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Abstract 

In the context of open-pit mine planning, uncertainties including commodity price would significantly affect 

the technical and financial aspects of mining projects. A mine planning that takes place regardless of the 

uncertainty in price just develops an optimized plan at the starting time of the mining operation. Given the 

price change over the life of mine, which is quite certain, optimality of the proposed plan will be eliminated. 

This paper presents a risk-averse decision-making tool to help mine planners in mining activities under price 

uncertainty. The objective is to propose mine planning in a way that a target Net Present Value (NPV) is 

guaranteed. In order to reach this goal, Information Gap Decision Theory (IGDT) is developed to hedge the 

mining project against the risk imposed by the information gap between the forecasted and actual price. The 

proposed approach is of low sensitivity to the price change over the life of mine, and can use the estimated 

prices with uncertainty. A case study at an existing iron mine demonstrates the performance of the proposed 

approach. The results obtained showed that the proposed method could provide a robust solution to mine 

planning under price uncertainty. Moreover, it was concluded that the method could present more reliable 

mine plans under condition of price uncertainty. 

 

Keywords: IGDT, Open-Pit, Mine Planning, Uncertainty Modelling, Price Uncertainty. 

1. Introduction 

An open pit mine design aims to generate the 

mine optimal pit limits and extraction sequences 

named pushbacks or phases, which are generated 

using the optimization methods [1]. Mine 

production planning accomplished by a 

production schedule recognizing blocks to be 

mined over a number of periods is subjected to the 

mining and operating constraints. This is carried 

out to make decisions on how the extraction 

process should be performed to obtain the best 

outcomes defined by the management intentions 

[2]. These usually include maximizing the 

financial value of the mining project as well as 

meeting the defined expectations in terms of ore 

tonnage and ore quality characteristics to be 

delivered [3]. Production planning for open-pit 

mines is a critical issue in mine planning, and can 

have a huge impact on the economic value of a 

mining operation. Even each percent increase in 

the efficiency of the exploitation scheme can 

meaningfully change the profitability of an 

operation [4, 5]. 

Due to the uncertainty of ore price, and 

consequently, uncertainty in block economic 

value, there is a probability of a block being 

incorrectly identified as an ore block when it may 

in fact be a waste block, and vice versa. The 

assumption of certain block values may result in 

unrealistic mine production planning, significant 

economic losses, and a probable failure of a 

project [6-8]. Sensitivity analyses correspondingly 

illustrate that the ore price is the most sensitive 

factor that affects the ore block economic value 

[9, 10]. Over the recent years, considerable efforts 

have been made to integrate geological 

uncertainty into mine planning [11, 12]. A 

standard tool used to model ore grade uncertainty 

is the use of conditional simulations of orebodies 
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[13, 3, 14]. A majority of the discussed methods 

consider the geological (ore grade of mining 

blocks) uncertainty but consider the price to be 

constant over the life of the mining operation. 

Some research works have considered price 

uncertainty [15, 8] using a mean reverting price or 

value model [16] for generating price realizations, 

which considers the present price as a basis for 

calculation of the future price. The mining 

industry commodity prices, especially those 

commodities whose price is listed on open 

markets, are normally modeled as the average 

price for the last three years [10]. It is clear that it 

may prevent the use of optimistic prices, and this 

can be misleading in mine planning. Dehghani et 

al. [17] have developed an evaluation method 

(pyramid technique) based on the multi-

dimensional binomial tree method to evaluate 

mining projects under economic uncertainties. 

They concluded that applying the economic 

uncertainties caused the net present value to be 

calculated more realistically than the certainty 

conditions. Mokhtarian and Sattarvand [18] have 

introduced an approach for integration of the 

commodity price uncertainty into long-term 

production planning of open-pit mines. The 

procedure involves solving the problem by the 

integer programming method based on a series of 

economic block models that are realized based on 

the sampled prices from commodity price 

distribution function using the median Latin 

hypercube sampling method. Bakhtavar et al. [19] 

have presented a stochastic model to create an 

optimal strategy for producing bimetallic deposit 

open-pit mines under certain and uncertain 

conditions. The uncertainties in grade, product 

price, and capacities of the various stages in the 

process of production of the final product were 

considered. They showed that the stochastic 

model had a greater compatibility and 

performance thn the other ones.  

