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SEQUENTIALLY COMPACT S-ACTS
H. BARZEGAR

ABSTRACT. The investigation of equational compactness was ini-
tiated by Banaschewski and Nelson. They proved that pure in-
jectivity is equivalent to equational compactness. Here, we define
the so-called sequentially compact acts over semigroups and study
some of their categorical and homological properties. Some Baer
conditions for injectivity are also presented.

1. INTRODUCTION AND PRELIMINARIES

An algebra A is called equationally compact if every system of poly-
nomial equations (with constants from A) has a solution in A provided
that every finite subsystem of it has a solution in A.

The notion of equational compactness of universal algebras has been
studied by Banaschewski and Nelson [3]. They show that equational
compactness is equivalent to pure injectivity, injectivity with respect
to all pure monomorphisms. Moreover, Banaschewski [2] deals with
this notion in the special case of G-sets for a group G. There are some
weaker notions of equational compactness, such as, 1-equational com-
pactness or f-equational compactness, where systems of equations con-
tain, respectively, one variable or finite number of variables. Normak
[13] shows that for a monoid S, all S-acts are f-equationally compact
if and only if all S-acts are 1-equationally compact.

Giuli [10] has introduced the category of Projection Algebras A over
a monoid S, by a system of equations xs = as(s € S,as € A) as an
algebraic version of ultrametric spaces. Computer scientists use this
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notion as a convenient means for algebraic specification of process al-
gebras. In this category, Ebrahimi and Mahmoudi [12] introduced the
concept of sequential compactness and showed that sequential com-
pactness coincides with injectivity and equational compactness.

Throughout this paper, S stands for a given semigroup and Act — S
will denote the category of all (right) S-acts, including (), and homo-
morphisms between them.

Based on the above mentioned points, we are persuaded to develop
the notion of sequential compactness for a given semigroups S in the
category Act — S.

In Section 3, we generalized the notion of sequential compactness for
S-acts and study some basic and homological properties of it. Section
4 deals with the categorical properties of sequential compactness of S-
acts, and Section 5 is devoted to the study of some Baer type Criteria
for this notion.

Here we briefly recall the definition and the categorical and algebraic
ingredients of the category Act-S of (right) S-acts over a semigroup S.
For more information and the notions not mentioned here about this
category, one may consult [11].

Recall that, for a semigroup S, a set A is a right S-act (or an S-set)
if there is an S-action p: A x S — A | denoting p(a, s) := as, such
that a(st) = (as)t and if S is a monoid with 1, al = a.

A morphism f : A — B between S-acts A, B is called a homomor-
phism if, for each a € A, s € S, f(as) = f(a)s.

A subset A of an S-act B is called a subact of B and in this case, B
is said to be an extension of A, if for each a € A and s € S, as € A.
Also, an element a € A (t € S) is said to be a fized element (left zero
element) if as = a (ts =t) for all s € S. The set of all fixed elements
of an S-act A and the set of all left zero elements of a semigroup S are
denoted, respectively, by Fiz(A) and Z(S). The semigroup S is called
a left zero semigroup if all of its elements are left zeros. The S-act
AU{0} with a fixed element 0 adjoined to A is denoted by A°. Notice
that each semigroup S can be considered as an S-act with the action
given by its multiplication, and adjoining an external left identity 1 to
a semigroup S gives us an S-act S' := S U{1}. Also, here the empty
set is allowed to be an S-act.

A subset I of S'is aright ideal if foreachr € I, s € S, rs € I. A right
ideal I of S is finitely generated if I has a finite subset {t1,ts,...,t,}
such that I = U:;l t;St.

For a family {A;} of S-acts, their cartesian product [],.; A; with the
S-action defined by (a;)s = (a;s) is the product of the family {4;} in
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Act-S. The coproduct of a family {A;} in Act-S is their disjoint union
[ic; Ai = Uier(A; x {i}) with the action of S defined by (a,i)s = (as, 1)
for s € S, a € A;. Recall that for a family {A; : © € I} of S-acts each
with a unique fixed element 0, the direct sum @,.; A; is defined to be
the subact of the product [, ., A; consisting of all (a;)ie; such that
a; = 0 except for a finite number of indices.

