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Abstract 

The most significant aspect of a geochemical exploration program is to define and separate the anomalous 

values from the background. In the past decades, geochemical anomalies have been identified by means of 

various methods. Most of the conventional statistical methods aiming at defining the geochemical 

concentration thresholds for separating anomalies from the background have limited the efficiency in the 

areas with complex geological settings. In this work, three methods including the Concentration-Area (C-A) 

and Spectrum-Area (S-A) fractal models, and the U-statistic method are applied to identify the geochemical 

anomalies in Avanj porphyry system due to a complex geological and tectonic setting. The results obtained 

show that the S-A and U-statistic methods present more acceptable outputs than the C-A method. The C-A 

model acts well to identify the geochemical anomalies within a region including a simple geochemical 

background; however, the model has limitations within a region including a complex geological setting, 

where each sub-area is characterized by different geochemical fields. The U-statistic method, by considering 

the location of sampling points, their spatial relation, and radius of influence for each point in the estimation 

of anomaly location, overcomes the limitations of the C-A model. The S-A model is a powerful tool to 

decompose mixed geochemical patterns into a geochemical anomaly map and a varied geochemical 

background map. The output of this method shows the analysis of geochemical data in the frequency 

domain, which can provide new exploratory information that may not be revealed in the spatial domain. 

Eventually, it can be pointed out that the accuracy of the S-A fractal model for determining the thresholds is 

higher than the other two methods mentioned. 

 

Keywords: C-A Fractal, S-A Multi-Fractal, Geochemical Anomaly, Anomaly Separation, U-Statistic, Avanj 

Porphyry System. 

1. Introduction 

Geo-anomaly is a geologic body or geologic body 

combination that is different from its adjacent 

settings in composition, texture, structure, and 

genetic sequence [1-3]. A geochemical anomaly is 

a region where the concentration of a specific 

element is greater than a certain threshold value 

which is conventionally determined by statistical 

parameters such as mean, median, mode, and 

standard deviation [4-6]. It occurs either by 

common geological processes over long periods 

of time related to different geological events (e.g. 

tectonics, weathering, and erosion) or uncommon 

processes such as mineralization, human 

activities, and element dispersion from an ore 

body [7-9]. Delineation and separation of 

geochemical anomalies from background is one of 

the most fundamental tasks in the fields of mineral 

exploration and mineral resource assessment 

because they have a profound influence on the 

analysis of geological evolution and 

mineralization process. Usually determination of 

the thresholds are the main key to geochemical 

data processing in order to separate anomalies 

from the geochemical background, and then either 

delineate the mineralized areas or distinguish the 
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anthropogenic and natural sources of materials 

[10, 11]. 

In the past 30 years, specialized methods and 

strategies have been developed for identifying the 

geochemical anomalies from the background. The 

properties on which one can differentiate 

distinctive populations of geochemical data may 

include the geochemical value frequency, spatial 

variability of geochemical values, geometrical 

characteristics of anomaly, and scaling properties 

of a geochemical anomaly [12-15]. The most 

effective way to distinguish the geochemical 

anomalies from the background is to adopt a 

comprehensive technique that combines the 

properties mentioned above. In general, methods 

for separating geochemical populations may be 

broadly classified into the non-structural and 

structural approaches. The non-structural methods 

consider only the frequency distribution of an 

element concentration, and ignore the spatial 

variability. In particular, information about the 

spatial correlation is not always available. In 

addition, these methods are only applicable to 

cases where the geochemical data follows a 

normal distribution. Nevertheless, the normal 

distribution does not provide the only possible 

model of geochemical distribution [6]. 

Furthermore, the gathered data has to be modified 

in non-structural methods, e.g. by rejection of 

outliers and normalization of data. Moreover, the 

conventional statistical methods that use 

histogram analysis or Q-Q plots assume normality 

or lognormality of the data, and do not consider 

the shape, extent, and magnitude of the anomalous 

areas [16]. For this sake, the structural approaches 

emerged. 

Structural methods involve frequency distribution, 

spatial variability, and correlation, and they 

include various forms of spatial statistics and 

filtering. Within this, there is an increasing use of 

the fractal models and U-statistic method [17-19]. 

Cheng (1999b) has first presented the U-statistic 

method [20]. Indeed, this method is strong for 

separating the anomaly from the background [21], 

and it is based upon moving window techniques 

with an optimal variable window shape and size. 

The U-statistic values are calculated for each 

specific point using the surrounding points, which 

shows that there is a spatial relation between them 

[20, 22]. The main problem of this method is that 

it does not consider the geometry of the 

anomalous areas since the geometry of a 

geochemical anomaly may provide clues for 

anomaly interpretation. For example, linear 

anomalies may imply structural controls, and 

arcuate anomalies may be associated with 

intrusive or deformed bodies. It has generally 

been accepted that the spatial and geometrical 

information of anomalies might be essential for 

anomaly separation. For this reason, the 

fractal/multi-fractal theory, as one of the subjects 

in non-linear mathematics, established by 

Mandelbrot (1983), considers the geometry 

property of geochemical landscape [23]. Since 

1983, the fractal and multi-fractal models have 

extensively been applied to separate the anomalies 

from the background. These models include the 

number-size [24, 25] singularity indices [26], 

radial-density [27], concentration-distance [6], 

concentration-area [12], perimeter-area [28], 

concentration-volume [29], power spectrum-area 

fractal models [30, 31], and multi-fractal methods 

[32]. 

In this work, Avanj porphyry Cu-Mo system in 

Central Iran was chosen as the case of the study to 

compare the results from the Concentration-Area 

(C-A) and Spectrum-Area (S-A) models with  

U-statistic method, and to identify the 

geochemical anomalies associated with the 

mineralization. Furthermore, the effect of 

sampling density on the results is illustrated, and 

the edge effect in the S-A multi-fractal model was 

studied. This article is organized as follows. In the 

next section, the case study is investigated from 

the aspects of regional geology, structural 

geology, and geological setting. In Section 3, the 

geochemical dataset and statistical calculations 

are described. Section 4 gives a survey of the 

methods, their principles, advantages, and 

limitations. Section 5 describes the results, and 

Section 6 entitled “Discussion” compares the 

applied methods to demonstrate their efficiency. 

Finally, in Section 7, conclusions are presented. 