Considering the importance of price uncertainty 

impacts in mine planning, this paper proposes an 

IGDT-based approach for open-pit mine planning 

to deal with commodity price uncertainty. 

Uncertainty models using IGDT have been used 

in studies such as engineering control theory, 

environmental studies, electrical engineering, 

mechanical reliability, and water resource 

management [20-25]. 

An application at an existing open-pit mine shows 

the practical aspects of the approach over 

conventional methods as well as the helpfulness 

of the proposed approach in solving mine 

planning and design problems under uncertainties. 

In the following sections, the paper presents: (i) 

an introduction to IGDT; (ii) a deterministic 

mathematical formulation of the model including 

the objective function and constraints; (iii) robust 

counterpart of the deterministic formulation using 

the IGDT-based method and the solution 

procedure; (iv) application of this procedure to an 

iron mining operation; and then (v) discussion and 

conclusions follow. 

2. Information gap decision theory (IGDT) 

IGDT seeks to assist decision-making under 

uncertainty. This theory seeks to provide a 

framework for rational decision-making in 

situations of severe uncertainty, and proposes 

non-probabilistic models of uncertainty and 

requires relatively small information inputs when 

compared to the alternative theories of 

uncertainty. The IGDT method maximizes the 

uncertainty horizons (as shown in Figure 1) and 

finds a solution that guarantees a certain 

expectation for the objective [26]. The IGDT 

method essentially relies on the gap between the 

actual and forecasted values of uncertain 

variables. The uncertainty model in this method 

does not hold any assumption on the probability 

distributions, which make it suitable in the cases 

with a high level of uncertainty or a lack of 

sufficient historical data [27]. 

The IGDT model can be described using three 

elements, namely a system model, an uncertainty 

model, and a performance requirement [26]. The 

info-gap decision theory is based upon the 

following elements [28]: 

1- A decision space Q that includes a 

number of alternative decisions, actions or choices 

(q ∈ Q) available to a manager; 

2- An uncertainty space S that includes all 

the uncertain elements of a problem; 

3- A reward function R as the system model 

that measures how successful the decision is. The 

reward function is a mapping from the domains of 

the decision space and the uncertainty space to the 

real numbers ℜ. In a mine planning application, 

the reward function is typically NPV of the 

mining project, and the uncertain element in this 

work is commodity price. Associated with the 

reward function is a critical value rc that the 

manager specifies and aims to meet or exceed; 

4- A non-probabilistic model  , ˆU u for 

the uncertain quantities u in the reward function, 

parameterized by the non-negative parameter   

that measures uncertainty in terms of the disparity 

between an initial estimate of the uncertain 
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quantities  ̂ and the other possible values. 

IGDT uses these constructs to identify decisions 

based on their robustness or opportunity. This 

work focuses on the robustness of decisions. 

Robustness function is considered in this work 

due to its capability for modeling worst-case 

scenarios. The robustness function models the 

immunity of the decision against the unfavorable 

deviations of the uncertain parameter from the 

forecasted value [29].  

 

 
Figure 1. Illustration of uncertainty horizons for uncertain parameters [27]. 

 

2.1. System model and robustness function 

The input/output structure of the studied system is 

described in the system model, i.e.  ,R q u , 

considering a decision variable q and the 

uncertain parameter u. The robustness function, 

denoted as  ˆ , cq r , defines the robustness of a 

decision q to be the maximum amount of 

uncertainty such that the minimum reward 

(influenced by uncertain quantities u) associated 

with the decision, min  ,R q u , is greater than the 

critical reward rc. Equation (1) shows the general 

form of the robustness function in IGDT [26]:  

(1)  
 

 
,

, max  :  minˆ ,  c c
u U u

q r r R q u


 


 
  

 
 

This immunity function ensures that the reward 

(the NPV in this paper) will not be less than a 

critical value rc, provided that the uncertain 

parameters fall within the region of uncertainty. 

The IGDT robustness function represents the 

maximum info-gap uncertainty that decision 

variable q can tolerate with the performance not 

being worse than rc [29]. 

