but may not be complete. The reader is referred to [5, &]
for notations and fundamental terminologies concerning rings of real-
valued continuous functions.

2. FUNCTIONALLY COUNTABLE SUBRING VIA m,-TOPOLOGY

Let UT(X) be the set of all positive units of C(X). For each
feC(X)and u e Ut (X), the subset B(f,u) is defined as follows:

B(f,u) ={g € C(X) : [f(z) — g(z)| <u(z), Vo e X}.

The family {B(f,u) : v € UT(X), f € C(X)} will be a base for a
topology on C(X) which is called m-topology. C(X) endowed with
the m-topology is denoted by C,,(X) which is a Hausdorff topological
ring, see [3, 4, 9, 10, 11]. We introduce the counterpart of the latter
topology on the C.(X) (resp., C¥(X)), see also [1, 12].

Definition 2.1. Let UH(X) = {u € UT(X) : v € C(X)}. The
me-topology on C,(X) is defined by taking the subset of the form

B.(f,u) ={g € C(X) : |f(2) = g(2)| < u(z), V&e X}

as a base for a neighborhood system at f, for each f € C.(X) and
u € U (X). The set C.(X) endowed with the m.-topology is denoted

by C., (X).

Lemma 2.2. B.(f,u) is a contraction of B(f,u), i.e., for each

f€CAX) and u € U (X) we have B.(f,u) = B(f,u) N C(X).

Remark 2.3. For each f € C*(X) and u € U*T(X), where
UTX)={ueld"(X) ue C*(X)},

consider the subset

B (f,u) ={g € C°(X) : |f(z) —g(2)] <ulz), Voe X}

Then it can be shown that {B*(f,u) : u € U*T(X), f € C*(X)} is an
open base for some topology on C*(X), which is called m*-topology
on C*(X) and the notion C¥ (X) is used for C*(X) endowed with
m*-topology. Similarly, if f € C*(X) and u € U (X)), where

UTX)={uelUT(X) : ue CHX)},
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then m}-topology on C¥(X) is defined by taking the subset
B:(f,u) ={g € CI(X) : |f(zx) — g(x)| <ulz), V& € X}

as a local base at f, for each f € C*(X) and u € U (X). The set
C}(X) endowed with the m-topology is denoted by C7 (X).

Lemma 2.4.
(1) If f € C*(X) andu € U*T(X), then B(f,u)NC*(X) = B*(f,u).
(2) If f € CH(X) and u € U (X), then
Bo(f,u) N C2(X) = Bi(f,u).

The proofs of the two following propositions are similar and hence
only one of them is proved.

Proposition 2.5. The m*-topology on C*(X) coincides with the
relative topology on C*(X) as a subspace of Cp,(X).

Proposition 2.6. The m}-topology on C¥(X) coincides with the
relative topology on C¥(X) as a subspace of C,, (X).

Proof. Let 171 be the m}-topology on C¥(X) and 7 be the relative
topology on C¥(X) as a subspace of C, (X). If G € 7, and f € G,
then there exists u; € Ut such that BX(f,u;) € G. So G contains
B.(f,u;) N C*(X) as an open subset of 75. Hence f € int,,G implies
that G C int,,G, therefore G € 1. Now, let G be an open subset of
C.(X) with m.-topology. We must prove that G N C*(X) belongs to
. HGNCHX) # 0 and f € GNCHX), then there exists u; € UF

such that B.(f,u;) C G. If we take v = t , then v € U, Hence
Uy
B.(f,v) € B(f,v) C G which implies that B}(f,v) C G. O

Theorem 2.7. C, (X) is a reqular Hausdorff space.

Proof. Let f,g € C.(X) and f # g, so there exists o € X such that
f(zo) # g(xo). We consider the constant function

() = 51f(z0) — glao)l,

it is clear that u € UF. We show that B.(f,u) N B.(g,
h € B.(f,u) N B.(g,u), then for each z € X, |f(z) — h(z)| < u(z
lg(x) — h(x)| < u(x). Hence

|f(x0) — g(x0)| < [f(20) = h(wo)| + [g(w0) — h(z0)]

< 31 (@) = glao) + 51 (w0) = o)

= 21/ (w0) — glo)

(¢}
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which is a contradiction. Now, we show that C., (X) is regular. For

this main, let F' be a closed subset of C, (X) and g € C.(X) \ F. So

g & cl,(F), i.e., there exists u € U such that B.(g,u) N F = ). Put

G = Bc(g,g) and V = U Bc(f,g), then g € G and FF C V. It is
fer

sufficient to show that GNV = (. If h € GNV, then |h — g| < g
and there exists f; € F such that h € Bc(fl,g), ie, |fi —h|l < g
Therefore
uou
lg = fil <lg—hl+[f1— A <gtgz=u
so f1 € B.(g,u) which is a contradiction. O

Definition 2.8. A topological space X is called an N-space, whenever
for any f € U™ there exists g € U such that g(z) < f(x) for each
reX.

