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 In this investigation, the hybrid approach of wavelet transforms and fractal 
method named Wavelet-Fractal model has been utilized for geochemical 
contamination mapping as a novel application. For this purpose, the distribution 
maps of pollutant elements were transformed to the position-scale domain using 
two-dimensional discrete wavelet transformation (2DDWT). The Symlet2 and Haar 
mother wavelets were applied for two-dimensional signal analysis of elemental 
concentrations of As, Pb, and Zn based on soil samples taken from the Irankuh 
mining district, Central Iran. The Symlet2 and Haar wavelet coefficients of 
approximate and detail components were obtained at one level frequency 
decomposition using 2DDWT. The wavelet coefficients of approximate component 
(WCAC) were modeled using a fractal method for delineating the geochemical 
contamination populations of toxic elements. Based on the results of wavelet-fractal 
models, the As, pb, and Zn were classified into three and four populations. Two 
areas contaminated with metals have been found in the district. These areas are 
within the limit of mining operations and its surroundings. The wavelet-fractal 
proposed model has been able to separate environmental areas contaminated with 
toxic metals accurately. Anomalously intense pollution has spread to one kilometer 
outside the mining operation limit. This dispersion in the case of Pb and Zn elements 
is well seen in the geochemical map prepared with the Haar class. 
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1. Introduction 

Pollution can destroy the environment, wildlife, 
and human health. Pollution control efforts include 
air pollution control, wastewater treatment, solid-
waste management, hazardous-waste management, 
and recycling. Pollutants can be natural or human-
made, such as, mining activities, volcanic ash or 
trash produced by factories. The significant types 
of pollution are air pollution, water pollution, and 
land pollution [1,2]. Pollution has widespread 
wrecking impacts on the environment, and growing 
evidence of local and global pollution has attracted 
attention [3,4]. There are environmental concerns 
about the effects of mining activities specially 
include extraction operations, dumping waste, 
waste dam and mineral processing phases. These 
activities spread heavy elements in the surrounding 
areas, hence the evaluation of the amount of 

contamination caused by heavy and toxic elements 
and delineation of contaminated areas are essential 
subjects in environmental geochemistry [5-7]. 
Contamination mapping is the essential stage for 
constructing maps that illustrate the positions of 
contaminated locations, pollution sources, and 
impacts on surrounding districts. These created 
maps are suitable tools for understanding the 
contamination dispersion type in various areas and 
can be utilized for pollution controlling and 
decision making about remediation ways [8-10]. 

Various approaches have been presented for 
geochemical mapping to explore mineral ore 
deposits or detect the geochemical environmental 
pollution regions [11-13]. The geochemical 
populations can be distinguished and the spatial 
exploratory or pollution evidences can be 
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highlighted using geochemical mapping 
approaches. The geochemical exploratory maps are 
delineated using various mathematical approaches 
in the spatial domain, frequency domain [13-15], 
and wavelet domain [16-18]. Fractal theory is a 
common way to separate geochemical populations 
and have been widely performed in geochemistry 
to model complex mineralization and geological 
phenomena. Fractal analysis has been utilized for 
interpretation of various fields, such as exploratory 
and environmental geochemistry. These models 
have been applied to various geochemical data and 
have shown promise in understanding the 
underlying patterns and processes in this field [19-
24]. The fractal theory has been applied to model 
geochemical dataset in spatial, frequency, and 
wavelet domains. The DWT has high ability to 
acquire precise  and significant results for various 
data processing. It has been applied in various 
science fields, such as image processing and data 
analysis [25]. The wavelet-base fractal method is a 
new approach used in geochemical exploration 
field for anomaly separation [26, 27]. In some new 
researches, the integrated method has been used to 
separate geochemical potential areas [28, 29]. In 
this study, the Wavelet-Fractal method was used for 
modeling of the environmental geochemical 
dataset and recognizing the pollution patterns as a 
novel application. The wavelet transform is a 
mathematical technique performed for data 
processing and analysis. The advantage of the 
wavelet transform over the Fourier transform is 
that the frequency and time (or location) 
components are considered together. The high and 
low-frequency components of spatial or temporal 
signals are distinguished using the wavelet 
transform. The wavelet transform can be 
implemented through a convolution of a signal and 
a wavelet function, and it presents the exciting 
information about the scale and frequency features 
of dataset [30-36]. 