2.2. Uncertainty model 

The objective of IGDT is to help the  

decision-makers in selecting the best plan where 

best is defined by the criteria, i.e. the decision 

with the greatest robustness for a given 

uncertainty model, reward function, and initial 

estimates of the uncertain elements in this 

function. The info-gap decision theory prescribes 

a variety of non-probabilistic models of 

uncertainty. There are different methods for 

representing the uncertainty model using IGDT 

[26]. A more common uncertainty model in IGDT 

is the fractional uncertainty model. This 

uncertainty model implies that the length of 

horizon of uncertainty is proportional to the 

forecasted value of the uncertain parameter [29]. 

The fractional uncertainty model can be 

represented as follows [28]: 

(2)  , ; ,   α 0
ˆ

ˆ
ˆ

i i

i i i

i

u u
U u u w

u
 

  
   
  

 

where û shows the forecasted values for the 

uncertain parameters andα is the horizon of 

uncertainty. The fractional error model creates an 

expanding interval around the initial estimates of 

uncertain parameters. Weight parameter iw such 

that 0 1iw  allows the analyst to moderate the 

influence of individual parameters on the horizon 

of uncertainty [28]. The forecasted values of the 

uncertain parameters are input while the horizon 

of uncertainty is a variable that is determined in 

the decision-making process [29]. 

3. Problem formulation 

The open-pit mine planning problem is described 

in this section in terms of the deterministic and 

uncertainty conditions. 

3.1. Mine planning without considering 

uncertainty 

In this section, the deterministic mathematical 

formulation of the model including the objective 

function and constraints is comprehensively 

described. The basic input to mine production 

planning is a typical of the 3D orebody model 

consisting of a large number of units with their 

individual values. The mining unit is referred to as 

a mining block whose value is derived from an 

estimated grade and the economic factors such as 

the commodity price and exploitation costs [30]. 

The fundamental assumption in conventional 

Uncertainty horizon 

Lower Bound Forecasted Variable Upper Bound 
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approaches is that the inputs derived from 

economic parameters such as market price are 

constant; consequently, the economic values of 

mining blocks calculated are also treated as 

constant. The economic value for block i is 

calculated by [31]: 

 ˆ ˆ
i oi i bi oiV P r Q g y mQ pQ     (3) 

where ˆ
iV corresponds to the forecasted economic 

value of block i, which is adjusted such that: 

               0 
 

ˆ ˆ

       0

ˆ
ˆ

i i

i

bi i

V if V
V

mQ if V

 
 

 

 (4) 

The other parameters are defined as: 

i = block indicator, where i = 1, 2, ..., N; 

oiQ = tonnage of ore in block i; 

biQ = tonnage of block i; 

P̂ = forecasted (expected) price of metal 

(USD/ton of metal); 

ig = ore grade of block i; 

y = metallurgical recovery (%); 

m = mining cost (USD/ton of material); 

p = processing cost (USD/ton of ore); 

r = refining cost (USD/ton of metal); 

NPV of an open-pit mine for a T time period and 

N blocks is calculated by the following formula: 

(5) 
 1 1

.
1

ˆN T

i
itt

i t

V
NPV x

d 




  

where xit is a binary variable that is equal to 1 if 

the block is mined in a period and 0, otherwise, t 

is the period indicator, where t = 1, ...,T, and d is 

the discount rate at period t. Cutoff grade is the 

criterion for recognizing a mining block as an ore 

block or a waste block. It is the established 

practice to assume a fixed cutoff grade at least for 

determining the ultimate pit limit [32, 31, 8], and 

the work herein also assumes a fixed cutoff grade. 

3.1.1. Objective function 

The objective function of the open-pit mine 

planning problem is to maximize the NPV of the 

operation based on the Johnson's [33] linear 

programming formulation that can be described as 

follow:  

(6) 
 

0

1 1

.
1

ˆN T

i
itt

i t

V
NPV max x

d 




  

where NPV0 is expected as NPV of mining 

operation. 

3.1.2. Constraints 

The objective function in the previous section is 

subjected to the following constraint. The reserve 

constraint determines a block that can be mined 

only at once. 

(7) 
1

1,   1, 2, , 
T

it

t

x i N


     

A block can be mined if its predecessors,  j, are 

already mined in or before period t as the 

following slope constraint: 

(8) 
1

0,   1, 2, , ; 1,2, ,
T

it jt

t

x x i N t T


         

The mining and processing capacity constraints 

determine that the total material mined and the 

total ore processed during each period should be 

within the pre-defined upper and lower limits as 

(9)-(12).  

