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SEQUENTIALLY COMPACT S-ACTS

H. BARZEGAR

Abstract. The investigation of equational compactness was ini-
tiated by Banaschewski and Nelson. They proved that pure in-
jectivity is equivalent to equational compactness. Here, we define
the so-called sequentially compact acts over semigroups and study
some of their categorical and homological properties. Some Baer
conditions for injectivity are also presented.

1. Introduction and Preliminaries

An algebra A is called equationally compact if every system of poly-
nomial equations (with constants from A) has a solution in A provided
that every finite subsystem of it has a solution in A.

The notion of equational compactness of universal algebras has been
studied by Banaschewski and Nelson [3]. They show that equational
compactness is equivalent to pure injectivity, injectivity with respect
to all pure monomorphisms. Moreover, Banaschewski [2] deals with
this notion in the special case of G-sets for a group G. There are some
weaker notions of equational compactness, such as, 1-equational com-
pactness or f -equational compactness, where systems of equations con-
tain, respectively, one variable or finite number of variables. Normak
[13] shows that for a monoid S, all S-acts are f -equationally compact
if and only if all S-acts are 1-equationally compact.

Giuli [10] has introduced the category of Projection Algebras A over
a monoid S, by a system of equations xs = as(s ∈ S, as ∈ A) as an
algebraic version of ultrametric spaces. Computer scientists use this
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notion as a convenient means for algebraic specification of process al-
gebras. In this category, Ebrahimi and Mahmoudi [12] introduced the
concept of sequential compactness and showed that sequential com-
pactness coincides with injectivity and equational compactness.

Throughout this paper, S stands for a given semigroup and Act− S
will denote the category of all (right) S-acts, including ∅, and homo-
morphisms between them.

Based on the above mentioned points, we are persuaded to develop
the notion of sequential compactness for a given semigroups S in the
category Act− S.

In Section 3, we generalized the notion of sequential compactness for
S-acts and study some basic and homological properties of it. Section
4 deals with the categorical properties of sequential compactness of S-
acts, and Section 5 is devoted to the study of some Baer type Criteria
for this notion.

Here we briefly recall the definition and the categorical and algebraic
ingredients of the category Act-S of (right) S-acts over a semigroup S.
For more information and the notions not mentioned here about this
category, one may consult [11].

Recall that, for a semigroup S, a set A is a right S-act (or an S-set)
if there is an S-action µ : A × S → A , denoting µ(a, s) := as, such
that a(st) = (as)t and if S is a monoid with 1, a1 = a.

A morphism f : A → B between S-acts A,B is called a homomor-
phism if, for each a ∈ A, s ∈ S, f(as) = f(a)s.

A subset A of an S-act B is called a subact of B and in this case, B
is said to be an extension of A, if for each a ∈ A and s ∈ S, as ∈ A.
Also, an element a ∈ A (t ∈ S) is said to be a fixed element (left zero
element) if as = a (ts = t) for all s ∈ S. The set of all fixed elements
of an S-act A and the set of all left zero elements of a semigroup S are
denoted, respectively, by Fix(A) and Z(S). The semigroup S is called
a left zero semigroup if all of its elements are left zeros. The S-act
A∪ {0} with a fixed element 0 adjoined to A is denoted by A0. Notice
that each semigroup S can be considered as an S-act with the action
given by its multiplication, and adjoining an external left identity 1 to
a semigroup S gives us an S-act S1 := S ∪ {1}. Also, here the empty
set is allowed to be an S-act.

A subset I of S is a right ideal if for each r ∈ I, s ∈ S, rs ∈ I. A right
ideal I of S is finitely generated if I has a finite subset {t1, t2, ..., tn}
such that I =

∪n

i=1
tiS

1.
For a family {Ai} of S-acts, their cartesian product

∏
i∈I Ai with the

S-action defined by (ai)s = (ais) is the product of the family {Ai} in
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Act-S. The coproduct of a family {Ai} in Act-S is their disjoint union⨿
i∈I Ai = ∪i∈I(Ai×{i}) with the action of S defined by (a, i)s = (as, i)

for s ∈ S, a ∈ Ai. Recall that for a family {Ai : i ∈ I} of S-acts each
with a unique fixed element 0, the direct sum

⊕
i∈I Ai is defined to be

the subact of the product
∏

i∈I Ai consisting of all (ai)i∈I such that
ai = 0 except for a finite number of indices.

