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A NOTE ON Cc(X) VIA A TOPOLOGICAL RING

R. MOHAMADIAN, M. NAMDARI∗, H. NAJAFIAN AND S. SOLTANPOUR

Abstract. Let Cc(X) (resp., C∗
c (X)) denote the functionally

countable subalgebra of C(X) (resp., C∗(X)), consisting of
all functions (resp., bounded functions) with countable image.
Cc(X) (resp., C∗

c (X)) as a topological ring via mc-topology (resp.,
m∗

c -topology) and uc-topology (resp., u∗
c -topology) is investigated

and the equality of the latter two topologies is characterized.
Topological spaces which are called N -spaces are introduced and
studied. It is shown that the mc-topology on Cc(X) and its relative
topology as a subspace of C(X) (with m-topology) coincide if and
only if X is an N -space. We also show that X is pseudocompact if
and only if it is both a countably pseudocompact, and an N -space.

1. Introduction

Throughout this paper all given topological spaces X, are Tychonoff.
C(X) (resp., C∗(X)) denotes the ring of all real-valued (resp., bounded
real-valued) continuous functions on X. The subring of continuous
(resp., bounded continuous) functions with countable range on the
space X, is denoted by Cc(X) (resp., C∗

c (X)). In recent years Cc(X)
and C∗

c (X) have been studied widely, by Karamzadeh and his
colleagues, see [6, 7, 2]. We aim to investigate the similarities and
differences between the ring C(X) (resp., C∗(X)) and its function-
ally countable subring via mc-topology (resp., m∗

c-topology) and uc-
topology (resp., u∗

c-topology), see also [1, 12]. It is shown that m∗
c-

topology on C∗
c (X) coincides with its relative topology as a subspace
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of Ccm(X). We introduce and study N -spaces, and show that a pseu-
docompact space X is an N -space. We will also observe that the
mc-topology on Cc(X) and its relative topology as a subspace of
C(X) with the m-topology coincide if and only if X is an N -space.
Pseudocompact spaces versus N -spaces are also investigated. We
notice that Cu(X) (resp., C∗

u(X)) is completely metrizable and Ccu(X)
is metrizable but may not be complete. The reader is referred to [5, 8]
for notations and fundamental terminologies concerning rings of real-
valued continuous functions.

2. Functionally countable subring via mc-topology

Let U+(X) be the set of all positive units of C(X). For each
f ∈ C(X) and u ∈ U+(X), the subset B(f, u) is defined as follows:

B(f, u) = {g ∈ C(X) : |f(x)− g(x)| < u(x), ∀x ∈ X}.

The family {B(f, u) : u ∈ U+(X), f ∈ C(X)} will be a base for a
topology on C(X) which is called m-topology. C(X) endowed with
the m-topology is denoted by Cm(X) which is a Hausdorff topological
ring, see [3, 4, 9, 10, 11]. We introduce the counterpart of the latter
topology on the Cc(X) (resp., C∗

c (X)), see also [1, 12].

Definition 2.1. Let U+
c (X) = {u ∈ U+(X) : u ∈ Cc(X)}. The

mc-topology on Cc(X) is defined by taking the subset of the form
Bc(f, u) = {g ∈ Cc(X) : |f(x)− g(x)| < u(x), ∀x ∈ X}

as a base for a neighborhood system at f , for each f ∈ Cc(X) and
u ∈ U+

c (X). The set Cc(X) endowed with the mc-topology is denoted
by Ccm(X).

Lemma 2.2. Bc(f, u) is a contraction of B(f, u), i.e., for each
f ∈ Cc(X) and u ∈ U+

c (X) we have Bc(f, u) = B(f, u) ∩ Cc(X).

Remark 2.3. For each f ∈ C∗(X) and u ∈ U∗+(X), where
U∗+(X) = {u ∈ U+(X) : u ∈ C∗(X)},

consider the subset
B∗(f, u) = {g ∈ C∗(X) : |f(x)− g(x)| < u(x), ∀x ∈ X}.