2. Case study and data 

The study area is located near the Irankuh 
mountain limit in Isfahan province. This area has 
Irankuh lead and zinc mine, located in the 
metamorphic rocks of Sanandaj-Sirjan zone. This 
zone is considered a unit of Zagros orogeny in the 

west of Iran [37, 38]. The mineralization type of 
Irankuh mine as a Pb-Zn epigenetic deposit is 
Mississippi Valley-type, and its host rocks include 
limited Jurassic shale and lower Cretaceous 
dolostone. The replacement process has caused 
lead and zinc mineralization within dolomite and 
shale rocks. This process is manifested in the form 
of breccia, veinlets, and filled space [39]. There are 
several styles of mineralization in the study area, 
such as sulphide mineralization whose constituents 
are massive and semi-massive, brecciated, 
laminated, vein-veinlet, disseminated, colloform 
and framboidal. Another style of hydrothermal 
mineralization is associated with hydrothermal 
alteration such as dolomitization, silicification and 
sericitization. Non-sulfide mineralization in the 
area can be referred to as supergene mineralization 
[40]. The faults and fractured zones control the 
orebodies, and the Pb-Zn hydrothermal 
mineralization is shown in these structures and has 
created alterations of dolomitization and 
silicification. Sphalerite and dolomite rich in iron 
and manganese, ankrite, galena, bituminous, pyrite 
and calcite ± quartz ± barite are the main minerals 
of the region. The climate of the area is semi-arid, 
and it is windy from March to May and sometimes 
from September to October [41]. The composition 
of the soils of the area is calcic, organic compounds 
with low salt, and has a pH of about 7 to 8. The 
amount of sand, silt and clay is about 44, 39 and 
17, respectively [42, 43]. The areas near the mine 
have plants and agricultural products contaminated 
with heavy metals containing lead and zinc. These 
metals are dispersed through dust. For this reason, 
it has caused environmental concerns for 
agricultural purposes [44]. 

The geological map of the study area is shown in 
Figure 1. On this Figure, the location of 137 soil 
samples taken from a depth of 0 to 30 cm in 
industrial, residential and mainly agricultural 
backgrounds is also given. The sampling network 
was designed based on a systematic grid with an 
interval of 500 m. The samples were analyzed for 
44 elements consisting of heavy metals using ICP-
OES. Studying the relationship between 
geochemical contaminant elements and their 
pattern shows that the leading cause of element 
dispersion around the mining site is dust [43, 45]. 
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Figure 1. Geological map of the study area. The locations of the soil samples are shown with green circles. 

3. Methodology 
3.1. Wavelet analysis 

Wavelet transformation and related theoretical 
topics were widely developed in the middle of the 
18th century in various sciences [46]. The wavelet 
transform, Wx(a, b), of a continuous temporal or 
spatial signal, x(t), is defined as follows: 

푤 (푎, 푏) =
1
√푎

푥(푡)휓∗(
푡 − 푏
푎

)푑푡
∞

∞
 

(1) 

(푎, 푏) ∈ 푅  

Therefore, the wavelet transform is calculated by 
the internal multiplication of x(t) and the 
transferred and scaled version of the single 
function ψ (t), which is called the wavelet [42]. By 
changing the scaling parameter of a, the frequency 
center and the bandwidth of the interpass are 
affected. Temporal and frequency resolution 
depends on the parameter of a. For analysis of high 
frequencies (low a), time localization is suitable, 
but frequency resolution is low. On the other hand, 
for the analysis of low frequencies, super 
frequency resolution and low time resolution will 
be obtained. The time transition is done by the 
changing of the parameter b. Wavelet analysis is 
often called time-scale analysis instead of time-
frequency analysis [47]. The wavelet coefficients 
depend on the values of a and b. In discrete wavelet 
transformation, discrete values of a and b are used, 
and their values are considered as follows [48]. 