(9) 
1

,   1,2, , 
I

i it t

i

Q x M t T


      

(10) 
1

,   1,2, , 
I

i it t

i

Q x M t T


      

(11) 
1

,   1,2, , 
I

i i it t

i

o Q x O t T


       

(12) 
1

,   1,2, , 
I

i i it t

i

o Q x O t T


       

where tM and tM represent the lower and upper 

limits of the available mining capacity, and tO and 

tO  represent the lower and upper limits of the 

available processing capacity, respectively. Value 

of the io  indicator is equal to 1 if block i is 

considered as ore, and 0 otherwise. 

3.2. Proposed IGDT-based mine planning 

under price uncertainty 

In the deterministic mathematical formulation, it 

has been assumed that the commodity price is 

precisely forecasted. However, due to the lack of 

accurate forecasting methods, it should 

appropriately take into account inherent 

uncertainties associated with the forecasting 

variables in the planning. In this section, the 

deterministic formulation of open -pit mine 

planning is recast into its robust counterpart using 

the IGDT-based method to cope with price 

uncertainty. The IGDT-based decisions guarantee 

a specified target, provided that the prices fall into 
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their maximized uncertainty horizons centered on 

the given estimates. Therefore, the IGDT method 

helps a risk-averse planning to maximize the 

robustness of decisions against the uncertain 

variables. The robustness is defined here as the 

immunity of target NPV satisfaction at variations 

of the uncertain forecasted price. In this regard, 

greater uncertainty horizons can provide more 

robustness for plans. In this section, the fractional 

uncertainty model is utilized to model uncertain 

market price, as given in Equation (13). 

(13)  , ; ,   α

ˆ
ˆ

ˆ
0

P P
U P P

P
 

  
   
  

  

where P̂ shows the forecasted value of 

commodity price and   is the horizon of price 

uncertainty. Uncertainty set can be defined for all 

planning horizon intervals. In the IGDT approach, 

it is assumed that the forecasted value of uncertain 

parameter P is available. The objective of IGDT 

in this work is to maximize the robustness, i.e. 

uncertainty horizon of the uncertain variable while 

a critical NPV as Equation (14) is guaranteed. The 

critical NPV is a percentage of the expected NPV 

when scheduling is done based on the forecasted 

price values without considering uncertainty, i.e. 

NPV0. 

(14)   01cNPV NPV    

where cNPV and   are the critical NPV and the 

deviation factor, respectively. The deviation factor

 indicates the level of risk-averseness of the 

planning. Higher values of the deviation factor 

leads to a more robust plan, and the critical NPV 

obtained will be valid for a wider range of 

realizations of the uncertain variable  P . Deviation 

factor is the only parameter required in addition 

to the input parameters for deterministic planning. 

The robustness degree of the problem can be 

controlled thorough adjusting the NPV deviation 

factor , which is specified by the mine planners 

based on its management policy. The robustness 

function for an open-pit mine planning problem 

can be presented as follows: 

(15)    max   : ˆ
c cNPV minNPV NPV     

The function  ˆ
cNPV is related to the NPV 

lower than the minimum NPV, and works as a 

risk-averse mechanism. In other words, 

 ˆ
cNPV measures the protection level of the 

mine planning decision against experiencing low 

NPV. Thus a high value of this function, which 

corresponds to the low target, cNPV , means that 

the associated decision is highly robust against 

low market prices. It is expected that  ˆ
cNPV

increases with decrease in cNPV . Note that 

cNPV represents the mine planning NPV target 

that the mine manager is willing to face. Then the 

robustness function and, consequently, a robust 

mine plan can be derived by providing the largest 

possible for a given target cNPV . Using (13), 

the low commodity price can be expressed as 

(16). 

(16) ˆ ˆP P P    

Inserting (16) in (5), the minimum value for the 

optimum NPV can be calculated. The  

uncertainty-based problem can be modeled using 

(17)-(25). 

(17)   max  ˆ
cNPV    

s.t.: 

(18)   0min 1cNPV NPV NPV


     

 

(19) 

 

 
1 1

m n .