2. SEQUENTIAL COMPACTNESS

In this section, by means of the notion of the sequential system of
equations on an S-act A we introduce the concepet of so called sequen-
tially compact or briefly s-compact S-acts. Then, we study some basic
properties of s-compactness.

Definition 2.1. [(] (1) Any set ¥ = {xs =a,: s € S,a, € A} is called
a sequential system of equations with constants from an S-act A, or
over A.

(2) We say that ¥ is solvable in an extension B of A if there is some
b € B such that for all s € S, bs = as. The system ¥ is said to be
consistent if it has a solution in some extension B of A.

Note that there is a one to one correspondence between the set of all
systems of equations ¥ 4 of the above form on an S-act A and the set
of all maps k : S — A. For any S-act B and b € B, let us denote the
left translation mapping A, : S — B, defined by Ay(s) := bs, by Ay. In
these notations, we have

Lemma 2.2. [0] Let A be an S-act. A map k : S — A is a homo-
morphism if and only if there exists b in an extension B of A such that
k=X

Definition 2.3. An S-act A is said to be sequentially compact or
simply, s-compact if every system of sequential equations ¥ = {xs =
as | s € S,as € A} has a solution in A whenever this is the case for
each finite subsystem of 3.

In the following, by an easy observation, we obtain an equivalent
condition to s-compactness which will be used in the proof of some
results.

Lemma 2.4. An S-act A is s-compact if and only if every map f :
S — A s of the form A\, for some a € A whenever for every finite
subset T of S there is an element a, € A such that f |r= Ao, -

In what follows, we are going to find some characterization for s-
compactness based on purity, injectivity and retractness. To proceed,
we lised some preliminaries.



114 H. BARZEGAR

Lemma 2.5. (i) Let A be an S-act. If f : S — A is a map whose
restriction to each finite subset T' of S is of the form A, for some
a, € A, then f is a homomorphism.

(i) Let ¥ be a system of sequential equations on A such that each of
its finite subsets has a solution in A. Then ¥ has a solution in some
extension B of A.

Proof. (i) Let s,t € S. Considering T = {t,ts}, there is an element
a, € A such that f |.= A, . Thus f(t)s = (a,t)s = a,(ts) = f(ts)
and hence f is a homomorphism.

(ii)) Let ¥ ={zs = a, | s € S,as € A} satisfying the property given
in (ii). Consider the map f: S — A by f(s) = as. It is easy to check
that the restriction of f to every finite subset 7" of S is of the form A, _
for some a, € A. So by part (i), f is a homomorphism. Let E(A) be
the injective hull of A, which exists by [8]. Thus f: S — A — E(A)

is extended to f : S' — E(A), whence f(1) is a solution of . O

Definition 2.6. (i) An S-act A is said to be f-pure in an S-act B if
every ¥ = {xs = as | s € S,as € A} has a solution in A whenever
this is the case for B and each finite subset of 3. An S-act A is called
absolutely f-pure if it is f-pure in each of its extensions.

(ii)[9] An S-act A is called an s-dense subact of B or an S-act B is
called an s-dense extension of A, if for every b € B, bS C A.

(iii)[5] An S-act A is called a strongly-s-dense subact of B if for every
b€ B, bS C A and for every finite subset T" of S there is an element
a, € A such that a,t = bt for all ¢ € T. In this case, an S-act B is
said to be a strongly-s-dense extension of A.

Lemma 2.7. [5] In Act-S, pushouts transfer strongly-s-dense monomor-
phisms. That s, for the following pushout diagram

A L B
gl n
c A 0

we have h is strongly-s-dense if so is f.