Then it can be shown that {B∗(f, u) : u ∈ U∗+(X), f ∈ C∗(X)} is an
open base for some topology on C∗(X), which is called m∗-topology
on C∗(X) and the notion C∗

m(X) is used for C∗(X) endowed with
m∗-topology. Similarly, if f ∈ C∗

c (X) and u ∈ U∗+
c (X), where

U∗+
c (X) = {u ∈ U+(X) : u ∈ C∗

c (X)},
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then m∗
c-topology on C∗

c (X) is defined by taking the subset
B∗
c (f, u) = {g ∈ C∗

c (X) : |f(x)− g(x)| < u(x), ∀x ∈ X}
as a local base at f , for each f ∈ C∗

c (X) and u ∈ U∗+
c (X). The set

C∗
c (X) endowed with the m∗

c-topology is denoted by C∗
cm(X).

Lemma 2.4.
(1) If f ∈ C∗(X) and u ∈ U∗+(X), then B(f, u)∩C∗(X) = B∗(f, u).
(2) If f ∈ C∗

c (X) and u ∈ U∗+
c (X), then

Bc(f, u) ∩ C∗
c (X) = B∗

c (f, u).

The proofs of the two following propositions are similar and hence
only one of them is proved.
Proposition 2.5. The m∗-topology on C∗(X) coincides with the
relative topology on C∗(X) as a subspace of Cm(X).
Proposition 2.6. The m∗

c-topology on C∗
c (X) coincides with the

relative topology on C∗
c (X) as a subspace of Ccm(X).

Proof. Let τ1 be the m∗
c-topology on C∗

c (X) and τ2 be the relative
topology on C∗

c (X) as a subspace of Ccm(X). If G ∈ τ1 and f ∈ G,
then there exists u1 ∈ U∗+

c such that B∗
c (f, u1) ⊆ G. So G contains

Bc(f, u1) ∩ C∗
c (X) as an open subset of τ2. Hence f ∈ intτ2G implies

that G ⊆ intτ2G, therefore G ∈ τ2. Now, let G be an open subset of
Cc(X) with mc-topology. We must prove that G ∩ C∗

c (X) belongs to
τ1. If G ∩ C∗

c (X) ̸= ∅ and f ∈ G ∩ C∗
c (X), then there exists u1 ∈ U+

c

such that Bc(f, u1) ⊆ G. If we take v =
u1

1 + u1

, then v ∈ U∗+
c . Hence

Bc(f, v) ⊆ B(f, v) ⊆ G which implies that B∗
c (f, v) ⊆ G. □

Theorem 2.7. Ccm(X) is a regular Hausdorff space.
Proof. Let f, g ∈ Cc(X) and f ̸= g, so there exists x0 ∈ X such that
f(x0) ̸= g(x0). We consider the constant function

u(x) =
1

3
|f(x0)− g(x0)|,

it is clear that u ∈ U+
c . We show that Bc(f, u) ∩ Bc(g, u) = ∅. If

h ∈ Bc(f, u) ∩ Bc(g, u), then for each x ∈ X, |f(x)− h(x)| < u(x) and
|g(x)− h(x)| < u(x). Hence

|f(x0)− g(x0)| ≤ |f(x0)− h(x0)|+ |g(x0)− h(x0)|

<
1

3
|f(x0)− g(x0)|+

1

3
|f(x0)− g(x0)|

=
2

3
|f(x0)− g(x0)|
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which is a contradiction. Now, we show that Ccm(X) is regular. For
this main, let F be a closed subset of Ccm(X) and g ∈ Cc(X) \ F . So
g /∈ clm(F ), i.e., there exists u ∈ U+

c such that Bc(g, u) ∩ F = ∅. Put
G = Bc(g,

u

2
) and V =

∪
f∈F

Bc(f,
u

2
), then g ∈ G and F ⊆ V . It is

sufficient to show that G ∩ V = ∅. If h ∈ G ∩ V , then |h − g| < u

2
and there exists f1 ∈ F such that h ∈ Bc(f1,

u

2
), i.e., |f1 − h| < u

2
.