ˆ ˆ

i

1
 

   










N T

oi i bi oi

it
t

i t

P P r Q g y mQ pQ
NPV max x

d


  

s.t.: 

(20) 
1

1,   1, 2, , 
T

it

t

x i N


      

(21) 
1

0,   1, 2, , ; 1,2, ,



      
T

it jt

t

x x i N t T   

(22) 
1

,   1,2, , 
I

i i it t

i

o Q x O t T


       

(23) 
1

,   1,2, , 
I

i i it t

i

o Q x O t T


       

(24) 
1

,   1,2, , 
I

i it t

i

Q x M t T


      

(25) 
1

  ,   1,2, ,   
I

i it t

i

Q x M t T



    


   

where min NPV


is the lower limit of NPV. It 

should be noted that obtaining the minimum 

requirement is not straightforward in mine 

planning. Hence, it is required to solve an 

optimization problem to obtain the minimum 

requirement. This minimum requirement is 
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dependent on the uncertainty horizon, which is the 

solution to another optimization problem. Due to 

this cross-relation between the solutions of two 

optimization problems, a bilevel optimization 

model should be implemented. The upper level 

program is formulated in (17)-(18) and is used to 

determine the maximum possible horizon of 

uncertainty that guarantees a pre-determined 

NPV. The lower level program is presented in 

(19)-(25), which is used to determine the lowest 

NPV for a certain planning and uncertainty 

horizon. In the lower level problem, the value of 

price in uncertainty horizon that results in a 

minimum NPV is determined. In this problem, the 

objective is to maximize the horizon of price 

uncertainty while the NPV is greater than a pre-

determined value of NPVc.  

Deterministic methods for finding a sequence of 

pushbacks are often based on the nested pit 

implementation of the Lerchs–Grossman [32] 

algorithm for finding ultimate pit limits. 

Typically, a variable in the evaluation of the 

economic value of a block is scaled, and an 

ultimate pit algorithm is used to produce a pit 

smaller than the ultimate pit. The process is 

repeated using multiple scaling factors, which 

result in a series of nested pits; these pits are 

subsequently grouped into possible choices for 

pushbacks, whereby the nested pit that closely 

satisfies a set of given constraints is selected as 

the pushback [1]. Here, this method can be used to 

solve the lower level of mentioned problem. The 

steps of the proposed mine planning method based 

on IGDT are shown in Figure 2. In the first step, 

the forecasted values and other input parameters 

are used to determine the optimal deterministic 

solution. The only output of this step that will be 

used in the next step is the maximum expected 

NPV based on the forecasted values, i.e. NPV0. 

The solution provides the mine planning 

considering the uncertainty horizon. The only 

input parameter that is required in addition to the 

forecasted values of uncertain variables is the 

deviation factor .  

 

 
Figure 2. Steps of proposed IGDT-based mine planning.  

 

4. Application in an open-pit mine  

In this section, a case study in the Rezvan iron ore 

mine located in the south of Iran is used to clarify 

the practical aspects of the proposed approach. 

The procedure begins with the development of the 

orebody model. The geological database of the 

deposit was obtained from 159 vertical 

exploration boreholes. The holes were drilled in a 

lattice pattern in a 600 m (E–W) by 1200 m (N–S) 

area with a 50 m spacing between the adjacent 

drill holes. The information includes 4170 powder 

samples. Spatial modelling of the geological 

information generates grade model. The orebody 

model in this case study consists of 189,443 

blocks. In order to determine the ultimate pit limit 

and mining phases, the required slope angles were 

assumed to be 45° in all directions. The upper and 

lower limits for processing and mining capacity 

were set to be equal to the average available 

quantity of ore and rock within the ultimate pit 

limit for each period of the scheduling horizon, 

respectively. Using the initial data presented in 

Deterministic mine planning 

IGDT-based mine planning 

,  , , , ,ˆ  t t t t iM M O O P g   

NPV0 

 , Exploitation schedule of blocks  
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Table 1, Datamine studio and NPV Scheduler 

softwares were utilized to determine the ultimate 

pit limit, the sequence of phases, and the expected 

value of NPV of mining operation, i.e. NPV0. 

Figure 3 presents the section maps of the ultimate 

pit limit obtained and the sequence of phases for 

the forecasted price. 