2. Avanj Cu-Mo porphyry system 

In terms of regional geology, Avanj porphyry 

system with an area of about 7 Km
2
 is located in 

Central Iran on the Uromieh-Dokhtar magmatic 

belt. This belt is part of the Alpine-Himalayan 

orogenic belt. Tertiary volcanic rocks are the 

oldest geological unit in the study area. Intrusive 

bodies can also be observed at the edge of the 

district. Due to (i) the intensity, type, and zoning 

of the alterations, (ii) surface mineralization 

evidences, and (iii) contiguous geochemical 

anomaly of Cu and Mo at the center and Mn-Zn-

Pb at the margins of the system, the study area can 

be considered as one of the highly potential 

reserves that typically involves Cu-Mo 

mineralization. 
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The main rock units in Avanj porphyry system, 

which is 90 Km far from the northeast of Isfahan 

and 5 Km distant from the East of Avanj village, 

consist of andesite, porphyry dacite, rhyodacite, 

quartz diorite, and diorite along with  

quartz-magnetite veins. Common alterations in a 

porphyry system including phyllic  

(quartz-sericite), argillic (quartz-clay minerals), 

and propylitic (chlorite-epidote) alterations, and 

also various iron oxide minerals (jarosite, 

hematite, and goethite) can be observed in the 

study area. The geological map of the study area 

is shown in Figure 1. According to this map, 

alterations from the center to the margins include 

phyllic or quartz-sericite (mainly in the northern 

and southern sections), quartz-magnetite 

stockworks (mainly in the southern section), 

argillic (quartz-kaolinite), and propylitic (epidote 

and chlorite on the margins). Hydroxides of iron 

(hematite, goethite, and jarosite) are observed in 

most places relating to phyllic and argillic 

alterations. 

The porphyry rhyodacite units aged Miocene and 

they are observed in brown color on the ground. 

This unit contains argillic alteration, goethite 

oxides sporadically, and jarosite-silica veins. It 

also involves porphyry dacite and quartz-diorite 

rock units, and does not have appropriate hematite 

mineralization in relation to copper sulfide. The 

porphyry dacite unit aged Miocene is the most 

important unit containing copper mineralization 

potential in the area. The unit includes quartz-

sericite (phyllic) alteration, quartz-hematite 

stockworks, abundant iron oxide mineralization 

(mainly scattered and veinlets of hematite), and 

locally malachite mineralization. Dacitic rocks, 

located at the center of the southern and northern 

sections, include significant mineralization of 

hematite associated with copper sulfides. Quartz 

diorite intrusive bodies aged Miocene and include 

potassic alteration and quartz-magnetite veins. 

Diorite contains propylitic alteration intruded into 

semi-deep dacite-rhyodacite porphyry, and leads 

to the alteration of old rocks and creation of Cu-

Mo mineralization in different parts of the phyllic 

alteration system. This unit can be seen in the 

central parts of the south porphyry alteration 

system. The quartz-diorite porphyry unit in the 

western part of the south porphyry system 

includes propylitic alteration. 

Faults play an important role in the structure of 

tectonics, positioning of the igneous rocks, 

alteration and mineralization in the study area. 

Avanj porphyry system is tectonically located at 

the intersection of the Uromieh-Dokhtar 

magmatic belt and the furthest part of the Daroneh 

fault striking NE-SW. In general, the injection of 

intrusive bodies and fault mechanism play an 

important role in structuring the eastern part of the 

mentioned fault. 

 

 
Figure 1. Geological map and lithogeochemical sampling locations of Avanj porphyry system. 
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3. Geochemical dataset 

Geochemical surveys are an important part of 

geoscience investigations in both mineral 

exploration and environmental monitoring. A total 

number of 251 rock samples were collected in the 

study area using a semi-regular network and  

chip-sampling method so that the sampling 

density in volcanic units with high potential of 

mineralization like dacitic rocks is higher than the 

other units. These samples were analyzed by the 

ICP-MS method for 44 elements at Zarazma 

laboratory, Tehran. Since Avanj deposit is known 

as a porphyry Cu-Mo system based on the 

mineralogical, geological, and geochemical 

results, these two elements were selected for the 

current study. The statistical parameters of Cu and 

Mo are presented in Table 1. The mean values for 

Cu and Mo are, respectively, 84.688 ppm and 

4.9961 ppm, and their distributions are not 

normal. Histograms of the Cu and Mo 

concentration are shown in Figure 2. 

 
Table 1. Statistical parameters of Cu and Mo elements in rock samples. 

 N* DL** Accuracy Min. Max. Mean StD*** Variance Skewness Kurtosis 

Cu 240 1 ppm 1 1 1040 84.688 147.2839 21692.542 3.738 16.457 

Mo 251 0.5 ppm 0.01 0.83 89.60 4.9961 11.45388 131.191 4.671 25.902 

* Some samples are removed from the study due to low value under the detection limit. 

** Detection limit. 

*** Standard deviation. 

 

 
(a) 

 
(b) 

Figure 2. Histograms of a) copper and b) molybdenum concentration values in Avanj porphyry system. 

 

4. Threshold determination methods 

4.1. U-statistic method 

The U-statistic method is one of the most 

important univariate structural methods that 

consider the spatial situation of samples. This 

method is based on moving the average technique 

with variable window radius [33, 34]. Assume a 

circle with the center of αi (i-th sample position in 

the study area), a neighborhood radius of 

r (0 ≤ r ≤ rmax), and xi as the desired quantity in 

this coordinate. Similar to all methods of 

calculating the weighted average, the closer points 

are more weighted than the further ones. After 

calculating the weight of each sample, the 

dispersion of samples can be calculated as 

presented in Eq. (1) [20]. 

2

1

( ) ( )
n

i j
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S r w r


   (1) 

where Wj(r) refers to the weights that are a 

function of the search radius. As a result, the U 

value in the i-th point with an effect of Si(r) on 

( )ix r  and standardization is defined as Eq. (2) 

[20]. 
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in which μ is the mean and σ is the standard 

deviation of all the data. Ui(r) is a function of r, 

and different values for Ui are obtained by 

changing r. For each r, the specific number of 

surrounding samples are considered for 

determining the U value of the unknown point. As 

a result, various U values are obtained for 

unknown points, and thus the optimal value for r 

is obtained for the maximum absolute value of U 

that causes the most separation between the two 

populations of anomaly and background [20, 33]. 

max

*

0max ( )i r r iU x U r   (3) 

Eq. (3) means that at each sampling point, the U 

values should be calculated from r = 0 to r  rmax 

and then from the U values that were obtained; the 

maximum value is devoted to the target point 

[20]. Although this method considers the 

frequency distributions and also spatial variability 

and correlation, it does not consider the 

geometrical characteristics of the anomaly and the 

scaling properties of a geochemical anomaly, 

which is one of the shortcomings of this approach. 