Therefore
|g − f1| < |g − h|+ |f1 − h| < u

2
+

u

2
= u,

so f1 ∈ Bc(g, u) which is a contradiction. □
Definition 2.8. A topological space X is called an N -space, whenever
for any f ∈ U+ there exists g ∈ U+

c such that g(x) ≤ f(x) for each
x ∈ X.
Lemma 2.9. If X is an N-space, then for each f ∈ U+ there exists
g ∈ U+

c such that f(x) ≤ g(x) for all x ∈ X.

Proof. If f ∈ U+, then 1

f
∈ U+. Since X is an N -space, we infer

that there exists h ∈ U+
c such that h ≤ 1

f
, therefore 1

h
≥ f . Now, if

g =
1

h
∈ U+

c , then f(x) ≤ g(x) for each x ∈ X. □

Example 2.10. The space X =
∪
k∈Z

[2k, 2k + 1] is an N -space. To

see this, let f ∈ U+(X). Then for each x ∈ [2k, 2k + 1], we define
g(x) = min{f(x) : 2k ≤ x ≤ 2k + 1}. It is evident that g ∈ U+

c and
g(x) ≤ f(x) for each x ∈ X. Therefore X is an N -space.

We remind the reader that whenever X is functionally countable,
then X is an N -space, but the converse is not true as Example 2.10
shows.
Example 2.11. The space R is not an N -space. Consider

f(x) = ex ∈ C(R),
it is evident that f ∈ U+. Let g ∈ U+

c such that for each x ∈ R,
g(x) ≤ f(x). Since Cc(R) = R, we infer that there exists r ∈ R such
that g(x) = r. Hence, for each x ∈ R, r < ex which implies that for
each x ∈ R, ln r < x and it is a contradiction.
Proposition 2.12. A pseudocompact space X is an N-space.
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Proof. Let X be pseudocompact and f ∈ U+. Since f in C∗(X) is
invertible, we infer that it is far away from zero, i.e., there exists r > 0
such that f(x) > r for each x ∈ X. So if g(x) = r, for each x ∈ X,
then g ∈ U+

c and it is clear that r = g(x) ≤ f(x) for each x ∈ X. □
By Example 2.10, we conclude that the converse of Proposition 2.12

does not hold.
Proposition 2.13. Let X be a connected space. Then X is an N-space
if and only if X is a pseudocompact space.
Proof. Let X be a pseudocompact space, so by Proposition 2.12, X is
an N -space. If X is a connected N -space, then 1 + |f | ∈ U+ for each
f ∈ C(X). Hence there exists g ∈ U+

c such that 1 + |f | ≤ g. Since
g ∈ C(X) and X is connected, we infer that there exists r ∈ R+ such
that g = r. So for every x ∈ X, we have 1 + |f | ≤ r, i.e., f ∈ C∗(X).
Therefore C(X) = C∗(X) and we are done. □

The following example shows that every subspace of an N -space may
not be an N -space.
Example 2.14. The topological space X = [0, 1]∪ [2, 3] is an N -space,
but Y = (0, 1) is a connected space which is not pesudocompact. Hence
Y is a subspace of an N -space X that is not an N -space.
Theorem 2.15. The mc-topology on Cc(X) and the relative topology
on Cc(X) as a subspace of Cm(X) coincide if and only if X is an
N-space.
Proof. Let X be an N -space and τ1, τ2 be the mc-topology on Cc(X)
and the relative topology on Cc(X) respectively. If G ∈ τ1 and
f ∈ G ⊆ Cc(X), then there exists u1 ∈ U+