j j 2a 2 b k 2 , k, j Z    (2) 

Wavelet analysis can be used to decompose the 
signal into detail and approximate components. 
The primary temporal or spatial signal is passed 
through two high and low pass filters. The detailed 
approximate components are obtained using high-
pass and low-pass filtering, respectively. 
Therefore, the initial signal in the temporal or 
spatial domain can be decomposed and 
investigated in different resolutions. Different 
resolutions are created due to different scales and 
contain different information [48]. In the DWT 
method, the signal x is decomposed into two high 
and low frequency parts in the first step, and in the 
second step, the low frequency part is again divided 
into two high and low frequency components. This 
can continue to various stages of filtering [49]. The 
wavelet analysis can extract information from data 
at different scales and be used as a powerful tool in 
data processing due to its multi-resolution nature. 
Partial information in the field of location or time 
and frequency simultaneously can be analyzed in 
the wavelet method and increase the accuracy of 
the analysis, so the wavelet method is more flexible 
than the Fourier analysis method. The two-
dimensional discrete wavelet method decomposes 
the primary signal into four components in each 
step including horizontal detail component, 
vertical detail component, diagonal detail 
component and approximate component [50, 51]. 
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The decomposition process of two-dimensional 
DWT in three levels containing high and low pass 
filtering has been illustrated in Figure 2. In each 
decomposition level, signal is divided into detail 
and approximate parts and in the next 

decomposition level, the approximate component 
of previous level is divided. The DWT can generate 
a sparse signal representation, making it suitable 
for compression and denoising. 

 
Figure 2. Schematic decomposition of a signal in three levels using two-dimensional DWT [52]. 

In this study the Symlet2 and Haar mother 
wavelets were used for geochemical data 
processing. The Daubechies wavelets are 
compactly supported orthonormal functions that 
can be attractively used as DWT of signals. The 
Daubechies wavelet families have been frequently 
applied for DWT [53]. The Daubechies wavelet 
with order1 (named Haar) and order 2 were utilized 
for geochemical signal processing in this research. 
These two mentioned mother wavelets conveyed 
quite similar results hence the results of Haar 
wavelet were presented in the paper. The signals 
and functions with speedy transitions can be 
analyzed by Haar wavelet because of its 
discontinuity property. The frequency features of 
functions can be processed using Haar wavelet 
because of its orthogonal property. The Haar 
wavelet can be performed for analyzing the 
localized attribute of functions [53, 54]. The 
smoothness, regularity and lengthy of filters are the 
features of Daubechies and symlets wavelets that 
facilitate the processing of smooth curve and 
reconstructing the signals. The non-linear signals 
can be approximated based on these advantages 
[55, 56]. The Symlets families are proposed by 
Daubechies based on modified Daubechies 
wavelets and apply the almost symmetric functions 
for signal processing. Implementation of the 
modified wavelets usually present more 

robustness. These two wavelet families are similar 
except for the symmetry feature. The Daubechies 
functions have asymmetric features. The Symlets 
have been applied for signal processing as a proper 
tool by researchers [56- 58]. 