4.2. Concentration-Area (C-A) fractal model 

The C-A model [12, 13] is one of the most widely 

used fractal models. The C-A model, originally 

developed by Cheng et al. (1994), represents the 

first important step in the fractal/multi-fractal 

modeling of geochemical data, and has been “a 

fundamental technique for modeling geochemical 

anomalies” [35, 36]. It can be expressed as Eq. 

(4). 

 A c c    (4) 

In this model, the measure A(≥ c) is the area 

enclosed by contours with values greater than or 

equal to c on a geochemical contour map. It can 

also be estimated using the box-counting 

techniques, which involves counting the number 

of pixels with averaged concentration values 

greater than or equal to c on interpolated 

geochemical images. 

The exponent α may have different values for 

different ranges of c. If the geochemical data is 

composed of multiple populations (for example, a 

mineralization-related anomalous population and 

a background population), the distribution of the 

points on a log A(≥c)-log (c) plot fits more than 

one line segment. Each line segment is presumed 

to represent a different population characterized 

by a different value of the exponent α. The right-

most breakpoint joining the line segments is 

generally taken as the threshold for separating the 

anomaly from the background [37, 38]. 

This method has the following advantages: (i) it is 

based upon a very simple empirical set of 

equations; (ii) the advantages of this method are 

essentially its simplicity and easy computational 

implementation [39-41] as well as the possibility 

to compute a numerical value of concentrations, 

i.e. the anomalous threshold, which is the most 

useful criterion for cross-examination of 

information with numerical data from different 

sources; (iii) unlike most conventional methods, 

the C-A method generates classes (zones) of pixel 

values on the basis of not only the pixel-value 

frequency distribution but also takes into account 

the spatial and geometrical properties of the real-

world features on the ground; (iv) in the C-A 

procedure, the original element concentration data 

can be treated directly [42], and therefore, it is 

unnecessary to process the data with pretreatment 

of any smoothing procedure, thus enhancing 

recognition of a geochemical anomaly from the 

background. The approach is also applied for 

image classification, anomaly separation, and 

assigning color palettes for displaying  

remotely-sensed images. 

The disadvantage of this method is that although 

the C-A model is useful to identify the 

geochemical anomalies within a region including 

a simple geological background, it has limitations 

within a region linked with a complex geological 

setting, where each sub-area is characterized by 

different geochemical fields [43]. When the study 

area is regarded as a whole mineral district 

regardless of different geological background and 

different geochemical field in a complex region, 

the C-A model could not identify the weak 

anomalies well. One can firstly divide the whole 

study area into sub-areas in terms of geotectonic 

background and geochemical field, and then use 

the C-A model in each sub-area. Even in this case, 

the weak local geochemical anomalies are not 

identified well [43]. 

4.3. Spectrum-Area (S-A) model 

Fourier/inverse Fourier transformation has been 

generally used in time series analysis and signal 

processing [30, 31, 44]. Spectral energy density 

functions illustrate the power spectrum 

distribution in the frequency domain. Cheng et al. 

(2000) have developed the idea of the C-A model 

into the frequency domain, and have extended the 

S-A model to characterize the spectral energy 

density-area relationship [45]. The advantage of 

dealing with fields in the frequency domain is that 

some complex convolution operations in the 
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spatial domain for correlation analysis, filtering, 

and transformation can be simplified significantly 

[46, 47]. The S-A model is one the most 

sophisticated methods in which the frequencies 

and spatial distributions are used. It is given as 

Eq. (5). 

  2 /dA S S    (5) 

where S denotes the spectral energy density as a 

function of the wave number vector, A(≥ S) 

denotes area in the unit of wave number with a 

threshold above S,  is an anisotropic scaling 

exponent, d is a parameter representing the degree 

of overall concentration, and  denotes 

proportionality [48-51]. 

The implementation of the S-A model can be 

achieved in three steps: 

 Generating a raster map through 

interpolating the raw data using an interpolation 

method [15]; 

 Converting the raster map into the 

frequency domain using the Fourier 

transformation. A dataset consisting of the 

power spectrum density (S) and the area with 

power spectrum density greater than or equal to 

S is obtained and then plotted in a log-log 

graph. N (N ≥ 2) straight lines can be fitted 

using the LS method. N filters are defined with 

N-1 cut-off values from N ranges of power 

energy spectrum (S) that possess distinct 

scaling properties of the S-A relation. The 

small cut-off value generally defines the 

anomaly filter, and the large cut-off value 

defines the background filter. 

 The inverse Fourier transform functions are 

applied to convert the frequency components 

back to the spatial domain [52]. 

The main disadvantage of this method is that the 

resulting S-A model is influenced inevitably and 

sometimes severely by abrupt edge truncation  

[53-54]. The edge effects due to the irregular 

shape of the study area results in high values 

occurring at the edge of the study area. The edge 

effects in an irregular-shaped study area should be 

further investigated. Traditional solutions to 

reduce edge effects are too smooth for the 

boundary of the image prior to applying the 

Fourier transformation [45]. Zero-padding is one 

of the most frequently used smoothing methods 

[51]. This simple method can reduce the edge 

effect to some degree but it is inefficient in some 

applications when the image remains distorted. 

Moreover, due to the complexity of geoscience 

data involving irregular shapes and holes with 

missing data, zero-padding generally does not 

give satisfactory results. Decay functions are 

suggested to handle edge effects in the geoscience 

image analysis [53]. A further study can focus on 

how to reduce the edge effects for the S-A model 

because the decay functions also cannot 

effectively reduce the edge effects for an irregular 

study area illustrated by Zuo et al. (2013) [43]. 

Recently, Afzal et al. (2017) have used the fractal-

wavelet analysis to transform data from the spatial 

domain to the frequency domain [55]. 