c such that Bc(f, u1) ⊆ G,
so B(f, u1) ∩ Cc(X) ⊆ G. Hence f ∈ B(f, u1) ∩ Cc(X) ⊆ G, but
B(f, u1) ∩ Cc(X) ∈ τ2 which implies that G ∈ τ2 and therefore τ1 ⊆ τ2.
Now, let G be an open subset of Cm(X) and hence G∩Cc(X) ∈ τ2. We
prove that G∩Cc(X) ∈ τ1. If G∩Cc(X) = ∅ we are done. Otherwise,
let f ∈ G ∩ Cc(X), then there exists u ∈ U+ such that B(f, u) ⊆ G.
But f ∈ Cc(X) implies that B(f, u) ∩ Cc(X) ⊆ G. Therefore

{g ∈ Cc(X) : |f(x)− g(x)| < u(x) : ∀x ∈ X} ⊆ G.

Since X is an N -space, we infer that there exists u1 ∈ U+
c such that

u1(x) ≤ u(x) for each x ∈ X. Therefore
f ∈ {g ∈ Cc(X) : |f(x)− g(x)| < u1(x), ∀x ∈ X}
⊆ {g ∈ Cc(X) : |f(x)− g(x)| < u(x), ∀x ∈ X}
⊆ G



328 MOHAMADIAN, NAMDARI, NAJAFIAN AND SOLTANPOUR

and so G ∈ τ1, hence τ2 ⊆ τ1. Conversely, let τ1 = τ2. We prove that
X is an N -space. For this main, let u ∈ U+ be an arbitrary element,
so for each f ∈ Cc(X) we have B(f, u) ∩ Cc(X) ∈ τ1 = τ2. Since
f ∈ B(f, u) ∩ Cc(X) ∈ τ1 we infer that there exists u1 ∈ U+

c such that
Bc(f, u1) ⊆ B(f, u) ∩ Cc(X). Hence, Bc(f, u1) ⊆ Bc(f, u). It is evident
that f +

1

2
u1 ∈ Bc(f, u1), hence 1

2
u1 + f ∈ B(f, u). Therefore

|1
2
u1(x) + f(x)− f(x)| ≤ u(x)

for each x ∈ X, so 1

2
u1(x) ≤ u(x) for each x ∈ X. Now, if v =

1

2
u1,

then v ∈ U+
c and for each x ∈ X, v(x) ≤ u(x), hence we are done. □

Corollary 2.16. If X is a pseudocompact space, then the mc-topology
on Cc(X) and relative topology on Cc(X) as a subspace of Cm(X)
coincide.
Corollary 2.17. If X is a N-space, then the m∗

c-topology on C∗
c (X)

and relative topology on C∗
c (X) as a subspace of Ccm(X) coincide.

3. uc-topology on Cc(X)

Definition 3.1. For a function f ∈ C(X) and each positive real
number ε, the subset u(f, ε) is defined as follows:

u(f, ε) = {g ∈ C(X) : |f(x)− g(x)| < ε, ∀x ∈ X}.
The family

{u(f, ε) : ε ∈ R+, f ∈ C(X)}
will be a base for a neighborhood system at f and this topology on
C(X) is called uniform topology which is denoted by u-topology. The
notion Cu(X) is used for C(X) endowed with the u-topology. Similarly,
the uniform topology on C∗(X), Cc(X) and C∗

c (X) are defined and
denoted by C∗

u(X), Ccu(X), and C∗
cu(X), respectively.