3.2. Fractal modeling of wavelet coefficients 

In this research, the advantages of fractal 
geometry have been used to model wavelet 
coefficients. This geometry has been used in 
mineral exploration stages, mainly to separate 
populations, threshold values, and geochemical 
anomalies [59-63]. The main problem in this 
geometry is the fractal dimension. Various methods 
have been used to calculate fractal dimensions, 
such as variograms analysis, the area-perimeter 
relation, concentration-area model, and 
concentration-distance model [21, 27, 64-66]. In 
the counter maps of the spatial distribution of 
elements, if A(ρ) is the counter area with 
concentration value ρ, its area decreases with 
increasing concentration [67, 68]. In this case, to 
define the anomalies and geochemical background, 
the concentration-area model is as follows: 

퐴(휌)(≻ )훼휌  (3) 

Where A(ρ) is an area with concentration values 
higher than the contour containing the 
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concentration value of ρ and D is the exponential 
feature. In this research, A(ρ) was obtained by 
counting cells with raw element concentrations. In 
this method, the cells of the study area are 
overlapped with a grid. In this case, A(ρ) is 
obtained by multiplying the area of the cells by the 
concentrations more significant than the surface. In 
geochemical explorations, the fractal dimensions 
associated with anomalies or concentrations related 
to mineralization will be different from the fractal 
dimension of the geochemical background, and 
these anomalies have different power functions of 
the background value [59]. Therefore, 
environmental pollution also produces anomalies 
related to this phenomenon, and its fractal 
dimension will also differ. This difference results 
in threshold values and is used in separating 
anomalous areas. The wavelet coefficients of 
approximate components (WCAC) can be modeled 
using fractal methods. In this study, the Symlet2 
and Haar wavelet transformations were utilized for 
mapping of environmental geochemical patterns 
according to position-scale domain that are used in 
fractal modeling based on the concentration-area 
fractal model. In this scenario the WCAC are used 
instead of concentration and their areas are 
calculated and the fractal diagram is modeled 
(WCAC-Area fractal modeling). The WCAC-A 
fractal model of pollution-related elements was 
used to classify contamination populations and 
intensification of environmental geochemical 
anomalies. 

4. Results and discussion  

The three-dimensional contour maps of As, Pb 
and Zn were created using inverse distance squared 
approach in MATLAB software. These maps were 
utilized for the 2DDWT method by Symlet2 and 
Haar mother wavelets. The wavelet functions 
transform the three-dimensional contoured 
geochemical signals to the position-scale domain. 
The spatial elemental geochemical signal is 
decomposed to four components including 
horizontal detail, vertical detail, diagnostic detail, 
and approximate components. The detailed 
components can be affected by geochemical 
noises. The denoising of images and signals can be 
done by removing the details coefficients in 
2DDWT. In this study, the geochemical signals of 
As, Pb, and Zn were decomposed in one level 
procedure. The wavelet coefficients of detail and 
approximate components related to original 
geochemical signals in one decomposition level 

were calculated for these elements. The 
coefficients of approximate component are related 
to fundamental nature of the original elemental 
signal. The extracted wavelet coefficients convey 
concordance of the mother wavelet and elemental 
geochemical maps in various position scales. These 
coefficients indicate the frequencies of elements in 
different positions and various scales. Hence, the 
wavelet coefficient datasets obtained by symlet2 
and Haar mother wavelets were investigated as 
output maps. The coefficients of As, Pb and Zn 
approximate components denoised from high 
frequencies were modeled by wavelet-based fractal 
method. Therefore, wavelet-based fractal modeling 
was applied to distinguish the thresholds of 
geochemical populations and separate the 
environmental anomalies by logarithmic plots. 