2. sequential compactness

In this section, by means of the notion of the sequential system of
equations on an S-act A we introduce the concepet of so called sequen-
tially compact or briefly s-compact S-acts. Then, we study some basic
properties of s-compactness.

Definition 2.1. [6] (1) Any set Σ = {xs = as : s ∈ S, as ∈ A} is called
a sequential system of equations with constants from an S-act A, or
over A.

(2) We say that Σ is solvable in an extension B of A if there is some
b ∈ B such that for all s ∈ S, bs = as. The system Σ is said to be
consistent if it has a solution in some extension B of A.

Note that there is a one to one correspondence between the set of all
systems of equations ΣA of the above form on an S-act A and the set
of all maps k : S → A. For any S-act B and b ∈ B, let us denote the
left translation mapping λb : S → B, defined by λb(s) := bs, by λb. In
these notations, we have

Lemma 2.2. [6] Let A be an S-act. A map k : S → A is a homo-
morphism if and only if there exists b in an extension B of A such that
k = λb.

Definition 2.3. An S-act A is said to be sequentially compact or
simply, s-compact if every system of sequential equations Σ = {xs =
as | s ∈ S, as ∈ A} has a solution in A whenever this is the case for
each finite subsystem of Σ.

In the following, by an easy observation, we obtain an equivalent
condition to s-compactness which will be used in the proof of some
results.

Lemma 2.4. An S-act A is s-compact if and only if every map f :
S → A is of the form λa for some a ∈ A whenever for every finite
subset T of S there is an element a

T
∈ A such that f |T= λa

T
.

In what follows, we are going to find some characterization for s-
compactness based on purity, injectivity and retractness. To proceed,
we lised some preliminaries.
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Lemma 2.5. (i) Let A be an S-act. If f : S → A is a map whose
restriction to each finite subset T of S is of the form λa

T
for some

a
T
∈ A, then f is a homomorphism.
(ii) Let Σ be a system of sequential equations on A such that each of

its finite subsets has a solution in A. Then Σ has a solution in some
extension B of A.

Proof. (i) Let s, t ∈ S. Considering T = {t, ts}, there is an element
a

T
∈ A such that f |

T
= λa

T
. Thus f(t)s = (a

T
t)s = a

T
(ts) = f(ts)

and hence f is a homomorphism.
(ii) Let Σ = {xs = as | s ∈ S, as ∈ A} satisfying the property given

in (ii). Consider the map f : S → A by f(s) = as. It is easy to check
that the restriction of f to every finite subset T of S is of the form λa

T

for some a
T
∈ A. So by part (i), f is a homomorphism. Let E(A) be

the injective hull of A, which exists by [8]. Thus f : S → A ↪→ E(A)
is extended to f̄ : S1 → E(A), whence f̄(1) is a solution of Σ. □
Definition 2.6. (i) An S-act A is said to be f -pure in an S-act B if
every Σ = {xs = as | s ∈ S, as ∈ A} has a solution in A whenever
this is the case for B and each finite subset of Σ. An S-act A is called
absolutely f -pure if it is f -pure in each of its extensions.

(ii)[9] An S-act A is called an s-dense subact of B or an S-act B is
called an s-dense extension of A, if for every b ∈ B, bS ⊆ A.

(iii)[5] An S-act A is called a strongly-s-dense subact of B if for every
b ∈ B, bS ⊆ A and for every finite subset T of S there is an element
a

T
∈ A such that a

T
t = bt for all t ∈ T . In this case, an S-act B is

said to be a strongly-s-dense extension of A.

Lemma 2.7. [5] In Act-S, pushouts transfer strongly-s-dense monomor-
phisms. That is, for the following pushout diagram

A
f→ B

g ↓ ↓ h′

C
h→ Q

we have h is strongly-s-dense if so is f .

An S-act A is said to be strongly-s-dense injective if for any strongly-
s-dense monomorphism g : B → C, any homomorphism f : B → A
can be lifted to a homomorphism f̄ : C → A. That is, the following
diagram is commutative:

B
g→ C

f ↓ ↙ f̄
A
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An S-act A is said to be a strongly-s-dense retract of an its strongly-
s-dense extension B, if there exists a morphism f : B → A such that
f |A= idA. In this case, f is called a strongly-s-dense retraction. An
S-act A is called an absolute strongly-s-dense retract if it is an strongly-
s-dense retract of each of its strongly-s-dense extensions.