It is evident that mc-topology (resp., m∗
c-topology) is finer than

uc-topology (resp., u∗
c-topology). The equality of the latter two

topologies is investigated in the following facts.
Proposition 3.2. Let

uc(f, ε) = {g ∈ Cc(X) : |f(x)− g(x)| < ε, ∀x ∈ X}.
If f ∈ Cc(X) and ε > 0, then uc(f, ε) = u(f, ε) ∩ Cc(X).
Proof. Let g ∈ uc(f, ε), so g ∈ Cc(X) and |f(x)− g(x)| < ε. Therefore
g ∈ u(f, ε)∩Cc(X). Conversely, if g ∈ u(f, ε)∩Cc(X), then g ∈ Cc(X)
and for each x ∈ X, |f(x)− g(x)| < ε. Hence,
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g ∈ {h ∈ Cc(X) : |f(x)− h(x)| < ε , ∀x ∈ X}
which implies that g ∈ uc(f, ε). □
Proposition 3.3. The uc-topology on Cc(X) coincides with the relative
topology on Cc(X) as a subspace of Cu(X).
Proof. Let τ1 be the uc-topology on Cc(X) and τ2 be the relative
topology on Cc(X) as a subspace of Cu(X). If G ∈ τ1 and f ∈ G,
then there exists ε > 0 such that uc(f, ε) ⊆ G. So u(f, ε)∩Cc(X) ⊆ G
which implies that f ∈ u(f, ε) ∩ Cc(X) ⊆ G where u(f, ε)∩Cc(X) ∈ τ2.
Therefore f ∈ intτ2G, so G ∈ τ2. If H ∈ τ2, then there exists G ⊆ C(X)
such that G is open and H = G ∩ Cc(X). Now, if f ∈ H, then
f ∈ G ∩ Cc(X), so f ∈ Cc(X) and there exists ε > 0 such that
U(f, ε) ⊆ G which implies that f ∈ Uc(f, ε) ⊆ U(f, ε) ⊆ G. Hence,
f ∈ intτ1G and we are done. □

In the following theorems the m-topology (resp., m∗-topology) and
u-topology (resp., u∗-topology) on C(X) (resp., C∗(X)) are compared.
It is shown that the coincidence of these topologies on C(X) (resp.,
C∗(X)) is equivalent to the pseudocompactness of X, see [11] and
[8, 2N.2].

Theorem 3.4. A space X is pseudocompact if and only if
Cm(X) = Cu(X).

Theorem 3.5. space X is pseudocompact if and only if
C∗

m(X) = C∗
u(X).

Corollary 3.6. For a space X, Cm(X) = Cu(X) if and only if
C∗

m(X) = C∗
u(X).

Remark 3.7. According to [6], a space X is called countably
pseuodocompact whenever Cc(X) = C∗

c (X). Every pseudocompact
space is countably pseudocompact, but the converse may not be hold.
For instance, let X = (0, 1) ∪ {2} and f ∈ Cc(X), then there exists
r ∈ R such that f((0, 1)) = r. Now, if k = max{r, f(2)}, then it is
clear that |f | ≤ k, i.e., f ∈ C∗

c (X) and X is countably pseudocompact.
Since f(x) = tan

πx

2
for each x ∈ (0, 1) and f(2) = −1 is a continuous

function which is not bounded, we infer that X is not pseudocompact.

We remind the reader that the next theorem is in fact, the same as
[12, Proposition 2.2].

Theorem 3.8. A space X is countably pseudocompact if and only if
Ccm(X) = Ccu(X).
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Theorem 3.9. A space X is countably pseudocompact if and only if
C∗

cm(X) = C∗
cu(X).

Proof. Let X be countably pseudocompact and τ1, τ2 be the m-topology
and u-topology on C∗

c (X) respectively. It is sufficient to show that
τ1 ⊆ τ2. For this main, let G ∈ τ1 and f ∈ G, then there exists
u1 ∈ U∗+

c such that B∗
c (f, u1) ⊆ G. Now, if ε = inf{u1(x) : x ∈ X},

then ε > 0, for u1 ∈ U∗+
c is far away from zero. Therefore

U∗
c (f, ε) ⊆ B∗

c (f, u1) ⊆ G

and we are done. Conversely, let τ1 = τ2. If X is not countably
pseudocompact and f ∈ Cc(X) \ C∗