An S-act A is said to be strongly-s-dense injective if for any strongly-
s-dense monomorphism ¢g : B — C, any homomorphism f : B — A
can be lifted to a homomorphism f : C — A. That is, the following
diagram is commutative:

B 5
i v
A

C
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An S-act A is said to be a strongly-s-dense retract of an its strongly-
s-dense extension B, if there exists a morphism f : B — A such that
f |a=id4. In this case, f is called a strongly-s-dense retraction. An
S-act A is called an absolute strongly-s-dense retract if it is an strongly-
s-dense retract of each of its strongly-s-dense extensions.

The following theorem shows that the s-compactness is equivalent
to a kind of injectivity.

Theorem 2.8. For an S-act A, the following assertions are equivalent:
(i) A is an s-compact S-act.
(ii) A is absolute strongly-s-dense retract.
(iii) A is strongly-s-dense retract of AU {b}, for every strongly-s-
dense extension B of A and b € B.
(iv) A is strongly-s-dense injective.
(v) A is absolutely f-pure.

Proof. (i)=(ii) Let A be a strongly-s-dense subact of B and b € B.
Then bS C A and for every finite subset 7" of S there is an element
a, € A such that a,t = 0t for all t € T'. Since A is s-compact, by
Lemma 2.4, there exists a;, € A such that A\, = A,,. Now, for every
b € B\ A choose and fix such an a, € A. Define 7: B — A by

b, ifbeA
ap, lfbgA

Which shows that 7 is a retraction.

(ii)=-(iii) This is trivial.

(iii)=-(i) Let every finite subset of ¥ = {xs = a5 | s € S,as € A}
have a solution in A. Then, by Lemma 2.5, there is an extension B of
A and b € B which is a solution for X. Therefore, A is strongly-s-dense
in AU{b} which implies that there is a retraction g : AU{b} — A. So
for every s € S, g(b)s = g(bs) = g(as) = as, which means that ¥ has a
solution g(b) in A.

The equivalence of (i) and (iv) fllows from [7, Lemma 3.5(i)] and
Lemma 2.7.

(i)=(v) Let B be an extension of A and b € B be a solution for a
system ¥ = {xs =a, | s € S,a; € A} and also let 3 have a solution a,,.
for each finite subset T of S. Since A is s-compact, ¥ has a solution in
A. So Ais f-pure in B.

(v)=-(i) Let every finite subset ¥’ of ¥ = {xs = a5 | s € S,a, € A}
have a solution in A. By Lemma 2.5, there is an extension B of A such
that X has a solution b € B. So, for every finite subset T" of S there is
an element a, € A such that a,t = bt(t € T) and bS C A. Thus X has
a solution in A and hence it is an s-compact S-act. O

7(b) =
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Theorem 2.9. A subact A of an s-compact S-act B is s-compact if
and only if A is f-pure in B.

Proof. Let B be an s-compact f-pure extension of A and each finite
subsystem of ¥ = {zs = a, | s € S,a, € A} have a solution in A.
Since B is s-compact, 2 has a solution b € B and since B is an f-pure

extension of A, ¥ has a solution in A.
Conversely, by Theorem 2.8, an s-compact S-act A is f-pure in B.
O

Corollary 2.10. FEvery retract of an s-compact S-act is s-compact.

Proof. Using Theorem 2.9, suffices to show that every retract of an
S-act B is an f-pure subact of it B. Let A be a retract of B and
g : B — A, a homomorphism such that g |4= ids. Suppose that
Y ={xs=uas|s € S,a;, € A} has a solution b in B and each finite
subset of ¥ has a solution in A. So for every s € S, bs = g(bs) = g(b)s.
Then ¥ has a solution ¢(b) in A. O

In the following, we give some classification results for semigroups
based on s-compactness.

Lemma 2.11. If S is finitely generated as an S-act, then every S-act
18 S-compact.

Proof. Using Lemmas 2.4 and 2.5, the proof is clear. 0

The following definition motivated from the equivalency of (i) and
(iv) in Theorem 2.8.