The following theorem shows that the s-compactness is equivalent
to a kind of injectivity.

Theorem 2.8. For an S-act A, the following assertions are equivalent:
(i) A is an s-compact S-act.
(ii) A is absolute strongly-s-dense retract.
(iii) A is strongly-s-dense retract of A ∪ {b}, for every strongly-s-

dense extension B of A and b ∈ B.
(iv) A is strongly-s-dense injective.
(v) A is absolutely f -pure.

Proof. (i)⇒(ii) Let A be a strongly-s-dense subact of B and b ∈ B.
Then bS ⊆ A and for every finite subset T of S there is an element
a

T
∈ A such that a

T
t = bt for all t ∈ T . Since A is s-compact, by

Lemma 2.4, there exists ab ∈ A such that λb = λab . Now, for every
b ∈ B \ A choose and fix such an ab ∈ A. Define π : B → A by

π(b) =

{
b, if b ∈ A
ab, if b ̸∈ A

Which shows that π is a retraction.
(ii)⇒(iii) This is trivial.
(iii)⇒(i) Let every finite subset of Σ = {xs = as | s ∈ S, as ∈ A}

have a solution in A. Then, by Lemma 2.5, there is an extension B of
A and b ∈ B which is a solution for Σ. Therefore, A is strongly-s-dense
in A∪{b} which implies that there is a retraction g : A∪{b} → A. So
for every s ∈ S, g(b)s = g(bs) = g(as) = as, which means that Σ has a
solution g(b) in A.

The equivalence of (ii) and (iv) fllows from [7, Lemma 3.5(i)] and
Lemma 2.7.

(i)⇒(v) Let B be an extension of A and b ∈ B be a solution for a
system Σ = {xs = as | s ∈ S, as ∈ A} and also let Σ have a solution a

T

for each finite subset T of S. Since A is s-compact, Σ has a solution in
A. So A is f -pure in B.

(v)⇒(i) Let every finite subset Σ′ of Σ = {xs = as | s ∈ S, as ∈ A}
have a solution in A. By Lemma 2.5, there is an extension B of A such
that Σ has a solution b ∈ B. So, for every finite subset T of S there is
an element a

T
∈ A such that a

T
t = bt(t ∈ T ) and bS ⊆ A. Thus Σ has

a solution in A and hence it is an s-compact S-act. □
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Theorem 2.9. A subact A of an s-compact S-act B is s-compact if
and only if A is f -pure in B.

Proof. Let B be an s-compact f -pure extension of A and each finite
subsystem of Σ = {xs = as | s ∈ S, as ∈ A} have a solution in A.
Since B is s-compact, Σ has a solution b ∈ B and since B is an f -pure
extension of A, Σ has a solution in A.

Conversely, by Theorem 2.8, an s-compact S-act A is f -pure in B.
□

Corollary 2.10. Every retract of an s-compact S-act is s-compact.

Proof. Using Theorem 2.9, suffices to show that every retract of an
S-act B is an f -pure subact of it B. Let A be a retract of B and
g : B → A, a homomorphism such that g |A= idA. Suppose that
Σ = {xs = as | s ∈ S, as ∈ A} has a solution b in B and each finite
subset of Σ has a solution in A. So for every s ∈ S, bs = g(bs) = g(b)s.
Then Σ has a solution g(b) in A. □

In the following, we give some classification results for semigroups
based on s-compactness.

Lemma 2.11. If S is finitely generated as an S-act, then every S-act
is s-compact.

Proof. Using Lemmas 2.4 and 2.5, the proof is clear. □
The following definition motivated from the equivalency of (i) and

(iv) in Theorem 2.8.

Definition 2.12. An S-act A is called quasi s-compact if every homo-
morphism f : C → A from a strongly-s-dense subact C of A can be
extended to A.

Theorem 2.13. Let S be a countably generated semigroup. Then the
following assertions are equivalent:

(i) All S-acts are s-compact.
(ii) All direct sums of s-compact S-acts are s-compact.
(iii) All countable direct sums of injective S-acts are s-compact.
(iv) S is finitely generated as an S-act.
(v) Each countable direct sum of each family of quasi s-compact S-

acts is s-compact.