5. Results 

5.1. U-statistic method 

In this study, the copper and molybdenum 

anomalies were separated from the background by 

applying the U-statistic method. In this method, 

the radius value mostly depends on variables such 

as the average distance between the samples and 

the extent of the area in which the study is being 

carried out. Therefore, in this study, according to 

these variables, a range of different radii were 

considered for calculation of the U values. The 

average distance between the samples is 

calculated using a MATLAB code. The code 

calculates the distance of each sample point from 

the others, and then it considers the first eight 

minimum distance values for each point. The 

average of these values is calculated for each 

point, and finally, the mean of averaged values is 

considered as the average distance between the 

samples in the study area. The calculated value in 

the study area equals roughly 140 m. The radius 

range, which is considered for calculating the U 

values, includes 50 different radii, and it starts 

from the average distance quarter with the same 

increment that is equal to that. Following the 

calculation of U values, an interpolated raster map 

should be generated. The IDW interpolation 

method was used in this study for interpolating the 

U values, and the cell size was considered to be 

14 m. This cell size is actually one-tenth of the 

average distance, which is considered as an 

appropriate cell size for the interpolation process 

according to the interpolated values for some 

check points. Based on the Jenks clustering 

method, the anomaly maps for Cu and Mo were 

plotted, as shown, respectively, in Figs. 3a and 3b. 

According to the outputs of this method, strong 

anomalies of both Cu and Mo could be observed 

at the southeastern section of the study area and a 

weak small anomaly at the northwestern section. 

The point to be considered is that the anomalies 

are mostly located over the dacite porphyry 

lithological unit, which shows a strong phyllic 

alteration. 
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(a) 

 

 
(b) 

Figure 3. a) Cu and b) Mo anomaly maps using U-statistic method. 
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5.2. Concentration-Area (C-A) fractal model 

The C-A fractal model is one of the common and 

simple fractal methods that is based on the grade 

variations, the area it covers, and the higher 

grades to deal with the estimation of the cut-off 

grade and separation of the anomaly from the 

background. This method has been used to 

analyze various types of geochemical data 

including stream sediment samples [5, 13], rock 

samples [12], and humus [40]. In this study, the 

C-A method, proposed by Cheng et al. (1994), 

was used for separating the anomalies from the 

background. The steps of separating anomaly by 

this method can be summarized as follows: First, 

the geochemical data is interpolated by 

considering an appropriate interpolation method 

and an appropriate cell size. Then the area that is 

covered by a specific concentration value is 

determined. Next, the concentration values are 

sorted in ascending order, and the cumulative area 

for each value is calculated. The log-log plot of 

concentration versus area is generated and the 

straight trend lines are fitted on points. Finally, the 

threshold values occurring on the break points are 

extracted and the anomaly map is provided based 

on them. 

In this study, the C-A fractal model is 

implemented using MATLAB, and the maps are 

provided by ArcGIS. Figure 4 shows the log-log 

plots of concentration versus area for the elements 

Cu and Mo. Straight lines are fitted by means of 

the Least Squares (LS) method. In general, the 

fractal dimensions increase from lower to higher 

concentration populations. Low fractal 

dimensions are typical of the assumed background 

population distributions and high fractal 

dimensions typical of mineralization effects in the 

study area. In Figures 4a and 4b, respectively, the 

values less than 1.4534 and -0.0167 (blue line) 

represent the depletion region and the values 

greater than 2.6510 and 1.5166 (red line) show the 

enrichment area but by various intensities. Three 

break points were considered for both plots, which 

were the threshold values for separating different 

populations of concentration values including 

anomaly and background. In Table 2, the break 

point values of log-log plots and their equivalent 

concentration value before taking logarithm for 

the two elements are given. According to this 

table, the threshold values that can be considered 

for separating the anomalies of Cu and Mo are, 

respectively, equal to 447.7346 and 32.8552. 

The geochemical maps of copper and 

molybdenum, which are classified by applying the 

C-A fractal model, are shown in Figure 5. 

According to these maps, the red class indicates 

the anomalous area and the blue class represents 

the depletion regions. The major anomaly areas, 

according to Figure 5, are located in the 

southeastern section of the study area. The Cu and 

Mo anomalies are well well-conformed and are 

spatially coincident with the tectonic activities and 

typically the faults. The classes that are 

representatives of different geochemical 

populations are more dispersed in comparison 

with the U-statistic outputs, and show a less 

coherent structure. The intense anomaly areas 

located at the southeastern section are placed over 

the dacite porphyry lithological unit, which shows 

a strong phyllic alteration. The anomaly section 

that was shown at the northwest of the study area 

by the U-statistic method has been somewhat 

diminished in this method. 

 

 
Table 2. Break point values of C-A log-log plot and their equivalent concentration values before taking 

logarithm. 

Element Break point 1 Break point 2 Break point 3 

Cu 
1.4534 2.3375 2.6510 

28.4070 217.5155 447.7346 

Mo 
-0.0167 1.4215 1.5166 

0.9622 26.3942 32.8552 
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(a) 

 

 
(b) 

Figure 4. a) Log-log plot of concentration versus area for Cu b) log-log plot of concentration versus area for Mo. 
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(a) 

 

 
(b) 

Figure 5. a) Cu and b) Mo anomalies obtained from C-A fractal model. 
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5.3. Spectrum-Area (S-A) fractal model 

The spatial distribution of Cu and Mo obtained 

using the inverse distance weighted (IDW) 

method through ArcGIS shows a mixed and 

complicated pattern. The S-A technique is used to 

decompose this mixed pattern. Firstly, the Cu and 

Mo maps are taken into the frequency domain by 

means of the two dimensional (2D) Fourier 

transformation. 

Two components, the power spectrum density and 

phases, are obtained. The spectrum energy density 

(S) and the area (A) enclosed by values greater 

than or equal to the threshold for copper and 

molybdenum are plotted on a log-log scale 

(Figure 6). The S-A method ensures that the 

power spectrum value S and the area A follow 

power law relationships, as shown by the fitted 

straight-line segments on the log-log axes. 