Definition 2.12. An S-act A is called quasi s-compact if every homo-
morphism f : C' — A from a strongly-s-dense subact C' of A can be
extended to A.

Theorem 2.13. Let S be a countably generated semigroup. Then the
following assertions are equivalent:

(i) All S-acts are s-compact.

(ii) All direct sums of s-compact S-acts are s-compact.

(iii) All countable direct sums of injective S-acts are s-compact.

(iv) S is finitely generated as an S-act.

(v) Each countable direct sum of each family of quasi s-compact S-
acts 18 s-compact.

Proof. The implications (i)=-(ii), (ii)=-(iii) and (i)=-(v) are obvious.
The assertion (iv)=-(i) is obtained from Lemma 2.11. Let us show
(iii)=(iv). Suppose that S = U, ytnS'. Take I, = ;ST U--- U
t,S', for n € N. Then we have an infinite chain of right ideals
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I €---CI,C -, and S = U,y In- Consider the Rees fac-
tor acts S'/I, for n € N, and let E,(S'/I,) be the injective hull
of S'/I,. Then E = @, oy En(S'/1,) is s-compact by the hypothe-
sis. Denote Ap = {tn/[z}zeN = (tn/_ll,tn/_lz, cee ,tn/]n_1,9,9,9, s ) =
(1/1,1/1,--- ,1/1,,-1,0,0,0,---)t, = a,t,. The system ¥ = {zt; =
a; | i = 1,2,---} is finitely solvable in E. For this, let ¥’ = {xt; =

a;li = 1,2,---  k} be a finite subset of ¥. For each 1 < ¢ < k, ajt; =
(1/[17 1/[2a e 71/1167179707 o )tz = (ti/[lati/]27 e 7ti/[i7179a6797 o )
= a;. So ¥ has a solution a = (z1, 2, ,2n,0,0,---) € E for some

n € N. Therefore, as every element in a direct sum has only finitely
many non-zero coordinates, we have for every i > N+ 1,¢; € Iyy1. So,
S C Iny1, which gives S = Iy is finitely generated as an S-act.
(v)=>(iii) follows from the fact that each injective S-act is quasi s-
compact. Il

Corollary 2.14. For a semigroup S, if all S-acts are s-compact, then
each countably generated right ideal of S as an S-act is finitely gener-
ated.

By the following definition we have another homological classification
of those S for which all S-acts are s-compact.

Definition 2.15. A semigroup S is said to has local left identities if
for every finite subset 1" of S there is an element y, € S such that for
eacht € T, y,t =t.

Example 2.16. Note that all monoids and all lattices as a semigroup
(by the action given by zy = = A y), in particular chains, have local
left identities.

Also if each nonempty right ideal of S is generated by an idempotent
element, then S has local left identities.

Theorem 2.17. For a semigroup S, the following are equivalent:
(i) Every S-act A is s-compact and S has local left identities.
(i) S is s-compact as an S-act and has local left identities.
(iii) S has a left identity.

Proof. (1)=(ii) is obvious.

(ii)=-(iii) Since S has local left identities, the restriction of the iden-
tity map id : S — S on any finite subset 7" is of the form A, . So, by
Lemma 2.4, id = A4, for some sy € S, which implies that sy is a left
identity element of S.

(iii)=-(i) Apply Lemma 2.11. O

Corollary 2.18. If S has local left identities, then the following are
equivalent:
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(i) S is an s-compact S-act.
(il) Every S-act A is s-compact.
(iii) S has a left identity.

Proposition 2.19. If S has local left identities, then every S-act A
has an s-compact strongly-s-dense extension.

