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TOTAL DOMINATION POLYNOMIAL OF GRAPHS
FROM PRIMARY SUBGRAPHS

S. ALIKHANI∗ AND N. JAFARI

Abstract. Let G = (V,E) be a simple graph of order n. The
total dominating set is a subset D of V that every vertex of V is
adjacent to some vertices of D. The total domination number of G
is equal to minimum cardinality of total dominating set in G and
is denoted by γt(G). The total domination polynomial of G is the
polynomial Dt(G, x) =

∑
dt(G, i)xi, where dt(G, i) is the number

of total dominating sets of G having size i. A root of Dt(G, x) is
called a total domination root of G. Let G be a connected graph
constructed from pairwise disjoint connected graphs G1, . . . , Gk by
selecting a vertex of G1, a vertex of G2, and identify these two ver-
tices. Then continue in this manner inductively. We say that G
is obtained by point-attaching from G1, . . . , Gk and that Gi’s are
the primary subgraphs of G. In this paper, we consider some par-
ticular cases of these graphs that most of them are of importance
in chemistry and study their total domination polynomials.

1. Introduction

Let G = (V,E) be a simple graph of order n. For any vertex v ∈ V ,
the open neighborhood of v is the set N(v) = {u ∈ V |uv ∈ E} and the
closed neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊂ V ,
the open neighborhood of S is the set N(S) =

∪
v∈S

N(v) and the closed

neighborhood of S is the set N [S] = N(S) ∪ S. A set D ⊂ V is a
total dominating set if every vertex of V is adjacent to some vertices
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of D, or equivalently, N(D) = V . The total dominating number γt(G)
is the minimum cardinality of a total dominating set in G. A total
dominating set with cardinality γt(G) is called a γt-set. An i-subset of
V is a subset of V of cardinality i. Let Dt(G, i) be the family of total
dominating sets of G which are i-subsets and let dt(G, i) = |Dt(G, i)|.
The polynomial Dt(G;x) =

n∑
i=1

dt(G, i)xi is defined as total domination

polynomial ofG. LetG be a connected graph constructed from pairwise

Figure 1. Graph G obtained by point-attaching from G1, . . . , Gk.

disjoint connected graphs G1, . . . , Gk as follows. Select a vertex of G1,
a vertex of G2, and identify these two vertices. Then continue in this
manner inductively. Note that the graph G constructed in this way
has a tree-like structure, the Gi’s being its building stones (see Figure
1). Usually say that G is obtained by point-attaching from G1, . . . , Gk

and that Gi’s are the primary subgraphs of G. A particular case of
this construction is the decomposition of a connected graph into blocks
(see [7]).

As an example, the n-barbell graph Barn with 2n vertices, is formed
by joining two copies of a complete graph Kn by a single edge (Figure
2). Actually, this graph is a specific kind of point-attaching of two com-
plete graphs Kn and the graph P2. Observe that the total domination
polynomial of n-barbell graph is

Dt(Barn, x) =
n∑

i=2

(
2n− 2

i− 2

)
xi +

2n∑
i=n+1

(
2n

i

)
xi.

This formula obtain easily from counting the total dominating sets of
Barn. Calculating the total domination polynomial of a graph G is
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Figure 2. Barbell graphs Bar3, Bar4 and Barn, respectively.

difficult in general, as the smallest power of a non-zero term is the
total domination number γt(G) of the graph, and determining whether
γt(G) ≤ k is known to be NP-complete. So presenting a closed formula
for the total domination polynomial of any kind of point-attaching
graphs is difficult, but for certain classes of graphs, we can find a closed
form expression for the total domination polynomial.

In this paper, we consider some particular cases of point attaching
graphs and study their total domination polynomials. In Section 2, we
consider graphs which obtain by a special point-attaching of a graph H
and |V (H)| copies of graph P3. We prove that some graphs whose total
domination polynomial have just two roots {−2, 0} are in this form.
Also we study the total domination polynomial of some kind of gen-
eralized friendship graphs in this section. In Section 3, we investigate
the total domination polynomial of cactus chains.

2. Total domination polynomial of graphs from primary
subgraphs

In this section, we consider graphs constructed from primary sub-
graphs and study their total domination polynomial. Some kind of
these graphs have interesting properties. In the Subsection 2.1, we
prove that a special kind of graphs from primary subgraphs have ex-
actly two total domination roots. In Subsection 2.2 we study the total
domination polynomial of the generalized friendship graph.

2.1. Graphs with exactly two total domination roots {−2, 0}.
Graphs whose certain polynomials have few roots can sometimes give
interesting information about the structure of the graph. The charac-
terization of graphs with few distinct roots of characteristic polynomi-
als (i.e., graphs with few distinct eigenvalues) have been the subject of
many researchers [3, 4, 5, 6]. Also the first authors has studied graphs
with few domination roots in [1]. Let H be an arbitrary graph of order
n and consider n copies of graph P3. Let H(3) be a graph is obtained
by identifying each vertex of H with an end vertex of a P3. See Figure
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Figure 3. The graph H(3).

3. To obtain the total domination polynomial of H(3), we need the
following result.

Theorem 2.1. [3] Let G be a connected graph of order n ≥ 3. Then
γt(G) = 2n

3
if and only if G is C3, C6 or H(3) for some connected graph

H.

Theorem 2.2. For any graph H of order n, Dt(H(3), x) = x2n(x+2)n.