For the fractal modeling of wavelet coefficients, 
first, a logarithmic plot of concentration-area was 
drawn for WCAC data. After statistical analysis of 
this plot, threshold values for anomalous sub-
population were calculated. Firstly, the usual 
wavelet analysis method was done on the 
geochemical data, detailed components were 
removed, and the WCAC was calculated. In the 
next step, the WCWA scores (Haar and Symlet2) 
were used as input and modeled by the fractal 
method. A grid of 85 × 85 m2 (a total of 9500 grids) 
was considered to estimate the coefficients and 
interpolate the data using the method of ordinary 
kriging. This technique was implemented on the 
wavelet coefficients, and the data was classified. 
Then, the WCAC-area logarithmic plot was drawn 
on variables for the three elements of As, Pb, and 
Zn in two mother wavelets of Haar and Symlet2. 
These plots are presented in Figure 3. On these 
graphs, different slopes were identified, 
representing different populations with different 
fractal dimensions. Three main populations were 
detected for the As element in both mother 
wavelets of Haar and Symlet2. Pb has four primary 
populations in both wavelets. However, for the Zn 
element, three populations were identified in Haar 
and four in Symlet2. Generally, from low to high 
WCAC values, the fractal dimension increases 
with different populations. The identified 
anomalous populations indicate the anthropogenic 
effects of mining activities. Background 
populations also have low fractal dimensions and 
show that these populations have not been affected 
by mining activities [7, 39, 58, 59]. These fractal 
dimensions for As, Pb, and Zn elements in two 
wavelets of Haar and Symlet2 are given in Table 1. 
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Figure 3. Wavelet-Fractal models of the three elements of As, Pb, and Zn with implementing WCAC-A fractal 

model of Haar and Symlet2 data 

Table 1. Fractal dimensions obtained from primary populations of Wavelet-Fractal models for As, Pb, and Zn in 
two Haar and Symlet2 wavelets 

Element 
Haar Symlet2 

population 
1 

population 
2 

population 
3 

population 
4 

population 
1 

population 
2 

population 
3 

population 
4 

As 1.52 3.72 17.60 - 1.64 4.50 15.98 - 
Pb 0.81 5.28 1.72 6.56 0.87 5.97 1.84 8.55 
Zn 0.78 3.42 2.32 6.28 0.84 2.31 6.62 - 

 
Figure 4 shows the geochemical maps of As, Pb 

and Zn elements. These elements are related to 
pollution. To prepare these maps, first, the 
concentration-area fractal model was implemented 
for the wavelet coefficients in Haar and Symlet2 
data, and then by separating the separated 
populations in this model, the maps were provided. 
The fractal patterns of wavelet coefficients show 
the limits of estimated populations with different 
colors on the map. The highest contamination was 
shown with strong anomaly with jam and red 
colors. The low limit of strong anomaly for As, Pb 
and Zn elements is 79, 268 and 1400 respectively 
in Haar wavelet and 80, 250 and 3000 respectively 
in Symlet2 wavelet. This pattern changes from 

yellow with medium anomaly to green 
background. The distribution maps show that the 
amount of toxic metals increases by close to the 
mining site. These elements have a similar 
increasing pattern, and in high amounts, they show 
almost the same contaminated areas. To validate 
the model and identify the source of the 
contamination, the location of the mining operation 
limit and the tailings dam are fitted on the final 
maps (Figure 4). These patterns, which are the 
results of the Wavelet-Fractal method, show that 
the mining site is a source of pollution and is spread 
around the mine with significant dispersion. In 
agricultural and built-up areas, the concentrations 
of elements spread to the ground with less intensity. 
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Two areas contaminated with metals have been 
found in the area. These areas are within the limit 
of mining operations and its surroundings. The 
anomalous pollution intensity is higher for the Pb, 
followed by the Zn. As is less polluted than the two 
mentioned elements. Anomalously intense 
pollution has spread up to one kilometer outside the 
limit of the mining operation. This dispersion in the 
case of Pb and Zn elements is well seen in the 
geochemical map prepared with the Haar class. 
Also, the pollution in the tailings dam location is 
intense and extends up to 2 kilometers. In Haar 
class map, the dispersion of contamination of 
elements is more than Symlet2 class. The highest 
populations of zinc and lead have a strong 

relationship with each other and this relationship is 
moderate with arsenic element. Various 
multivariate pollutant indexes were used for 
identification of pollution areas affected by mining 
activities. Spatial distribution of toxic elements can 
be integrated for separating the pollution areas. The 
applicable scenarios such as principal component 
analysis, factor analysis, and machine learning 
algorithms and integrating methods can be utilized 
for detecting the different pollutant aspects of 
environments. These multivariate integrated maps 
and multidimensional views can be useful in 
decision making process especially about the 
contaminated agricultural and urban areas. 