Different straight-line segments with different 

slopes represent different self-similarities, which 

usually correspond to different patterns in the 

spatial domain. For example, in this study, for the 

elements Cu and Mo, four straight lines can be 

fitted by means of the LS method. This gives four 

ranges of power energy spectrum S that maintain 

distinct scaling properties of the S-A relation. In 

the case of copper, the values Log S0 = 5.1423, 

Log S1 = 6.3727, and Log S2 = 6.8786 define three 

thresholds. S < S2 may represent the anomalies 

and the power spectrum, and S > S0 usually 

corresponds to the background (Cheng and 

Grunsky, 1999). Similarly, in the case of 

molybdenum, the values Log S0 = 2.2763, Log S1 

= 3.9529, and Log S2 = 4.2719 define four straight 

lines. 

Furthermore, three types of fractal filters can be 

constructed based on the log S-log A plot:  

low-pass, high-pass, and band-pass spectral 

energy density filters. The abscissa of the 

intersection points, as threshold S0 or S1, is 

defined by two intersecting line segments on both 

sides of the two segments. The different slopes of 

these segments indicate that they meet different 

fractal characteristics. Usually three types of 

fractal filters are defined as follow, based on the 

log S–log A plot: 
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Investigations indicate that the spectral energy 

density is inversely related to the spectral 

frequency. It has also been proven that if GA(ω) of 

the spectral energy density is less than GB(ω), the 

wave number of GA(ω) is larger than GB(ω). In 

this sense, GA(ω) corresponds to a high frequency 

and GB(ω) to a low frequency. Therefore, GA(ω) 

can be used as the high frequency energy spectral 

density filter and GB(ω) is the low-frequency 

energy spectral density filter. Usually GA(ω) can 

be considered as the anomaly filter and GB(ω) can 

be considered as the background filter. GC(ω) can 

be used to strain out energy spectra less than S0 

but greater than S2, retaining the spectral 

components within the interval (S2, S0). In this 

way, GC(ω) is a band-pass filter in a specific 

interval. 

The resulting S-A model is influenced inevitably 

and sometimes severely by abrupt edge truncation 

[53, 54]. The edge effects due to the irregular 

shape of the study area result in high values 

occurring at the edge of the study area. The edge 

effects in this irregular-shaped study area should 

be removed. In Figure 7, the edge effects for Cu 

and Mo have been effectively addressed. There 

are various solutions to eliminate the edge effects 

[56-59]. In this work, we applied the zero-passing 

approach to reduce the edge effects. Zero-padding 

is one of the most frequently used smoothing 

methods. This simple method can reduce the edge 

effect to some degree. 

After removing the edge effects and determining 

the thresholds, the high-frequency, low-frequency, 

and band pass filters are applied to the Fourier-

transformed results, and then the inverse Fourier 

transform is applied to bring the data back to the 

spatial domain and the anomaly and background 

map was plotted. The Cu anomaly and 

background maps are obtained using the inverse 

Fourier transformation, which are shown in Figure 

8. The promising areas of Cu mineralization are 

located in the areas with high background and 

anomaly values. The resulting anomaly and 

background maps for Cu and Mo are available, 

respectively, in Figures 8 and 9. 
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(a) 

 

 
(b) 

Figure 6. a) Log-log plot of power energy versus area of Cu and b) Mo. 
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(b) 

Figure 7. Edge effects for a) Cu and b) Mo. 
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(b) 

Figure 8. a) Anomaly and b) background maps showing promising areas of Cu mineralization using S-A fractal 

model. 
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(b) 

Figure 9. a) Anomaly and b) background maps showing promising areas of Mo mineralization using S-A fractal 

model. 
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Considering the high values of the anomaly and 

background maps simultaneously for Cu and Mo, 

potential mineralization areas are mostly located 

at the southeastern section over the dacite 

porphyry lithological unit that shows a strong 

phyllic alteration associated with the hematite and 

malachite mineralization. The anomaly section 

seems more coherent in this method in 

comparison with the other two methods. 

6. Discussion 

In this study, three methods for anomaly 

separation including the C-A and S-A fractal 

models along with the U-statistic method were 

used. Each method has some advantages and 

limitations in different geological and structural 

settings. In what follows, we discuss the 

characteristics of the applied methods in 

comparison with each other. The C-A fractal 

model present four classes that can be considered 

from low to high values, respectively, as the 

background, possible anomaly, probable anomaly, 

and certain anomaly. Also the background class 

due to very low values of Cu and Mo can be 

classified as the depletion region. Dispersion of 

classes in the resulting map of the C-A method 

and low coherency of anomaly sections can be 

named as one of the limitations. 

Output of the S-A fractal model mainly includes 

the two components anomaly and background. 

Sharp borders of the anomaly sections in both 

components can be considered as one of the 

characteristics of the S-A fractal model. The 

background component is somewhat similar to the 

output of the U-statistic method but the anomaly 

component is different, and the point that should 

be noted is that the anomaly sections with low 

sampling density are ignored in the anomaly 

component of the S-A fractal model. As an 

example, the anomaly section that is placed at the 

lower border of NW of the study area can be 

mentioned. Moreover, the conformity of the 

anomaly sections resulting from the S-A fractal 

model with potential lithological units is higher 

than the other two methods. For instance, the 

porphyry rhyodacite unit that includes a strong 

argillic alteration and iron-oxide does not show 

any considerable geochemical anomalies, whereas 

the dacitic rocks including strong phyllic 

alteration located at the center of the southern and 

northern sections show coherent and strong 

geochemical anomalies of copper-molybdenum 

according to the outputs of applying the S-A 

fractal model. Also the diorite unit containing the 

propylitic alteration shows a weak geochemical 

anomaly in NW of the study area. 

7. Conclusions 

According to the complicated tectonic and 

intensive geological occurrences that have 

occurred in different periods of geological time, 

Avanj porphyry system has a complex 

geochemical surface expression. In such an 

intricate district, we need to apply several 

methods to separate the anomaly from the 

background. The most efficient way to distinguish 

the geochemical anomalies from the background 

is to adopt a comprehensive technique that 

combines the following properties: geochemical 

value frequency, spatial variability of geochemical 

values, geometrical characteristics of anomaly, 

and scaling properties of a geochemical anomaly. 