Proof. The implications (i)⇒(ii), (ii)⇒(iii) and (i)⇒(v) are obvious.
The assertion (iv)⇒(i) is obtained from Lemma 2.11. Let us show
(iii)⇒(iv). Suppose that S =

∪
n∈N tnS

1. Take In = t1S
1 ∪ · · · ∪

tnS
1, for n ∈ N. Then we have an infinite chain of right ideals
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I1 ⊆ · · · ⊆ In ⊆ · · · , and S =
∪

n∈N In. Consider the Rees fac-
tor acts S1/In for n ∈ N, and let En(S

1/In) be the injective hull
of S1/In. Then E =

⊕
n∈N En(S

1/In) is s-compact by the hypothe-
sis. Denote an = {tn/Ii}i∈N = (tn/I1, tn/I2, · · · , tn/In−1, θ, θ, θ, · · · ) =
(1/I1, 1/I2, · · · , 1/In−1, θ, θ, θ, · · · )tn = a′ntn. The system Σ = {xti =
ai | i = 1, 2, · · · } is finitely solvable in E. For this, let Σ′ = {xti =
ai|i = 1, 2, · · · , k} be a finite subset of Σ. For each 1 ≤ i ≤ k, a′kti =
(1/I1, 1/I2, · · · , 1/Ik−1, θ, θ, · · · )ti = (ti/I1, ti/I2, · · · , ti/Ii−1, θ, θ, θ, · · · )
= ai. So Σ has a solution a = (x1, x2, · · · , xN , θ, θ, · · · ) ∈ E for some
n ∈ N. Therefore, as every element in a direct sum has only finitely
many non-zero coordinates, we have for every i > N +1, ti ∈ IN+1. So,
S ⊆ IN+1, which gives S = IN+1 is finitely generated as an S-act.

(v)⇒(iii) follows from the fact that each injective S-act is quasi s-
compact. □
Corollary 2.14. For a semigroup S, if all S-acts are s-compact, then
each countably generated right ideal of S as an S-act is finitely gener-
ated.

By the following definition we have another homological classification
of those S for which all S-acts are s-compact.

Definition 2.15. A semigroup S is said to has local left identities if
for every finite subset T of S there is an element y

T
∈ S such that for

each t ∈ T, y
T
t = t.

Example 2.16. Note that all monoids and all lattices as a semigroup
(by the action given by xy = x ∧ y), in particular chains, have local
left identities.

Also if each nonempty right ideal of S is generated by an idempotent
element, then S has local left identities.

Theorem 2.17. For a semigroup S, the following are equivalent:
(i) Every S-act A is s-compact and S has local left identities.
(ii) S is s-compact as an S-act and has local left identities.
(iii) S has a left identity.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii) Since S has local left identities, the restriction of the iden-

tity map id : S → S on any finite subset T is of the form λa
T
. So, by

Lemma 2.4, id = λs0 for some s0 ∈ S, which implies that s0 is a left
identity element of S.

(iii)⇒(i) Apply Lemma 2.11. □
Corollary 2.18. If S has local left identities, then the following are
equivalent:
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(i) S is an s-compact S-act.
(ii) Every S-act A is s-compact.
(iii) S has a left identity.

Proposition 2.19. If S has local left identities, then every S-act A
has an s-compact strongly-s-dense extension.

Proof. Let B be an s-dense extension of A and T be a finite subset of
S. Since S has local left identities, there is an element yT ∈ S such
that y

T
t = t(t ∈ T ). So for each b ∈ B, bt = (byT )t and byT ∈ A. Then

each s-dense extension is strongly-s-dense extension. Also it is clear
that S2 = S. hence, by [9, Theorem 3.10], each S-act has an s-dense
injective s-dense extension. Since every s-dense injective is s-compact,
the assertion holds. □

3. Categorical properties

In this section we consider the behaviour of s-compactness of S-acts
with respect to products, coproducts, and direct sums. Lemma 2.4 will
play a fundamental role to prove all the results of this section.

Theorem 3.1. The product
∏

i∈I Ai of S-acts is s-compact if and only
if each Ai is s-compact.