c (X), then put u =
1

|f | ∨ 1
. It

is evident that u ∈ U+
c , so Bc(0, u) ∩ C∗

c (X) ∈ τ1. We show that
Bc(0, u) ∩ C∗

c (X) /∈ τ2 and we are done. If Bc(0, u) ∩ C∗
c (X) ∈ τ2,

then there exists ε > 0 such that u∗
c(0, ε) ⊆ Bc(0, u) ∩ C∗

c (X). Since
ε

2
∈ u∗

c(0, ε), then ε

2
∈ B∗

c (0, u) which implies that |ε
2
− 0| < u. So

ε

2
<

1

|f | ∨ 1
, therefore |f | ∨ 1 <

2

ε
which is a contradiction, for f is

unbounded. □
Corollary 3.10. For a space X, Ccm(X) = Ccu(X) if and only if
C∗

cm(X) = C∗
cu(X).

Theorem 3.11. A space X is pseudocompact if and only if X is
countably pseudocompact and N-space.

Proof. If X is pseudocompact, then it is countably pseudocompact and
by Proposition 2.12, it is an N -space. Conversely, let X be a countably
pseudocompact N -space. For each f ∈ C(X), we have 1+ |f | ∈ U+. So
there exists g ∈ U+

c such that 1+|f | < g. Since g ∈ U+
c = U∗+

c , we infer
that there exists k > 0 such that |g| ≤ k and hence f ∈ C∗(X). □
Corollary 3.12. A space X is countably pseudocompact if and only if
Ccm(X) = Ccu(X).

Corollary 3.13. A space X is an N-space and C∗
cm(X) = C∗

cu(X) if
and only if X is pseudocompact.

Proof. It is immediate by Theorem 3.9 and Theorem 3.11. □
We recall that a metric space M is called complete (or a Cauchy

space) if every Cauchy sequence of points in M has a limit that is also
in M . A topological space (X, τ) is called completely metrizable space
whenever there exists at least one metric d on X such that (X, d) is a
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complete metric space and d induces the topology τ . One can easily
show that Cu(X) (C∗

u(X)) is metrizable.

Theorem 3.14. Ccu(X) is metrizable for any space X.

Proof. We define the function ρ : Cc(X)× Cc(X) → R by

ρ(f, g) = Sup
x∈X

|f(x)− g(x)|
1 + |f(x)− g(x)|

.

It is evident that ρ(f, g) = ρ(g, f), ρ(f, g) ≥ 0, and ρ(f, g) = 0 if and
only if f = g. Since the function f(x) =

x

1 + x
for each x ≥ 0 is

extremally increasing and |α− β| ≤ |α− γ|+ |γ − β|, we infer that

|α− β|
1 + |α− β|

≤ |α− γ|+ |γ − β|
1 + |α− γ|+ |γ − β|

=
|α− γ|

1 + |α− γ|+ |γ − β|
+

|γ − β|
1 + |α− γ|+ |γ − β|

≤ |α− γ|
1 + |α− γ|

+
|γ − β|

1 + |γ − β|
.

Therefore ρ(f, g) ≤ ρ(f, h) + ρ(h, g). We show that the metric space
Cc(X) with metric ρ is the same space as Ccu(X). Let uc(f, ε) be a
neighborhood of f in Ccu(X), we show that Nρ(f,

ε

1 + ε
) ⊆ u(f, ε). If

g ∈ Nρ(f,
ε

1 + ε
), then

|f − g|
1 + |f − g|

<
ε

1 + ε

which implies that |f − g| < ε, i.e., g ∈ uc(f, ε). Conversely, let
Nρ(f, ε) be an open ball in Cc(X). For r = min{1

2
, ε} > 0, we have

g ∈ uc(f,
r

1− r
), i.e., |f − g| < r

1− r
. Hence

|f − g|
1 + |f − g|

<
r

(1− r) + r
,

so ρ(f, g) < r which implies that g ∈ Nρ(f, r). Therefore

uc(f,
r

1− r
) ⊆ Nρ(f, r) ⊆ Nρ(f, ε).