In this study, three methods including the 

Concentration-Area (C-A), Spectrum-Area (S-A), 

and U-statistic methods were applied to identify 

the geochemical anomalies in Avanj porphyry 

system (in Central Iran). The results of this study 

indicate the high ability of the fractal and  

U-statistic methods to separate the geochemical 

anomaly from the background. Based on the maps 

obtained, the U-statistic and S-A methods 

illustrate better results than the C-A method 

because the C-A model is useful to identify the 

geochemical anomalies within a region with a 

simple geochemical background but the model has 

limitations within a region linked with a complex 

geological setting where each sub-area is 

characterized by different geochemical fields and 

the whole region has a complex tectonic setting. 

When the study area is regarded as a whole 

mineral district regardless of different geological 

backgrounds and different geochemical fields in a 

complex region, the C-A model could not 

effectively identify the weak anomalies. The  

U-statistic method, by considering sampling point 

locations, radius of influence, and their spatial 

relation in the estimation of anomaly location, can 

overcome the disadvantage of the C-A model. It is 

a powerful tool to identify the geochemical 

anomalies within the regions characterized by a 

complex geological setting and a varied 

geochemical background. The S-A model is a 

powerful tool to decompose mixed geochemical 

patterns into a geochemical anomaly map and a 

varied geochemical background map because the 

results of this method show the analysis of 

geochemical data in the frequency domain, which 

can provide new exploratory information that may 

not be revealed in the spatial domain, and since 
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the noise data is reduced from the results, the 

accuracy of determination of the thresholds can be 

higher than the other two applied methods. 

References 
[1]. Zhao, P., Shundu, C. and Youngqing, C. (1996). A 

Thorough investigation of Geoanomaly: A basis of 

metallogenic prognosis. Geological Journal of China 

Universities. 2: 361-373. 

[2]. Zhao, P., (2007). Quantitative mineral prediction 

and deep mineral exploration. Earth Science Frontiers. 

14 (5): 1. 

[3]. Liu, Y., Xia, Q., Cheng, Q. and Wang, X. (2013). 

Application of singularity theory and logistic 

regression model for tungsten polymetallic potential 

mapping. Nonlinear Processes in Geophysics. 20: 445-

453. 

[4]. Bølviken, B., Stokke, P., Feder, J. and Jössang, T. 

(1992). The fractal nature of geochemical landscapes. 

Journal of Geochemical Exploration. 43: 91-109. 

[5]. Cheng, Q. and Agterberg, F.P. (1996). Multifractal 

modeling and spatial statistics. Mathematical Geology. 

28: 1-16. 

[6]. Li, C., Ma, T. and Shi, J. (2003). Application of a 

fractal method relating concentrations and distances for 

separation of geochemical anomalies from background. 

Journal of Geochemical Exploration. 77: 167-175. 

[7]. Zhao, P. (1999). Theory and Practice of 

Geoanomaly in Mineral Exploration. China University 

of Geosciences Press. Wuhan. China. Chinese with 

English abstract. 150 P. 

[8]. Cheng, Q. (2007). Mapping singularities with 

stream sediment geochemical data for prediction of 

undiscovered mineral deposits in Gejiu, Yunnan 

Province, China. Ore Geology Reviews. 32: 314-324. 

[9]. Cheng, Q. and Agterberg, F.P. (2009). Singularity 

analysis of ore-mineral and toxic trace elements in 

stream sediments. Computers & Geosciences. 35: 234-

244. 

[10]. Hawkes, H.E. and Webb, J.S. (1963). 

Geochemistry in Mineral Exploration. Soil Science. 95 

(4): 283. 

[11]. Gałuszka, A. (2007). A review of geochemical 

background concepts and an example using data from 

Poland. Environmental geology. 52: 861-870. 

[12]. Cheng, Q., Agterberg, F. and Ballantyne, S. 

(1994). The separation of geochemical anomalies from 

background by fractal methods. Journal of 

Geochemical Exploration. 51: 109-130. 

[13]. Cheng, Q., Agterberg, F. and Bonham-Carter, G. 

(1996). A spatial analysis method for geochemical 

anomaly separation. Journal of Geochemical 

Exploration. 56: 183-195. 

[14]. Cheng, Q., Bonham-Carter, G., Hall, G. and Bajc, 

A. (1997). Statistical study of trace elements in the 

soluble organic and amorphous Fe-Mn phases of 

surficial sediments, Sudbury Basin. 1. Multivariate and 

spatial analysis. Journal of Geochemical Exploration. 

59: 27-46. 

[15]. Cheng, Q. (1999). Multifractality and spatial 

statistics. Computers & Geosciences. 25: 949-961. 

[16]. Rafiee, A. (2005). Separating geochemical 

anomalies in stream sediment media by applying 

combination of fractal concentration–area model and 

multivariate analysis (Case study: Jeal-e-Barez 1: 

100,000 Sheet, Iran), 20
th

 World Mining Congress 

Proceeding, Iran. pp. 461-470. 

[17]. Salvadori, G., Ratti, S.P. and Belli, G. (1997). 

Fractal and multifractal approach to environmental 

pollution. Environmental Science and Pollution 

Research. 4: 91-98. 

[18]. Lima, A., De Vivo, B., Cicchella, D., Cortini, M. 

and Albanese, S. (2003). Multifractal IDW 

interpolation and fractal filtering method in 

environmental studies: an application on regional 

stream sediments of (Italy), Campania region. Applied 

geochemistry. 18: 1853-1865. 

[19]. Albanese, S., De Vivo, B., Lima, A. and 

Cicchella, D. (2007). Geochemical background and 

baseline values of toxic elements in stream sediments 

of Campania region (Italy). Journal of Geochemical 

Exploration. 93: 21-34. 

[20]. Cheng, Q. (1999). Spatial and scaling modelling 

for geochemical anomaly separation. Journal of 

Geochemical Exploration. 65: 175-194. 

[21]. Sinclair, A. (1991). A fundamental approach to 

threshold estimation in exploration geochemistry: 

probability plots revisited. Journal of Geochemical 

Exploration. 41: 1-22. 

[22]. Lin, Y.P. (2002). Multivariate geostatistical 

methods to identify and map spatial variations of soil 

heavy metals. Environmental geology. 42: 1-10. 

[23]. Mandelbrot, B.B. (1983). The fractal geometry of 

nature. Macmillan. 

[24]. Shen, W. and Cohen, D. (2005). Fractally 

invariant distributions and an application in 

geochemical exploration. Mathematical Geology. 37: 

895-913. 