Proof. Necessity. Let A =
∏

i∈I Ai be an s-compact S-act and for some
k ∈ I, f : S → Ak be a map whose restriction to every finite subset
T of S is of the form λa(a ∈ Ak). Consider the map f̄ : S →

∏
i∈I Ai

defined by

f̄(s)(i) =

{
f(s), if i = k
ais, if i ̸= k

where for any i ̸= k, ai ∈ Ai is chosen and fixed by the axiom of choice.
Let T be a finite subset of S. For every t ∈ T ,

f̄(t)(i) =

{
f(t) = a

T
t, if i = k

ait, if i ̸= k

which means that f̄(t) = λ{ai}(t) (ak = a
T
). Since

∏
i∈I Ai is s-

compact, f̄ = λ{ai} and thus f = λak .
Sufficiency. Let f : S →

∏
i∈I Ai be a map such that for every

finite subset T of S, f |
T
is of the form λa

T
(a

T
∈
∏

i∈I Ai). So for every
projection map πi :

∏
i∈I Ai → Ai, πi ◦ f |T is of the form λa

T
(a

T
∈ Ai).

Then πi ◦ f = λai for some ai ∈ Ai and hence f = λ{ai}. □
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Theorem 3.2. The coproduct
⨿

i∈I Ai of S-acts is an s-compact S-
act if and only if so is each Ai, i ∈ I.

Proof. Necessity. Suppose that f : S → Aj is a map such that for every
finite subset T of S there is an element a

T
∈ Aj such that f(t) = a

T
t

for each t ∈ T . For the j-th injection map τj : Aj →
⨿

i∈I Ai, τjf has
the same property as f . So it is of the form λa for some a ∈

⨿
i∈I Ai,

by s-compactness of
⨿

i∈I Ai. Now we get a ∈ Ai, and f = λa.
Sufficiency. Let {Ai | i ∈ I} be a family of s-compact S-acts and

f : S →
⨿

i∈I Ai be a map such that its restriction to each finite subset
T of S is of the form λa

T
. Consider s1, s2 ∈ S such that f(s1) ∈ Am

and f(s2) ∈ An(m ̸= n). It is easily seen that, for a set T = {s1, s2},
f |

T
is not of the form λa

T
. So there exists k ∈ I such that f(S) ⊆ Ak

and since Ak is s-compact, f = λa(a ∈ Ak). Therefore,
⨿

i∈I Ai is an
s-compact S-act. □

For an S-act A and a ∈ Fix(A), the one element S-act {a} is s-
compact. So the following corollary is straightforward.

Corollary 3.3. For each S-act A, Fix(A) is s-compact.

In Theorems 3.1 and 3.2, there are equivalent conditions for product
and coproduct of S-acts. But this situation does not hold for direct
sums. In the following, we have investigated the behavior of direct sum
about the s-compactness of a family of S-acts.

Theorem 3.4. For a family {Ai | i ∈ I} of S-acts each with a
unique fixed element, if

⊕
i∈I Ai is s-compact, then each Aj(j ∈ I)

is s-compact.

Proof. Let f : S → Aj be a map with the property as in Lemma 2.4.
Then for the injection map σj : Aj →

⊕
i∈I Ai, the map σjf : S →⊕

i∈I Ai has the same property as f . So σjf = λa for some a ∈
⊕

i∈I Ai

and thus f = λaj . □
Proposition 3.5. The following assertions are equivalent:

(i) Each direct sum of s-compact S-acts is s-compact.
(ii) Each direct sum of s-compact S-acts is f -pure in the direct prod-

uct of them.

Proof. (i)⇒(ii) Apply Theorem 2.8.
(ii)⇒(i) Applying Lemma 2.9 and Theorem 3.1, we get the result. □

Proposition 3.6. Let {Ai : i ∈ I} be a family of s-compact S-acts each
with at least one fixed element. The direct sum

⊕
i∈I Ai is s-compact if

and only if every map S →
⊕

i∈I Ai which its restrictions to all finite
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subsets are of the form λx, factors through a direct sum of finitely many
Ai.

Proof. Let
⊕

i∈I Ai be s-compact. Take a homomorphism f : S →⊕
i∈I Ai with such property. By Lemma 2.4, there exists a = (ai)i∈I ∈⊕
i∈I Ai such that f = λa. Consider a finite subset J ⊆ I such that ai =

0 for all i /∈ J . Then, since f(s) = as for each s ∈ S, f factors through
the homomorphism f : S →

⊕
i∈J Ai →

⊕
i∈I Ai. The converse also

holds by applying Lemma 2.4 and Theorem 3.1.
□

The following result generalizes Theorem 3.4, in the case of quasi
s-compactness.