Implementing the Lerchs–Grossman algorithm 

based on the forecasted price  P , 18 phases to the 

ultimate pit limit were developed. The expected 

NPV of mining operation is 519,407,190 USD 

(NPV0 = 519,407,190). Figure 4 shows the critical 

NPV versus the deviation factor  . The horizontal 

axis denotes the deviation factor to determine the 

critical NPV. The greater the deviation factor 

tolerated in the system, the lower the critical NPV 

becomes. In the case study, four management 

alternative   (10, 20, 30, and 40 percent) are 

suggested. In this way, four critical NPVs 

467,466,471 USD, 415,525,752 USD, 

363,585,033 USD, and 311,644,314 USD were 

determined.  

Figure 5 shows horizon of uncertainty ( ) versus 

determined critical NPV. The vertical axis denotes 

the critical NPV to determine horizon of 

uncertainty. Based upon the four critical NPVs in 

the previous section, four horizons of uncertainty 

were determined. Figure 5 endorses that 

robustness increases with decrease in   cNPV , as 

expected. If the mine planning desires higher 

robustness, less NPV should be obtained, and vice 

versa; if the mine plan obtains less NPV, its 

decision will be more robust. Note that the values 

of the robustness function related to the maximum 

NPV is equal to zero, i.e.  519,407,190ˆ  $ 0  . 

Figure 6 displays horizon of uncertainty versus 

total ore in the ultimate pit. The graph illustrates 

that in the case of total ore, there are no 

significant fluctuations by changing horizon of 

uncertainty in the range of 0-40. Table 2 presents 

the deviation factor, horizon of uncertainty, 

offered prices, and ultimate pit characteristics for 

four proposed management options. These values 

confirm the results of the graph in Figure 6. 

Consequently, due to no significant difference in 

total ore in the mentioned options, maximum 

proposed deviation factor ( 40%  ) is 

considered for planning the mine. 

 
Table 1. Economic and parameter values for case study. 

Parameter Quantity Unit 

Ore production 3 Million ton/year 

Overall pit slope 50 Degree 

Density 0.038*Fe+1.86 ton/m
3 

Cutoff grade 15 % 

Recovery 90 % 

Dilution 5 % 

Ore mining cost 6 USD/m
3 

Waste mining cost 4 USD/m
3
 

Crushing cost 1 USD/ton 

Discount rate 15 % 

Iron ore price 58 USD/ton 

Processing capacity 3 Million ton/year 

 

 
Figure 3. A representative section showing phases and ultimate pit of the mine. 
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Figure 4. Critical NPV vs. deviation factor ( ).    

 

 
Figure 5. Horizon of uncertainty ( ) vs. expected NPV. 

 

 

 
Figure 6. Horizon of uncertainty ( ) vs. total ore in the ultimate pit. 
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Table 2. Four management options and offered prices for mine planning. 

Management option No. δ (%) α (%) P ($/ton) 
NPV  

(million $) 
Blocks in ultimate pit 

Total ore 

 (million tons) 

1 10 8 53.36 474.338 10,804 71.721 

2 20 18 47.56 418.002 10,804 71.721 

3 30 28 41.76 361.665 10,804 71.721 

4 40 37 36.54 310.962 10,804 71.721 
 

Table 3. Phase design and ultimate pit limit material distribution for 4
th

 proposed management option (δ = 40%).    

Phase number Total rock (ton) Total ore (ton) 

1 3,298,772 3,158,147 

2 4,056,086 4,005,461 

3 4,889,630 4,827,755 

4 3,036,698 3,014,198 

5 4,513,092 4,276,842 

6 11,142,092 10,877,717 

7 3,980,829 3,873,954 

8 3,207,590 3,173,840 

9 3,081,290 3,013,790 

10 3,554,830 3,009,205 

11 3,330,105 3,105,105 

12 4,286,621 3,988,496 

13 4,262,399 3,351,149 

14 3,970,437 3,520,437 

15 3,104,134 3,019,759 

16 4,613,143 3,600,643 

17 11,297,861 5,751,611 

18 3,210,759 2,153,259 

Ultimate pit 82,836,377 71,721,377 

 