Proof. Let B be an s-dense extension of A and T" be a finite subset of
S. Since S has local left identities, there is an element y;r € S such
that y,t =t(t € T'). So for each b € B, bt = (byr)t and byr € A. Then
each s-dense extension is strongly-s-dense extension. Also it is clear
that S = S. hence, by [9, Theorem 3.10], each S-act has an s-dense
injective s-dense extension. Since every s-dense injective is s-compact,
the assertion holds. O

3. CATEGORICAL PROPERTIES

In this section we consider the behaviour of s-compactness of S-acts
with respect to products, coproducts, and direct sums. Lemma 2.4 will
play a fundamental role to prove all the results of this section.

Theorem 3.1. The product [ [,.; Ai of S-acts is s-compact if and only
if each A; is s-compact.

Proof. Necessity. Let A =[],.; A; be an s-compact S-act and for some
kel, f:S — A beamap whose restriction to every finite subset
T of S is of the form A\,(a € Ag). Consider the map f: S — [[..; 4
defined by

2o f(s), fi=k

F(s)(0) = { a;s, ifi#k
where for any ¢ # k, a; € A; is chosen and fixed by the axiom of choice.
Let T be a finite subset of S. For every t € T,

Ft)(i) = { A

which means that f(f) = A(t) (ax = a,). Since []
compact, f = Aa;} and thus f = A,,.

Suf ficiency. Let f : S — [],c; Ai be a map such that for every
finite subset 7" of S, f|, is of the form A, _(a, € [];c; Ai). So for every
projection map m; : [ [;c; Ai — Ai, mio f|, is of the form A, (a, € A;).
Then m; 0 f = Ay, for some a; € A; and hence f = A3 O

ier Ai s s-
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Theorem 3.2. The coproduct [],.; A; of S-acts is an s-compact S-
act if and only if so is each A;, i € I.

Proof. Necessity. Suppose that f : S — A; is a map such that for every
finite subset 7" of S there is an element a, € A; such that f(t) = a,t
for each t € T'. For the j-th injection map 7; : A; — [[,.; As, 7;f has
the same property as f. So it is of the form A, for some a € [[._; A;,
by s-compactness of [[,.; A;. Now we get a € A;, and f = A,.

Suf ficiency. Let {A; | i € I} be a family of s-compact S-acts and
f:S — I1,c; Ai be a map such that its restriction to each finite subset
T of S is of the form )\aT. Consider sp,s9 € S such that f(s1) € Ay,
and f(s2) € A,(m # n). It is easily seen that, for a set 7' = {s1, s2},
flz is not of the form A, . So there exists k € I such that f(S5) C A
and since Ay, is s-compact, [ = A,(a € Ay). Therefore, [[,.; A; is an
s-compact S-act. Ul

i€l

For an S-act A and a € Fix(A), the one element S-act {a} is s-
compact. So the following corollary is straightforward.

Corollary 3.3. For each S-act A, Fix(A) is s-compact.

In Theorems 3.1 and 3.2, there are equivalent conditions for product
and coproduct of S-acts. But this situation does not hold for direct
sums. In the following, we have investigated the behavior of direct sum
about the s-compactness of a family of S-acts.

Theorem 3.4. For a family {A; | © € I} of S-acts each with a
unique fized element, if @, ; A; is s-compact, then each A;(j € I)
18 S-compact.

i€l

Proof. Let f : S — A, be a map with the property as in Lemma 2.4.
Then for the injection map o; : A; — @,.; Ai, the map o;f : S —
P,c; Ai has the same property as f. So 0, f = A, for some a € ,.; 4;
and thus f = A;. O

Proposition 3.5. The following assertions are equivalent:

(i) Each direct sum of s-compact S-acts is s-compact.

(ii) Each direct sum of s-compact S-acts is f-pure in the direct prod-
uct of them.

Proof. (i)=(ii) Apply Theorem 2.8.
(ii)=(i) Applying Lemma 2.9 and Theorem 3.1, we get the result. [

Proposition 3.6. Let {A; : i € I} be a family of s-compact S-acts each
with at least one fized element. The direct sum @,.; A; is s-compact if

and only if every map S — @,.; Ai which its restrictions to all finite
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subsets are of the form A, factors through a direct sum of finitely many

A;.