Theorem 3.7. If a direct sum
⊕

i∈I Ai of S-acts Ai is quasi s-compact,
then so is each Ai, i ∈ I.

Proof. Let k ∈ I, h : B ↪→ Ak be a strongly-s-dense monomor-
phism and f : B → Ak be a homomorphism. Then h

⊕
(
⊕

i̸=k idAi
) :

B
⊕

(
⊕

i̸=k Ai) →
⊕

i∈I Ai is a strongly-s-dense monomorphism, and

f
⊕

(
⊕

i̸=k idAi
) : B

⊕
(
⊕

i̸=k Ai) →
⊕

i∈I Ai is a homomorphism. So,

by the assumption, there exists a homomorphism g :
⊕

i∈I Ai →
⊕

i∈I Ai

extending f
⊕

(
⊕

i ̸=k idAi
). Now, the homomorphism pkgτk : Ak → Ak

extends f which τk : Ak →
⊕

i∈I Ai, is the k-th injection map and
pk :

⊕
i∈I Ai → Ak is the k-th projection map. □

The converse of Theorem 3.4 does not hold in general, but it holds
for finitely s-compact S-acts as follows.

Definition 3.8. An S-act A is said to be finitely s-compact if it is
strongly-s-dense injective with respect to finitely generated strongly-s-
dense subacts.

Theorem 3.9. For a family {Ai | i ∈ I} of S-acts each with a unique
fixed element,

⊕
i∈I Ai is finitely s-compact if and only if each Aj(j ∈ I)

is finitely s-compact.

Proof. Sufficiency. Using the same argument as in the proof of The-
orem 3.4, the assertion holds.

Necessity. It is not difficult to show that each homomorphism F →⊕
i∈I Ai from a finitely generated S-act F , factors through a direct sum

of finitely many Ai. Now since the direct sum of a finitely many S-acts
is the direct product of them, by using [1, Proposition 10.40], the proof
is complete. □
Proposition 3.10. For a semigroup S, all S-acts are finitely s-compact
if and only if all finitely generated S-acts are s-compact.
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Proof. (⇒) Let A be a finitely generated S-act. By hypothesis, A is
finitely s-compact. Since A is a finitely generated S-act, it is easy to
check that A is an absolute strongly-s-dense retract. Now, by Theorem
2.8, A is an s-compact S-act.

(⇐) Let A be an S-act and h : F ↪→ B be a strongly-s-dense
monomorphism for a finitely generated S-act F and f : F → A be
a homomorphism. By hypothesis, F is s-compact and so a strongly-s-
dense retract, by Theorem 2.8. The reminder is straightforward. □

As a consequence of Theorems 3.1 and 3.4, we conclude the following
theorem. First we recall the following definition.

Definition 3.11. An s-compact S-act A is called countably
∑

-s-
compact if every countable direct sum of A is s-compact.

Theorem 3.12. For countably generated semigroup S, the following
assertions are equivalent:

(i) All S-acts are s-compact.
(ii) Each s-compact S-act is countably

∑
-s-compact.

Proof. (i)⇒(ii) is obvious.
(ii)⇒(i) Suppose that {En | n ∈ N} is a family of injective S-acts.

By Theorem 2.8(iv), every injective S-act is s-compact and by Theo-
rem 3.1, A =

∏
n∈N En is an s-compact S-act, and so by (ii),

⊕
n∈N A is

also an s-compact S-act. Moreover, A =
∏

n∈N En = Em

⊕∏
n̸=mEn,

for each m ∈ N and
⊕

m∈N A =
⊕

m∈N(Em

⊕∏
n ̸=m

En) = (
⊕

m∈N Em)
⊕

(
⊕

m∈N
∏

n ̸=mEn). This facts together with The-

orem 3.4 imply that
⊕

m∈N Em is s-compact. Now Theorem 2.13(iii)
completes the proof. □

4. Some Baer type criterias for injectivity of S-acts

Injectivity is one of the central notions in many branches of mathe-
matics. One usually takes a subclass M of monomorphisms in a cate-
gory A, members of which may be called M-morphisms, and give the
following definition.

An object A of A is said to be M-injective if for any M-morphism
g : B → C, any morphism f : B → A can be lifted to a morphism
f̄ : C → A of A. That is, the following diagram is commutative:

B
g→ C

f ↓ ↙ f̄
A

One line of study in this regard is to investigate the relation between
injectivity with respect to a subclass M1 of monomorphisms, which is



122 H. BARZEGAR

called M1-injectivity, and injectivity with respect to another subclass
M2 of monomorphisms, the results of which may be called the Baer
type criteria. Note that if M1 ⊆ M2, then M2-injectivity implies
M1-injectivity. The Baer type problem is about the converse of this
fact.