□



332 MOHAMADIAN, NAMDARI, NAJAFIAN AND SOLTANPOUR

Remark 3.15. For a space X, Ccu(X) may not be complete. For

instance, let X = Qc∩ [0, 1]. The sequence {fn}n∈N where fn(x) =
[nx]

n
is a Cauchy sequence in Cc(X), but it is not convergent in Cc(X).
For this main, we must prove that for arbitrary ε > 0, there exists
M ∈ N such that for each m,n ≥ M , ρ(fm, fn) < ε. We note that
[mx] = mx− p1 and [nx] = nx− p2 such that 0 ≤ p1, p2 < 1. For each
ε > 0, if M1 ∈ N and 1

M1

<
ε

2
, then for each m,n ≥ M1,

|fm(x)− fn(x)| =
∣∣∣∣ [mx]

m
− [nx]

n

∣∣∣∣
=

∣∣∣∣n[mx]−m[nx]

mn

∣∣∣∣
=

∣∣∣∣mnx− np1 −mnx+mp2
mn

∣∣∣∣
=

∣∣∣∣mp1 − np2
mn

∣∣∣∣
=

∣∣∣p2
n

− p1
n

∣∣∣
≤ p2

n
+

p1
m

<
1

n
+

1

m

<
ε

2
+

ε

2
= ε,

which implies that for each m,n ≥ M1, |fm(x)− fn(x)| < ε. So
|fm(x)− fn(x)|

1 + |fn(x)− fn(x)|
<

ε

1 + ε
,

i.e., ρ(fm, fn) <
ε

1 + ε
. For each n ∈ N, fn has countable image. Also

if x0 ∈ X and [nx0] = k, then for

r = min

[
nx0 − k

2n
,
k + 1− nx0

2n

]
we have x ∈ Nr(x0), i.e., |fn(x) − fn(x0)| = 0. Therefore {fn} with
metric ρ is a Cauchy sequence in Cc(X). Since for each x ∈ X,

limn→∞ fn(x) = limn→∞
[nx]

n
= x, we infer that for each x ∈ X,

fn −→ f where f(x) = x. But f /∈ Cc(X), so Cc(X) with metric
ρ is not complete.
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R. MOHAMADIAN, M. NAMDARI, H. NAJAFIAN AND S. SOLTANPOUR

توپولوژی حلقه یک عنوان به Cc(X)

سلطانپور۴ سمیه و نجفیان٣ حجت اله نامداری٢، مهرداد محمدیان١، رستم

ایران اهواز، اهواز، چمران شهید دانشگاه ریاضی، علوم ١,٢,٣گروه

ایران اهواز، نفت، صنعت دانشگاه پایه، علوم ۴گروه

توابع از متشکل ،(C∗(X)) C(X) شماراتابعی زیرجبر نمایش (C∗
c (X)) Cc(X) می کنیم فرض

mc-توپولوژی به وسیله توپولوژی حلقه عنوان به (C∗
c (X)) Cc(X) باشد. شمارا برد با کراندار) (توابع

شناسایی اخیر توپولوژی دو تساوی و شده بررسی ∗m-توپولوژی)
c) uc-توپولوژی و ∗m-توپولوژی)

c)
شده داده نشان شده اند. مطالعه و معرفی می شوند، نامیده N-فضا که توپولوژی فضاهای است. شده
m-توپولوژی) (با C(X) زیرفضای به عنوان نسبی توپولوژی و Cc(X) روی mc-توپولوژی که است
اگر است شبه فشرده X که می دهیم نشان همچنین باشد. N-فضا یک X اگر تنها و اگر هستند منطبق

باشد. N-فضا و شبه فشرده شمارا X اگر تنها و

N-فضا. uc-توپولوژی، mc-توپولوژی، تابعی، شمارا زیرجبر کلیدی: کلمات
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