[25]. Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, 

Q. and Liu, H. (2010). Delineation and explanation of 

geochemical anomalies using fractal models in the 

Heqing area, Yunnan Province, China. Journal of 

Geochemical Exploration. 105: 95-105. 

[26]. Sun, X., Gong, Q., Wang, Q., Yang, L., Wang, C. 

and Wang, Z. (2010). Application of local singularity 

model to delineate geochemical anomalies in 

Xiong'ershan gold and molybdenum ore district, 



Shokouh Saljoughi et al./ Journal of Mining & Environment, Vol.9, No.1, 2018 

226 

 

Western Henan province, China. Journal of 

Geochemical Exploration. 107: 21-29. 

[27]. Lattuada, M., Wu, H. and Morbidelli, M. (2004). 

Radial density distribution of fractal clusters. Chemical 

engineering science. 59: 4401-4413. 

[28]. Cheng, Q. (1995). The perimeter-area fractal 

model and its application to geology. Mathematical 

Geology. 27: 69-82. 

[29]. Afzal, P., Alghalandis, Y.F., Khakzad, A., 

Moarefvand, P. and Omran, N.R. (2011). Delineation 

of mineralization zones in porphyry Cu deposits by 

fractal concentration-volume modeling. Journal of 

Geochemical Exploration. 108: 220-232. 

[30]. Zuo, R. (2011). Decomposing of mixed pattern of 

arsenic using fractal model in Gangdese belt, Tibet, 

China. Applied geochemistry. 26: S271-S273. 

[31]. Zuo, R. (2011). Identifying geochemical 

anomalies associated with Cu and Pb-Zn skarn 

mineralization using principal component analysis and 

spectrum–area fractal modeling in the Gangdese Belt, 

Tibet (China). Journal of Geochemical Exploration. 

111: 13-22. 

[32]. Gonçalves, M.A. (2001). Characterization of 

geochemical distributions using multifractal models. 

Mathematical Geology. 33: 41-61. 

[33]. Ghannadpour, S.S. and Hezarkhani, A. (2015). 

Comparing U-statistic and nonstructural methods for 

separating anomaly and generating geochemical 

anomaly maps of Cu and Mo in Parkam district, 

Kerman, Iran. Carbonates and Evaporites. pp. 1-12. 

[34]. Ghannadpour, S.S., Hezarkhani, A., Maghsoudi, 

A. and Farahbakhsh, E. (2015). Assessment of 

prospective areas for providing the geochemical 

anomaly maps of lead and zinc in Parkam district, 

Kerman, Iran. Geosciences Journal. 19: 431-440. 

[35]. Pazand, K., Hezarkhani, A., Ataei, M. and 

Ghanbari, Y. (2011). Application of multifractal 

modeling technique in systematic geochemical stream 

sediment survey to identify copper anomalies: a case 

study from Ahar, Azarbaijan, Northwest Iran. Chemie 

der Erde-Geochemistry. 71: 397-402. 

[36]. Mokhtari, Z., Boomeri, M. and Bagheri, S. 

(2015). Application of multifractal modeling technique 

in systematic lithogeochemical survey to identify Au-

Cu anomalies in the Siah-Jangal area, Southeastern of 

Iran. Arabian Journal of Geosciences. 8: 9517-9530. 

[37]. Meigoony, M.S., Afzal, P., Gholinejad, M., 

Yasrebi, A.B. and Sadeghi, B. (2014). Delineation of 

geochemical anomalies using factor analysis and 

multifractal modeling based on stream sediments data 

in Sarajeh 1: 100,000 sheet, Central Iran. Arabian 

Journal of Geosciences. 7: 5333-5343. 

[38]. Nazarpour, A., Omran, N.R., Paydar, G.R., 

Sadeghi, B., Matroud, F. and Nejad, A.M. (2015). 

Application of classical statistics, logratio 

transformation and multifractal approaches to delineate 

geochemical anomalies in the Zarshuran gold district, 

NW Iran. Chemie der Erde-Geochemistry. 75: 117-

132. 

[39]. Goncalves, M., Vairinho, M. and Oliveira, V. 

(1998). Study of geochemical anomalies in Mombeja 

area using a multifractal methodology and geostatistics. 

IV IAMG. 98: 590-595. 

[40]. Sim, B., Agterberg, F.P. and Beaudry, C. (1999). 

Determining the cutoff between background and 

relative base metal smelter contamination levels using 

multifractal methods. Computers & Geosciences. 25: 

1023-1041. 

[41]. Wei, S. and Pengda, Z. (2002). Theoretical study 

of statistical fractal model with applications to mineral 

resource prediction. Computers & Geosciences. 28: 

369-376. 

[42]. Geranian, H., Mokhtari, A.R. and Cohen, D.R. 

(2013). A comparison of fractal methods and 

probability plots in identifying and mapping soil metal 

contamination near an active mining area, Iran. Science 

of The Total Environment. 463: 845-854. 

[43]. Zuo, R., Xia, Q. and Zhang, D. (2013). A 

comparison study of the C-A and S-A models with 

singularity analysis to identify geochemical anomalies 

in covered areas. Applied geochemistry. 33: 165-172. 

[44]. Cheng, Q. (2007). Multifractal imaging filtering 

and decomposition methods in space, Fourier 

frequency, and eigen domains. Nonlinear Processes in 

Geophysics. 14: 293-303. 

[45]. Cheng, Q., Xu, Y. and Grunsky, E. (2000). 

Integrated spatial and spectrum method for 

geochemical anomaly separation. Natural Resources 

Research. 9: 43-52. 

[46]. Xu, Y. and Cheng, Q. (2001). A multifractal filter 

technique for geochemical data analysis from Nova 

Scotia, Canada. J Geochem Explor, Anal Environ. 1: 1-

12. 

[47]. Panahi, A. and Cheng, Q. (2004). Multifractality 

as a measure of spatial distribution of geochemical 

patterns. Mathematical Geology. 36: 827-846. 

[48]. Qiuming, C. (2006). Multifractal modelling and 

spectrum analysis: Methods and applications to gamma 

ray spectrometer data from southwestern Nova Scotia, 

Canada. Science in China Series D. 49: 283-294. 

[49]. Ali, K., Cheng, Q. and Chen, Z. (2007). 