The object A is said to be an M-retract of its M-extension B if
there exists a morphism f : B → A such that f |A= idA, in this case
f is said to be an M-retraction. An object A is called an absolute
M-retract if it is an M-retract of each of its M-extensions. When M
is the class of all monomorphisms, we do not mention M and get the
ordinary notions of injectivity, retract, and absolute retract.

Here we consider some classes of monomorphisms such as s-dense or
strongly-s-dense monomorphisms instead of M.

Consider M1, the class of all strongly-s-dense monomorphisms and
M2, the class of all s-dense monomorphisms and M, the class of
all monomorphism. By Theorem 2.8, every M1-injective S-act is s-
compact. It is clear that M1 ⊆ M2 ⊆ M, thus every injective S-act is
s-dense injective and every s-dense injective S-act is s-compact.

Here we give an example which is an s-compact S-act but it is not
s-dense injective. By Corollary 3.3, the left zero semigroup S, as an
S-act, is s-compact. We know that if S has more than two elements,
then it has no left identity. Let S be an s-dense injective S-act. So the
identity map id

S
: S → S can be extended to f : S1 → S. Thus f(1)

is a left identity of S, which is a contradiction.
From now on, we use injectivity with respect to these classes of

monomorphisms to give some Baer type results about injectivity. Note
that each injective S-act A has a fixed element and injective hulls of
S-acts always exist (see [11]).

The following results are the Baer type ones for M1 ⊆ M2.

Theorem 4.1. If S has local left identities, then every s-compact S-
act is s-dense injective.

Proof. Let A be an s-compact S-act and f : S → A be a homomor-
phism. By Lemma 2.2, the set Σ = {xs = f(s) | s ∈ S} has a solution b
in an extension B of A. Since S has local left identities, for every finite
subset T of S there is an element y

T
∈ S such that y

T
t = t(t ∈ T ). So

for every t ∈ T, (by
T
)t = f(t) and by

T
= f(y

T
) ∈ A. Thus every finite

subset of Σ has a solution in A. Since A is an s-compact S-act, Σ has a
solution a ∈ A. Therefore, f = λa for some a ∈ A and by [9, Theorem
3.3], A is s-dense injective. □
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Proposition 4.2. If every nonempty proper right ideal of S is gener-
ated by a central idempotent element, then every s-compact S-act with
at least one fixed element is injective.

Proof. By Example 2.16, S has local left identities. Now Theorems 4.1
and [4, Theorem 11] give the result. □

An important semigroup satisfying proposition 4.2 is S = (N,min).
The category of all S-acts over this semigroup, so called projection
algebras, has been studied by Giuli [10] and Ebrahimi and Mahmoud
[12]. These types of S-acts are mostly used in computer science.

A semigroup S is called a Clifford semigroup (see, [11]) if each α ∈ S
has a pseudoinverse element (there exists β ∈ S such that αβα =
α) and the set of all idempotents is a subset of the set of all central
elements.

It is easy to check that if β is a pseudoinverse of α ∈ S, αβ is an
idempotent element and αS1 = αβS1. So the following corollary is
straighforward.

Corollary 4.3. Let S be a Clifford semigroup. If each proper nonempty
right ideals of S is principal, then every s-compact S-act with at least
one fixed element is injective.

The following two classes of semigroups are special cases of Clifford
semigroups.

(i) Commutative chains with the order relation (x ≤ y ⇔ xy = x)
or (x ≤ y ⇔ xy = y).

(ii) Commutative bands (all elements of S are idempotents).

From now on, for a subact A of an S-act B and b ∈ B, consider
Ā = {b ∈ B | bS ⊆ A} and Ib = {s ∈ S | bs ∈ A}. The subset Ā is
a subact of B and Ib is a right ideal of S. It is clear that A ⊆ Ā and
if A1 ⊆ A2, then Ā1 ⊆ Ā2. Also for each homomorphism f : B → C
and A ⊆ B, f(Ā) ⊆ f(A). These properties show that the map C :
Sub(B) → Sub(B) defined by C(A) = Ā is a closure operator.