Proof. Let @,.; A; be s-compact. Take a homomorphism f : S —
@, Ai with such property. By Lemma 2.4, there exists a = (a;)ier €
EBie ; Aisuch that f = A,. Consider a finite subset J C I such that a; =
0 for all i ¢ J. Then, since f(s) = as for each s € S, f factors through
the homomorphism f : S — @,., 4 = @,.; Ai. The converse also
holds by applying Lemma 2.4 and Theorem 3.1.

O

The following result generalizes Theorem 3.4, in the case of quasi
s-compactness.

Theorem 3.7. If a direct sum @
then so is each A;,i € I.

ier Ai of S-acts A; is quasi s-compact,
Proof. Let k € I, h : B — A; be a strongly-s-dense monomor-
phism and f : B — Ay be a homomorphism. Then h P (D, ida;) :
B@B(Dis Ai) = Dics Ai is a strongly-s-dense monomorphism, and
fD(Disida,) : BED(Dis, Ai) = Dicr Ai is a homomorphism. So,
by the assumption, there exists a homomorphism g : @,.; Ai = @,c; As
extending f (€D, 1da;). Now, the homomorphism prg7y, : Ax — Ay,
extends f which 7, : A, — EBZ.e[ A;, is the k-th injection map and
Pr : P,e; Ai — Ay is the k-th projection map. O

The converse of Theorem 3.4 does not hold in general, but it holds
for finitely s-compact S-acts as follows.

Definition 3.8. An S-act A is said to be finitely s-compact if it is
strongly-s-dense injective with respect to finitely generated strongly-s-
dense subacts.

Theorem 3.9. For a family {A; | i € I} of S-acts each with a unique
fized element, @@, ; A; is finitely s-compact if and only if each A;(j € I)
1s finitely s-compact.

Proof. Suf ficiency. Using the same argument as in the proof of The-
orem 3.4, the assertion holds.

Necessity. It is not difficult to show that each homomorphism F' —
P,c; Ai from a finitely generated S-act I, factors through a direct sum
of finitely many A;. Now since the direct sum of a finitely many S-acts
is the direct product of them, by using [I, Proposition 10.40], the proof
is complete. O

Proposition 3.10. For a semigroup S, all S-acts are finitely s-compact
if and only if all finitely generated S-acts are s-compact.
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Proof. (=) Let A be a finitely generated S-act. By hypothesis, A is
finitely s-compact. Since A is a finitely generated S-act, it is easy to
check that A is an absolute strongly-s-dense retract. Now, by Theorem
2.8, A is an s-compact S-act.

(<) Let A be an S-act and h : F < B be a strongly-s-dense
monomorphism for a finitely generated S-act F' and f : F© — A be
a homomorphism. By hypothesis, F' is s-compact and so a strongly-s-
dense retract, by Theorem 2.8. The reminder is straightforward.  [J

As a consequence of Theorems 3.1 and 3.4, we conclude the following
theorem. First we recall the following definition.

Definition 3.11. An s-compact S-act A is called countably »-s-
compact if every countable direct sum of A is s-compact.

Theorem 3.12. For countably generated semigroup S, the following
assertions are equivalent:

(i) All S-acts are s-compact.

(ii) Each s-compact S-act is countably > -s-compact.

Proof. (1)=(ii) is obvious.

(ii)=-(i) Suppose that {E, | n € N} is a family of injective S-acts.
By Theorem 2.8(iv), every injective S-act is s-compact and by Theo-
rem 3.1, A = [,y En is an s-compact S-act, and so by (ii), B,y A is
also an s-compact S-act. Moreover, A =[],y En = En @ 1,2, En

for each m € N and @,y A = @,,en(En D [
E,) = (Ben En) DD e [izm En)- This facts together with The-

meN —m

orem 3.4 imply that @, .y Em is s-compact. Now Theorem 2.13(iii)
completes the proof. O

4. SOME BAER TYPE CRITERIAS FOR INJECTIVITY OF S-ACTS

Injectivity is one of the central notions in many branches of mathe-
matics. One usually takes a subclass M of monomorphisms in a cate-
gory A, members of which may be called M-morphisms, and give the
following definition.