Multifractal power spectrum and singularity analysis 

for modelling stream sediment geochemical 

distribution patterns to identify anomalies related to 

gold mineralization in Yunnan Province, South China. 

Geochemistry: Exploration, Environment, Analysis. 7: 

293-301. 



Shokouh Saljoughi et al./ Journal of Mining & Environment, Vol.9, No.1, 2018 

227 

 

[50]. Afzal, P., Alghalandis, Y.F., Moarefvand, P., 

Omran, N.R. and Haroni, H.A. (2012). Application of 

power-spectrum–volume fractal method for detecting 

hypogene, supergene enrichment, leached and barren 

zones in Kahang Cu porphyry deposit, Central Iran. 

Journal of Geochemical Exploration. 112: 131-138. 

[51]. Afzal, P., Harati, H., Alghalandis, Y.F. and 

Yasrebi, A.B. (2013). Application of spectrum-area 

fractal model to identify of geochemical anomalies 

based on soil data in Kahang porphyry-type Cu deposit, 

Iran. Chemie der Erde-Geochemistry. 73: 533-543. 

[52]. Zuo, R. and Xia, Q. (2009). Application fractal 

and multifractal methods to mapping prospectivity for 

metamorphosed sedimentary iron deposits using stream 

sediment geochemical data in eastern Hebei province, 

China. Geochimica et Cosmochimica Acta 

Supplement. 73: A1540. 

[53]. Ge, Y., Cheng, Q. and Zhang, S. (2005). 

Reduction of edge effects in spatial information 

extraction from regional geochemical data: a case study 

based on multifractal filtering technique. Computers & 

Geosciences. 31: 545-554. 

[54]. Li, Q. and Cheng, Q. (2004). Fractal singular-

value (eigen-value) decomposition method for 

geophysical and geochemical anomaly reconstruction. 

Journal of China University of Geosciences. 29: 109-

118. 

[55]. Afzal, P., Ahmadi, K. and Rahbar, K. (2017). 

Application of fractal-wavelet analysis for separation 

of geochemical anomalies. Journal of African Earth 

Sciences. 128: 27-36. 

[56]. Woods, J., Biemond, J. and Tekalp, A. (1985). 

Boundary value problem in image restoration, 

Acoustics, Speech, and Signal Processing, IEEE 

International Conference on ICASSP'85. IEEE. pp. 

692-695. 

[57]. Tekalp, A.M. and Sezan, M.I. (1990). 

Quantitative analysis of artifacts in linear space-

invariant image restoration. Multidimensional Systems 

and Signal Processing. 1: 143-177. 

[58]. Aghdasi, F. and Ward, R.K. (1996). Reduction of 

boundary artifacts in image restoration. IEEE 

Transactions on Image Processing. 5: 611-618. 

[59]. Gonzalez, R.C. and Woods, R.E. (2002). Digital 

image processing. Prentice hall Upper Saddle River, 

NJ. 

  



 6931اول، سال م، شماره نهدوره زیست، پژوهشی معدن و محیط -و همکاران/ نشریه علمی شکوه سلجوقی

 

 

 

های ژئوشیمیایی؛ مطالعه موردی  برای شناسایی آنومالی Uهای فرکتال و روش آماره  ای مدل مطالعه مقایسه

 سیستم پورفیری آونج، ایران مرکزی

 

 بخش فرحو احسان  ، اردشیر هزارخانی*بشیر شکوه سلجوقی

 متالورژی، دانشگاه صنعتی امیرکبیر، ایران دانشکده مهندسی معدن و

 71/3/7162، پذیرش 69/8/7162ارسال 

 b.shokouh@aut.ac.ir* نویسنده مسئول مکاتبات: 

 

 چکیده:

ههای   ههای ژئوشهیمیایی توسهط روش    ههای ذذشهته، آنومها ی    جنبه برنامه اکتشاف ژئوشیمیایی، تعیین و جداسازی مقادیر آنومال از زمینه است. در دههه  نیتر مهم

از زمینهه، کهارایی   ههای   های غلظت ژئوشیمیایی برای جداسازی آنومها ی  های آماری معمول به کار برده شده در تعیین آستانه اند. اغلب روش مختلفی شناسایی شده

( S-Aمسهاحت )  -(، طیه  C-Aمساحت ) -های فرکتال غلظت شناسی پیچیده دارند. در این مطا عه، سه روش، شامل مدل های زمین محدودی در نواحی با محیط

چیده ناحیه به کار برده شده است. نتهایج  شناسی و تکتونیک پی های ژئوشیمیایی در سیستم پورفیری آونج با توجه به محیط زمین برای شناسایی آنوما ی Uو آماره 

ههای   در شناسهایی آنومها ی   C-Aدهنهد. مهدل    نشهان مهی   C-Aتهری را نسهبت بهه روش     نتایج قابل قبهول  Uو آماره  S-Aهای  آمده نشان داد که روش دست به

بها در   Uژئوشیمیایی مشخص شده است. روش آمهاره    میدانتوسط  هیناح ریزکند که هر  ای شامل زمینه ژئوشیمیایی ساده خوب عمل می ژئوشیمیایی درون ناحیه

 کنهد. مهدل   غلبهه مهی   C-Aهای مدل  برای هر نقطه در تخمین مکان آنوما ی، بر محدودیت ریتأثو شعاع  ها آنبرداری، ارتباط فضایی  نظر ذرفتن مکان نقاط نمونه

S-A  آنوما ی ژئوشیمیایی و نقشه زمینه ژئوشیمیایی است. خروجی این روش، تجزیهه و تحلیهل   ابزاری قدرتمند برای تجزیه ا گوهای ژئوشیمیایی پیچیده به نقشه

تواند اطلاعات اکتشافی جدیدی را فراهم آورد که ممکن نیست در حهوزه فضهایی آشهکار شهوند. در      دهد که می های ژئوشیمیایی را در حوزه فرکانس نشان می داده

 ها بالاتر از دو روش ذکر شده دیگر است. برای تعیین آستانه S-Aتال توان اشاره کرد که صحت مدل فرک نهایت، می

 ، سیستم پورفیری آونج.U، آنوما ی ژئوشیمیایی، جدایش آنوما ی، آماره S-Aفرکتال  ، مو تیC-Aفراکتال  کلمات کلیدی:

 

 

 

 