Lemma 2.9. If X is an N-space, then for each f € U" there exists
g €EUT such that f(x) < g(x) for allxz € X.

1
Proof. If f € U™, then 7 € U*T. Since X is an N-space, we infer

1 1
that there exists h € U} such that h < ?, therefore 7 > f. Now, if

1
g:EGZ/{j,thenf(:v)gg(x) for each = € X. O
Example 2.10. The space X = U [2k,2k + 1] is an N-space. To
keZ

see this, let f € UT(X). Then for each z € [2k,2k + 1], we define
g(x) = min{f(x) : 2k < x < 2k + 1}. It is evident that g € U} and
g(x) < f(z) for each z € X. Therefore X is an N-space.

We remind the reader that whenever X is functionally countable,
then X is an N-space, but the converse is not true as Example 2.10
shows.

Example 2.11. The space R is not an N-space. Consider

f(z) =e" € C(R),
it is evident that f € UT. Let g € US such that for each 2 € R,
g(x) < f(x). Since C.(R) = R, we infer that there exists € R such
that g(z) = r. Hence, for each x € R, r < e” which implies that for
each x € R, Inr < x and it is a contradiction.

Proposition 2.12. A pseudocompact space X is an N -space.
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Proof. Let X be pseudocompact and f € U*t. Since f in C*(X) is
invertible, we infer that it is far away from zero, i.e., there exists r > 0
such that f(z) > r for each z € X. So if g(z) = r, for each z € X,
then g € U and it is clear that r = g(x) < f(x) foreach z € X. O

By Example 2.10, we conclude that the converse of Proposition 2.12
does not hold.

Proposition 2.13. Let X be a connected space. Then X is an N -space
if and only if X is a pseudocompact space.

Proof. Let X be a pseudocompact space, so by Proposition 2.12, X is
an N-space. If X is a connected N-space, then 1+ |f| € U™ for each
f € C(X). Hence there exists g € U such that 1+ |f| < g. Since
g € C(X) and X is connected, we infer that there exists r € R such
that g = r. So for every z € X, we have 1 + |f| < r, ie., f € C*(X).
Therefore C(X) = C*(X) and we are done. O

The following example shows that every subspace of an N-space may
not be an N-space.

Example 2.14. The topological space X = [0,1]U[2, 3] is an N-space,
but Y = (0, 1) is a connected space which is not pesudocompact. Hence
Y is a subspace of an N-space X that is not an N-space.

Theorem 2.15. The m.-topology on C.(X) and the relative topology
on C.(X) as a subspace of Cp(X) coincide if and only if X is an
N-space.

Proof. Let X be an N-space and 7y, 75 be the m.-topology on C.(X)
and the relative topology on C.(X) respectively. If G € 7 and
f € G C C.(X), then there exists uy € U such that B.(f,u;) C G,
so B(f,u1) N C.(X) € G. Hence f € B(f,u1)NC.(X) C G, but
B(f,u1) N C.(X) € 7o which implies that G € 15 and therefore 7 C 7.
Now, let G be an open subset of C,,,(X) and hence GNC.(X) € 1. We
prove that GNC.(X) € 1. If GNC.(X) = () we are done. Otherwise,
let f € GNC.(X), then there exists u € UT such that B(f,u) C G.
But f € C.(X) implies that B(f,u) N C.(X) C G. Therefore

{ge CAX) :|f(x) —g(x)| <u(z) : Vo e X} CG.

Since X is an N-space, we infer that there exists u; € US such that
uy(z) < u(z) for each x € X. Therefore

felgeCX):|f(x) —g(z)| <u(x), Vo e X}
€ {g € Ce(X) : |f(z) — g()] < ulz), Vo € X}
cd
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and so G € 7, hence 7, C 7y. Conversely, let 71 = 7. We prove that
X is an N-space. For this main, let u € YT be an arbitrary element,
so for each f € C.(X) we have B(f,u) N C.(X) € 71 = 7. Since
f e B(f,u)NC.(X) € 7y we infer that there exists u; € U such that
B.(f,u1) € B(f,u) N Ce(X). Hence, B.(f,u1) C B.(f,u). It is evident

1 1
that f + JuL € B.(f,u1), hence Ju + f € B(f,u). Therefore

5ea(e) + (@) = (@) < u(a)

1
for each z € X, so Eul(x) < u(z) for each x € X. Now, if v = UL,
then v € U and for each z € X, v(z) < u(x), hence we are done. [J

Corollary 2.16. If X is a pseudocompact space, then the m.-topology
on C.(X) and relative topology on C.(X) as a subspace of Cp(X)
coincide.