An object A of A is said to be M-injective if for any M-morphism
g : B — C, any morphism f : B — A can be lifted to a morphism
f:C — Aof A That is, the following diagram is commutative:

B 4% C
L r
A
One line of study in this regard is to investigate the relation between
injectivity with respect to a subclass M; of monomorphisms, which is
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called M-injectivity, and injectivity with respect to another subclass
M of monomorphisms, the results of which may be called the Baer
type criteria. Note that if M; C M,, then Ms-injectivity implies
M-injectivity. The Baer type problem is about the converse of this
fact.

The object A is said to be an M-retract of its M-extension B if
there exists a morphism f : B — A such that f |4= idy4, in this case
f is said to be an M-retraction. An object A is called an absolute
M-retract if it is an M-retract of each of its M-extensions. When M
is the class of all monomorphisms, we do not mention M and get the
ordinary notions of injectivity, retract, and absolute retract.

Here we consider some classes of monomorphisms such as s-dense or
strongly-s-dense monomorphisms instead of M.

Consider My, the class of all strongly-s-dense monomorphisms and
M, the class of all s-dense monomorphisms and M, the class of
all monomorphism. By Theorem 2.8, every M;-injective S-act is s-
compact. It is clear that M; C My C M, thus every injective S-act is
s-dense injective and every s-dense injective S-act is s-compact.

Here we give an example which is an s-compact S-act but it is not
s-dense injective. By Corollary 3.3, the left zero semigroup S, as an
S-act, is s-compact. We know that if S has more than two elements,
then it has no left identity. Let S be an s-dense injective S-act. So the
identity map id, : S — S can be extended to f : S* — S. Thus f(1)
is a left identity of S, which is a contradiction.

From now on, we use injectivity with respect to these classes of
monomorphisms to give some Baer type results about injectivity. Note
that each injective S-act A has a fized element and injective hulls of
S-acts always exist (see [11]).

The following results are the Baer type ones for M; C M,.

Theorem 4.1. If S has local left identities, then every s-compact S-
act is s-dense injective.

Proof. Let A be an s-compact S-act and f : S — A be a homomor-
phism. By Lemma 2.2, the set X = {xs = f(s) | s € S} has a solution b
in an extension B of A. Since S has local left identities, for every finite
subset 1" of S there is an element y,. € S such that y,.t =t(t € T'). So
for every t € T, (by,)t = f(t) and by, = f(y,) € A. Thus every finite
subset of ¥ has a solution in A. Since A is an s-compact S-act, X has a
solution a € A. Therefore, f = A, for some a € A and by [9, Theorem
3.3], A is s-dense injective. O
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Proposition 4.2. If every nonempty proper right ideal of S is gener-
ated by a central idempotent element, then every s-compact S-act with
at least one fized element is injective.

Proof. By Example 2.16, S has local left identities. Now Theorems 4.1
and [1, Theorem 11] give the result. O

An important semigroup satisfying proposition 4.2 is S = (N, min).
The category of all S-acts over this semigroup, so called projection
algebras, has been studied by Giuli [10] and Ebrahimi and Mahmoud
[12]. These types of S-acts are mostly used in computer science.

A semigroup S is called a Clifford semigroup (see, [11]) if each v € S
has a pseudoinverse element (there exists § € S such that afa =
«) and the set of all idempotents is a subset of the set of all central
elements.

It is easy to check that if g is a pseudoinverse of a € S, af is an
idempotent element and aS! = aBS*. So the following corollary is
straighforward.

Corollary 4.3. Let S be a Clifford semigroup. If each proper nonempty
right ideals of S is principal, then every s-compact S-act with at least
one fized element is injective.