 
Figure 4 Maps of soil geochemical contamination for arsenic, lead, and iron elements in the Irankuh mining area, 

obtained by the WCAC-A fractal model. 



Mahdiyanfar, and Seyedrahimi-Niaraq Journal of Mining & Environment, Vol. 15, No. 4, 2024 
 

1586 

5. Conclusions 

In this investigation, wavelet-fractal modeling 
was applied to delineate geochemical anomalies of 
pollutant elements of As, Pb, and Zn in the Irankuh 
region in the center of Iran. The geochemical 
denoising of toxic elements was done by 
eliminating diagonal, horizontal, and vertical 
detailed components at one level decomposition 
based on 2DDWT. The Symlet2 and Haar wavelets 
approximate components were preserved. Their 
wavelet coefficients for As, Zn, and Pb elements 
were calculated and modeled using WCAC-A 
fractal method. The acquired results of wavelet-
based fractal modeling indicate that three or four 
geochemical populations have been separated for 
As, Pb, and Zn, according to Symlet2 and Haar 
WCAC. The distribution maps show that the 
amount of toxic metals increases by close to the 
mining site. Two areas contaminated with metals 
have been found in the area. These areas are within 
the limit of mining operations and its surroundings. 
The anomalous pollution intensity is higher for the 
Pb, followed by the Zn. As is less polluted than the 
two mentioned elements. This dispersion in the 
case of Pb and Zn elements is well seen in the 
geochemical map prepared with the Haar class. 
Also, the pollution in the tailings dam location is 
intense and extends up to 2 kilometers. In Haar 
class map, the dispersion of contamination of 
elements is more than Symlet2 class. The highest 
populations of zinc and lead have a strong 
relationship with each other and this relationship is 
moderate with arsenic element. 
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  چکیده:

فرکتال، به عنوان یک روش جدید، براي به نقشه در آوردن آلودگی ژئوشیمیایی  - در این تحقیق از روش ترکیبی تبدیل موجک و روش فرکتالی به نام مدل موجک  
به حوزه مقیاس موقعیت تبدیل شد.  (2DDWT) بعدیاستفاده شده است. براي این منظور، نقشه هاي توزیع عناصر آلاینده با استفاده از تبدیل موجک گسسته دو  

شده از منطقه معدنی ایرانکوه، ایران  هاي خاك برداشت بر اساس نمونه   Zn و As  ،Pb  براي آنالیز سیگنال دو بعدي غلظت عنصري  Haar و  Symlet2 موجک مادر 
به دست آمد. ضرایب     2DDWTاز اجزاي تقریبی و جزئیات در تجزیه فرکانس یک سطح با استفاده از   Haar و  Symlet2 مرکزي استفاده شد. ضرایب موجک 

- هاي موجکسازي شد. بر اساس نتایج مدل با استفاده از روش فرکتالی براي تعیین جوامع آلودگی ژئوشیمیایی عناصر سمی مدل  (WCAC) موجک مولفه تقریبی 
در این ناحیه، دو منطقه آلوده به فلزات پیدا شده است. این مناطق در محدوده عملیات معدنی و   .بندي شدند به سه و چهار جمعیت طبقه Zn و As ،Pbرکتال، ف

آلودگی با آنومالی شدید تا یک کیلومتر    .فرکتال توانسته مناطق محیطی آلوده به فلزات سمی را به دقت جدا کند  -اطراف آن قرار دارند. مدل پیشنهادي موجک 
 .شود وبی دیده میخارج از محدوده عملیات معدنی گسترش یافته است. این پراکندگی در مورد عناصر سرب و روي در نقشه ژئوشیمیایی تهیه شده با کلاس ها به خ

  .فرکتال، آلودگی محیطی  -مساحت، مدل موجک  -، فرکتال عیار Haar، موجک Symletتبدیل موجک، موجک  کلمات کلیدي:

 

 

 

 