Corollary 2.17. If X is a N-space, then the m}-topology on C¥(X)
and relative topology on C*(X) as a subspace of C,, (X) coincide.

3. u-~TOPOLOGY ON C,(X)

Definition 3.1. For a function f € C(X) and each positive real
number ¢, the subset u(f,¢) is defined as follows:

u(f,e) ={9 € C(X) : [f(z) —g(z)| <e, Vo € X}.
The family
{u(f,e):e e RT, fe C(X)}
will be a base for a neighborhood system at f and this topology on
C(X) is called uniform topology which is denoted by u-topology. The
notion Cy(X) is used for C'(X) endowed with the u-topology. Similarly,

the uniform topology on C*(X), C.(X) and C¥(X) are defined and
denoted by C}(X), C.,(X), and C (X), respectively.

It is evident that m.-topology (resp., m’-topology) is finer than
uc-topology (resp., u’-topology). The equality of the latter two
topologies is investigated in the following facts.

Proposition 3.2. Let
uc(foe) ={g € C(X) : |f(x) — g(x)| <&, Vo € X}.
If f € Cu(X) and e > 0, then u.(f,e) = u(f,e) NCe(X).
Proof. Let g € u.(f,¢€), so g € C.(X) and |f(x) — g(x)| < . Therefore

g € u(f,e)NC.(X). Conversely, if g € u(f,e)NC.(X), then g € C.(X)
and for each z € X, |f(z) — g(x)| < . Hence,
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ge{heCuX):|f(x)—h(z)|<e, VreX}
which implies that g € u.(f,¢). O

Proposition 3.3. The u.-topology on C.(X) coincides with the relative
topology on C.(X) as a subspace of C,(X).

Proof. Let 1 be the u.topology on C.(X) and 7, be the relative
topology on C.(X) as a subspace of C,(X). If G € 7, and f € G,
then there exists € > 0 such that u.(f,e) C G. So u(f,e)NC.(X) C G
which implies that f € u(f,e) N C.(X) C G where u(f,e)NC.(X) € 7.
Therefore f € int,,G,s0 G € 7o. If H € 75, then there exists G C C(X)
such that G is open and H = G N C.(X). Now, if f € H, then
f € GNCUX), so f € C.(X) and there exists € > 0 such that
U(f,e) € G which implies that f € U.(f,e) C U(f,e) € G. Hence,
f € int; G and we are done. O

In the following theorems the m-topology (resp., m*-topology) and
u-topology (resp., u*-topology) on C'(X) (resp., C*(X)) are compared.
It is shown that the coincidence of these topologies on C(X) (resp.,
C*(X)) is equivalent to the pseudocompactness of X, see [I1] and
[8, 2N.2].

Theorem 3.4. A space X is pseudocompact if and only if
Cn(X) = Cu(X).

Theorem 3.5. space X is pseudocompact if and only if
Crn(X) = CL(X).

Corollary 3.6. For a space X, Cp,(X) = Cy(X) if and only if
Cn(X) = CH(X).

Remark 3.7. According to [0], a space X is called countably
pseuodocompact whenever C.(X) = C¥(X). Every pseudocompact
space is countably pseudocompact, but the converse may not be hold.
For instance, let X = (0,1) U {2} and f € C.(X), then there exists
r € R such that f((0,1)) = r. Now, if k = maxz{r, f(2)}, then it is
clear that |f| < k, i.e., f € C*(X) and X is countably pseudocompact.

Since f(x) = tan— for each x € (0,1) and f(2) = —1 is a continuous
function which is not bounded, we infer that X is not pseudocompact.

We remind the reader that the next theorem is in fact, the same as
[12, Proposition 2.2].

Theorem 3.8. A space X is countably pseudocompact if and only if
C., (X)=C.(X).

Cm
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Theorem 3.9. A space X is countably pseudocompact if and only if
Cr (X) =Cr (X).