5. Conclusions 

This paper proposes a practical approach  

risk-averse decision-making tool to help mine 

planners in mining activities under price 

uncertainty. The main innovative contributions of 

this paper is to utilize IGDT to define a new  

non-deterministic and non-probabilistic manner 

for open-pit mine planning under uncertainty. The 

IGDT-based approach finds a solution that 

guarantees a certain expectation of NPV in mine 

planning. It essentially relies on the gap between 

the actual and forecasted values of uncertain 

variables (commodity price in this work). The 

proposed approach is straightforward to 

implement in practice. It requires less information 

compared to the other non-deterministic mine 

plannings such as stochastic programming, and 

fuzzy and scenario planning methods. In other 

words, no probability distribution functions, fuzzy 

membership functions or confidence intervals of 

the uncertain variables are required for the 

suggested methodology, which is an important 

advantage of the proposed approach. After 

implementing the proposed IGDT-based 

approach, the deviation factor acts as a setting for 

it. By changing the deviation factor, planners can 

obtain the best trade-off between the acceptable 

uncertainty ranges and critical NPV based on its 

preferences. In other words, a planner can adjust 

the robustness level of its strategy based on the 

minimum tolerable NPV, which is another 

advantage of the proposed approach. There is thus 

a confident mine planning that can reduce risk and 

establish an acceptable mine production plan that 

enables the mine managers to meet production 

targets and make the arbitrary return on 

investment. It is worth mentioning that the method 

is not only useful in conditions of reducing the 

price; given the direct impact of the price on the 

NPV, if the price increases from the expected 

values, the NPV value will certainly be greater 

than the critical value. Therefore, in the case of 

increasing prices, the proposed method will be 

robust and risk-averse to the changes. 

The case study presented an example in which the 

suggested approach anticipated develops a reliable 

mine plan, leading to a resistant economic value 

and ore production compared to the deterministic 

methods. The results obtained show that the 

proposed method can provide a robust solution for 

mine planning under price uncertainty. Future 

research works aim to the additional test method 

presented above as well as include uncertainty in 

other parameters for instance mining costs and 
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discount rate. 
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 چکیده:

ریزی  های معدنی دارد. برنامه قیمت، تأثیر بسزایی بر مسائل فنی و اقتصادی پروژهریزی استخراج معادن روباز، از جمله عدم قطعیت  در برنامه  وجود عدم قطعیت

تواند بهینگی خود را حفظ کند و با گذشت زمان  استخراج معدن که بدون توجه به عدم قطعیت قیمت انجام شود، فقط در شروع عملیات استخراج معدن می

برای کمک به برنامه ریزان معادن در شرایط عدم  گیری ریسک گریز شود. این پژوهش یک روش تصمیم میکوتاه، به دلیل تغییرات قیمت از حالت بهینه خارج 

( مورد نظر تضمین شود. برای NPVریزی استخراج معدن به صورتی انجام شود که ارزش خالص فعلی ) . هدف این است که برنامهدهد قطعیت قیمت ارائه می

هایی که به دلیل شکاف بین مقادیر  ( برای محافظت از پروژه معدنی در برابر ریسکIGDT ی مبتنی بر شکاف اطلاعاتی )گیر رسیدن به این هدف، تئوری تصمیم

های تخمینی که همراه با  تواند قیمت بینی شده و مقادیر واقعی قیمت به کار گرفته شد. روش پیشنهادی در برابر تغییرات قیمت حساسیت کمی دارد و می پیش

ریزی مورد استفاده قرار دهد. با انجام مطالعه موردی در یکی از معادن سنگ آهن عملکرد روش پیشنهادی نشان داده شد.  هستند را برای ارائه برنامهعدم قطعیت 

علاوه  قیمت ارائه دهد.ریزی استخراج معادن در شرایط عدم قطعیت  تواند یک راهکار مقاوم برای برنامه که روش پیشنهادی می دهد یمنتایج به دست آمده نشان 

 های استخراجی قابل اعتمادی را در شرایط عدم قطعیت قیمت ارائه دهد. تواند برنامه بر آن روش پیشنهادی می

 مت.یعدم قطعیت ق سازی عدم قطعیت، ریزی استخراج معدن، مدل ، معدن روباز، برنامهIGDT کلمات کلیدی:

 

 

 

 