The following two classes of semigroups are special cases of Clifford
semigroups.

(1) Commutative chains with the order relation (r < y < zy = x)
or (z<y&azy=y).

(17) Commutative bands (all elements of S are idempotents).

From now on, for a subact A of an S-act B and b € B, consider
A={beB|bSCA}and I, = {s € S| bs € A}. The subset A is
a subact of B and [, is a right ideal of S. It is clear that A C A and
if Ay C Ay, then A; C A,. Also for each homomorphism f : B — C

and A C B, f(A) C f(A). These properties show that the map C :
Sub(B) — Sub(B) defined by C'(A) = A is a closure operator.

Definition 4.4. An S-act B is an essential extension of A, if each
homomorphism f : B — C' is a monomorphism, whenever f |4 is a
monomorphism.

Theorem 4.5. If S has local left identities and for every nontrivial
right ideal I of S, I # I, then every s-compact S-act is injective.

Proof. Let A be an s-compact S-act, B be an essential extension of
Aand b e A\ A. Tt is clear that AU {b} is an essential extension of
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A. Since S has local left identities, for every finite subset T" of S there
exists y, € S such that y,t =¢. So bt = (by,)t which by, € A and
hence A U {b} is a strongly-s-dense extension of A. It follows frome
Theorem 2.8 that there is a homomorphism ¢ : AU {b} — A with
g |,= id,, which implies that g is an isomorphism. Thus b € A and

hence A = A.

Now let b € B\ A. If [, = S, then b € A = A which is a contradiction.
Thus I, # S and by hypothesis I, # I,. For each s € I, \ I, it is
not difficult to show that bs € A = A and hence s € I, which is a
contradiction. So B = A and [! 1, Proposition I11.1.20] deduced that A
is an injective S-act. ]

Recall that an S-act A is called quasi injective if every homomor-
phism f : B — A from a subact B of A can be extended to A.

Theorem 4.6. Every s-compact S-act is injective if and only if every
s-compact S-act is quasi injective and has a fized element.

Proof. We show only the unclear direction. Let A be an s-compact
S-act and F(A) be the injective hull of A. Choose and fix elements 0 €
Fiz(A) and 0 € Fiz(E(A)). It is clear that two S-acts A and {0} x A
are isomorphic. Consider {0} x A < {0} x E(A) & Ax E(A), where 7
and 7o are inclusions and define the map 74 : {0} x A - A x E(A), by
74(0,a) = (a, ). Since every injective S-act is s-compact, by Theorem
3.1, the S-act A x E(A) is s-compact and hence it is quasi injective.
So there exists a homomorphism ¢ : A x E(A) — A x E(A) such that
gToT = T4. For the homomorphism p, : A x E(A) — {0} x A, defined
by p,(a,b) = (0,a), we have p,gmm(0,a) = p,7,(0,a) = (0,a) and
hence {0} x A is a retract of the injective S-act {0} x E(A). Thus A
is injective. 0

Theorem 4.7. An S-act A is injective if and only if it is s-compact as
well as f-pure injective.

Proof. Let A be an s-compact and f-pure injective S-act and E(A) be
the injective hull of A. Since A is s-compact, by Theorem 2.8, it is
f-pure subact of E(A) and hence it is a retract of F(A), which implies
that A is injective. O

Theorem 4.8. If every essential extension of any S-act A is strongly
s-dense extension, then every s-compact S-act is injective.

Proof. Let A be an s-compact S-act and 7 : A — E(A) be the injective
hull of A. Since 7 is essential, it is strongly s-dense extension and since
A is s-compact, by Theorem 2.8, it is strongly s-dense injective. So
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there exists a homomorphism g : F(A) — A such that g7 = id 4, which
is a monomorphism by essentiality of 7. furthermore, g7g = idsg =
g = gidga) which implies that 7g = idg(4). Thus 7 is an isomorphism
and hence A is injective. (]
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