Proof. Let X be countably pseudocompact and 7y, 75 be the m-topology
and u-topology on C¥(X) respectively. It is sufficient to show that
71 € 7. For this main, let G € 7 and f € G, then there exists
up € U such that Bi(f,u1) C G. Now, if ¢ = inf{ui(z) : x € X},
then e > 0, for uy € U is far away from zero. Therefore

U (f,e) € Bif,m) € G
and we are done. Conversely, let 71 = 7. If X is not countably
pseudocompact and f € C.(X) \ Ci(X), then put u =

Iflv1
is evident that u € UF, so B.(0,u) N C*(X) € 7. We show that
B.(0,u) N C*(X) ¢ 7 and we are done. If B.(0,u) N CHX) € m,
then there exists ¢ > 0 such that u%(0,e) C B.(0,u) N C*(X). Since
g € u(0,¢), then % € B:(0,u) which implies that \g — 0] < u. So

2
‘< ——— therefore |f| V1 < — which is a contradiction, for f is
2 " |flv1l €
unbounded. 0

Corollary 3.10. For a space X, C., (X) = C. (X) if and only if
Ce, (X) = CZ(X).

Theorem 3.11. A space X is pseudocompact if and only if X is
countably pseudocompact and N -space.

Proof. 1f X is pseudocompact, then it is countably pseudocompact and
by Proposition 2.12, it is an N-space. Conversely, let X be a countably
pseudocompact N-space. For each f € C(X), we have 1+|f| € UT. So
there exists g € U such that 14| f| < g. Since g € U} = U", we infer
that there exists k£ > 0 such that |g| < k and hence f € C*(X). O

Corollary 3.12. A space X is countably pseudocompact if and only if
Corollary 3.13. A space X is an N-space and C; (X) = C; (X) if
and only if X is pseudocompact.

Proof. 1t is immediate by Theorem 3.9 and Theorem 3.11. U

We recall that a metric space M is called complete (or a Cauchy
space) if every Cauchy sequence of points in M has a limit that is also
in M. A topological space (X, 7) is called completely metrizable space
whenever there exists at least one metric d on X such that (X, d) is a
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complete metric space and d induces the topology 7. One can easily
show that C,,(X) (C¥(X)) is metrizable.

Theorem 3.14. C., (X) is metrizable for any space X.

Proof. We define the function p : C.(X) x C.(X) — R by
_ |f(z) — g(2)|
P9 =28 17 @) — gt

It is evident that p(f,g) = p(g, f), p(f,9) = 0, and p(f,g) = 0 if and
only if f = g. Since the function f(z) = . Y for each z > 0 is

extremally increasing and |o — | < |a — 7| + |y — (|, we infer that
lo=8l _ _la=al+v=F
ILtla=pBl 7 1+ja—=ql+]y=5
_ o — N v — 4
Ltla=q[+|y =6 1+]a=q[+y=7
| =7 [y — 8
T ltfa—al T4y =41
Therefore p(f,g9) < p(f,h) + p(h,g). We show that the metric space
C.(X) with metric p is the same space as C.,(X). Let u.(f,¢) be a
Im@mmmddfdeXLWWMWmmNAﬂfi)Qwﬁdlf

g € No(f,

L), then
1+e

If—9gl _ ¢
1+|f—g 1+c¢

which implies that |f — g| < ¢, ie., g € u.(f,e). Conversely, let
1
N,(f,e) be an open ball in C,(X). For r = min{§,5} > 0, we have

g € u(f, é), e, |f—g|l < é Hence

1f — gl r
T+ —gl S T=n)+r

so p(f,g) < r which implies that g € N,(f,r). Therefore

r

1—

uc(f, T) ng<f,T) ng(f78>'
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Remark 3.15. For a space X, C., (X) may not be complete. For
instance, let X = Q°NI0, 1]. The sequence { f,, }neny where f,,(z) = na]
n
is a Cauchy sequence in C.(X), but it is not convergent in C.(X).
For this main, we must prove that for arbitrary ¢ > 0, there exists
M € N such that for each m,n > M, p(fn, fn) < €. We note that
[mz] = mz — p; and [nz] = nz — py such that 0 < py,ps < 1. For each

e >0, if M; € N and A < %, then for each m,n > My,
1

(ma] _ [na]

|[fm(@) = fol@)] = |77= =

m n

n[mz] — m[nz

mn

MNT — npp — MNT + mpo

mn

mpy; — np2
mn
_ P2 pl‘

which implies that for each m,n > M, |f.(z) — fu.(z)] <e. So

) = ful@)]
1+|fn(x)_fn(x)| 1+e’

e, p(fim, fn) < % For each n € N, f,, has countable image. Also
€

if p € X and [nxo] = k, then for
nrg—k k+1—nx

T =nmin
on on

we have x € N, (x¢), i.e., |fu(z) — fu(xo)| = 0. Therefore {f,} with
metric p is a Cauchy sequence in C.(X). Since for each z € X,

limy, 00 fr(z) = lim7HooM = 1z, we infer that for each z € X,

n
fao — f where f(z) = z. But f ¢ C.(X), so C.(X) with metric
p is not complete.
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