Definition 4.4. An S-act B is an essential extension of A, if each
homomorphism f : B → C is a monomorphism, whenever f |A is a
monomorphism.

Theorem 4.5. If S has local left identities and for every nontrivial
right ideal I of S, Ī ̸= I, then every s-compact S-act is injective.

Proof. Let A be an s-compact S-act, B be an essential extension of
A and b ∈ Ā \ A. It is clear that A ∪ {b} is an essential extension of
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A. Since S has local left identities, for every finite subset T of S there
exists y

T
∈ S such that y

T
t = t. So bt = (by

T
)t which by

T
∈ A and

hence A ∪ {b} is a strongly-s-dense extension of A. It follows frome
Theorem 2.8 that there is a homomorphism g : A ∪ {b} → A with
g |

A
= id

A
, which implies that g is an isomorphism. Thus b ∈ A and

hence Ā = A.
Now let b ∈ B\A. If Ib = S, then b ∈ Ā = A which is a contradiction.

Thus Ib ̸= S and by hypothesis Īb ̸= Ib. For each s ∈ Īb \ Ib, it is
not difficult to show that bs ∈ Ā = A and hence s ∈ Ib which is a
contradiction. So B = A and [11, Proposition III.1.20] deduced that A
is an injective S-act. □

Recall that an S-act A is called quasi injective if every homomor-
phism f : B → A from a subact B of A can be extended to A.

Theorem 4.6. Every s-compact S-act is injective if and only if every
s-compact S-act is quasi injective and has a fixed element.

Proof. We show only the unclear direction. Let A be an s-compact
S-act and E(A) be the injective hull of A. Choose and fix elements 0 ∈
Fix(A) and θ ∈ Fix(E(A)). It is clear that two S-acts A and {0}×A

are isomorphic. Consider {0}×A
τ1
↪→ {0}×E(A)

τ2
↪→ A×E(A), where τ1

and τ2 are inclusions and define the map τA : {0}×A → A×E(A), by
τA(0, a) = (a, θ). Since every injective S-act is s-compact, by Theorem
3.1, the S-act A × E(A) is s-compact and hence it is quasi injective.
So there exists a homomorphism g : A× E(A) → A× E(A) such that
gτ2τ1 = τA. For the homomorphism p

A
: A×E(A) → {0}×A, defined

by p
A
(a, b) = (0, a), we have p

A
gτ2τ1(0, a) = p

A
τ
A
(0, a) = (0, a) and

hence {0} × A is a retract of the injective S-act {0} × E(A). Thus A
is injective. □
Theorem 4.7. An S-act A is injective if and only if it is s-compact as
well as f -pure injective.

Proof. Let A be an s-compact and f -pure injective S-act and E(A) be
the injective hull of A. Since A is s-compact, by Theorem 2.8, it is
f -pure subact of E(A) and hence it is a retract of E(A), which implies
that A is injective. □
Theorem 4.8. If every essential extension of any S-act A is strongly
s-dense extension, then every s-compact S-act is injective.

Proof. Let A be an s-compact S-act and τ : A → E(A) be the injective
hull of A. Since τ is essential, it is strongly s-dense extension and since
A is s-compact, by Theorem 2.8, it is strongly s-dense injective. So
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there exists a homomorphism g : E(A) → A such that gτ = idA, which
is a monomorphism by essentiality of τ . furthermore, gτg = idAg =
g = gidE(A) which implies that τg = idE(A). Thus τ is an isomorphism
and hence A is injective. □
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-سیستم ها S رسته در معادله ای فشردگی

برزگر حسن
تفرش دانشگاه ریاضی، علوم دانشکده ریاضی، گروه

نشان آنها کردند. آغاز نلسون و بناشفسکی ابتدا در را جبر یک معادله ای فشردگی مورد در مطالعات
ما اینجا در هستند. ارز هم معادله ای فشردگی و انژکتیوی خلوص مفاهیم جامع جبرهای در که دادند
آن همولوژیکی و رسته ای خواص از برخی و کرده معرفی را S نیمگروه یک روی دنباله ای فشردگی مفهوم
بیان نیز انژکتیوی برای بئر محک تعدادی نهایت در می دهیم. قرار مطالعه مورد سیستم ها S رسته در را

است. شده

انژکتیو. سیستم انژکتیوی، f-خالص معادله ای، فشردگی کلیدی: کلمات

٣