Proof. Let D be a total dominating set of H(3) of size k ≥ n in Figure
3. Obviously {v1, v2, . . . , vn} ⊂ D. To choose n + i (0 ≤ i ≤ n) other
vertices of V (H(3)) \ {v1, v2, . . . , vn}, we have

(
n
i

)
2n−i possibilities. So

we have the result. □
Now, we state and prove the following result.

Theorem 2.3. Dt(G, x) = x2n(x + 2)n if and only if G = H(3) for
some graph H of order n.

Proof. (⇐) It follows from Theorem 2.2.
(⇒) Let G be a graph with Dt(G, x) = x2n(x+ 2)n. Thus |V (G)| =

3n and G has no isolated vertex. Since γt(G) = 2n, by Theorem 2.1,
every component of G is a cycle C3, C6 or H(3) for some connected
graph H. Since Dt(C3, x) = x2(x+3) and Dt(C6, x) = x4(x+3)2 does
not divide x2n(x + 1)n, we conclude that there exists a graph H such
that G = H(3) and the proof is complete. □
Remark 2.4. The characterization of graphs whose certain polynomials
have few roots have been an interesting problem and studied well in
the literature ([1, 9]). Also there is a conjecture in [2] which states
that every integer total domination roots is in the set {−3,−2,−1, 0}.
So finding the graphs whose total domination polynomial have these
few roots can be a good start for solving this conjecture. Theorem 2.3
introduces some graphs whose total domination polynomial have just
two distinct roots −2 and 0.
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Figure 4. Friendship graphs F2,4, F3,4, F4,4 and Fn,4, respectively.

2.2. Total domination polynomial of the generalized friendship
graph. Here we consider another kind of point-attaching graphs and
study their total domination polynomials. The generalized friendship
graph Fn,q is a collection of n cycles (all of order q), meeting at a
common vertex (see Figure 4). The generalized friendship graph may
also be referred to as a flower [10]. For q = 3 the graph Fn,q is denoted
simply by Fn and is friendship graph. The total domination polynomial
of Fn and its roots studied in [2]. Here, first we compute the total
domination number of Fn,4.

Theorem 2.5. For any n ≥ 1, we have γt(Fn,4) = n+ 1.

Proof. Let {v1, . . . , v2n} be vertex set of Fn,4 that adjacent by v0 (com-
mon vertex in Fn,4). Then {v0, v1, v3, . . . , v2n−1} is a total dominating
set for Fn,4 (see Figure 4) and the set D ⊆ V (Fn,4) of size less than
or equal n is not total dominating set for Fn,4, therefore γt(Fn,4) =
n+ 1. □

The following theorem is useful for finding the recurrence relations
of the total domination polynomials of graphs. The vertex contraction
G/u of a graph G by a vertex u is the operation under which all vertices
in N(u) are joined to each other and then u is deleted (see [11]).

Theorem 2.6. [8]

(i) For any vertex u in the graph G we have Dt(G, x)

= Dt(G \ u, x) + xDt(G/u, x) + x2
∑

v∈N(u)

Dt(G \N [{u, v}], x)

− (1 + x)pu(G),

where pu(G, x) is the polynomial counting the total dominating
sets of G \ u which do not contain any vertex of N(u) in G.

(ii) Let u, v ∈ V (G) be two non-adjacent vertices of G with N(v) ⊆
N(u). Then Dt(G, x)
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= Dt(G \ u, x) + xDt(G/u, x) + x2
∑

w∈N(u)∩N(v)

Dt(G \N [{u,w}], x).

(iii) Let u, v ∈ V (G) be two vertices of G with N [v] ⊆ N [u]. Then

Dt(G, x) = Dt(G \ u, x) + xDt(G/u, x) + x2
∑

w∈N(u)

Dt(G \N [{u,w}], x).

(iv) Let e = {u, v} ∈ E(G) and N [v] = N [u]. Then

Dt(G, x) = Dt(G \ e, x) + x2Dt(G \N [u], x).

Now we state and prove a recurrence relation for the total domination
polynomial of Fn,4.

Theorem 2.7. For any n ≥ 1, we have

Dt(Fn,4, x) = x(x+ 2)[(x+ 1)Dt(Fn−1,4, x)− (x3 + 2x)n−1],

with initial value Dt(F1,4, x) = x4 + 4x3 + 4x2.

Proof. Consider graph Fn,4 and u, v as shown in Figure 5. By Theorem
2.6, we have

Dt(Fn,4, x)
part(ii)
= Dt(Fn,4 \ u, x) + xDt(Fn,4/u, x) + x2Dt(P3, x)

n−1

part(iii)
=

0︷ ︸︸ ︷
Dt((Fn,4 \ u) \ v, x)+xDt((Fn,4 \ u)/v, x)

+ x2Dt(P3, x)
n−1 + x[Dt((Fn,4/u) \ v, x)

+ xDt((Fn,4/u)/v, x) + x2Dt(P3, x)
n−1] + x2Dt(P3, x)

n−1

= (x2 + 2x)Dt((Fn,4 \ u)/v, x) + (x3 + 2x2)Dt(P3, x)
n−1

part(i)
= (x2 + 2x)[Dt(Fn−1,4, x) + xDt(Fn−1,4, x)

− (x+ 1)pw((Fn,4 \ u)/v, x)] + (x3 + 2x2)Dt(P3, x)
n−1

= x(x+ 1)(x+ 2)[Dt(Fn−1,4, x)− pw((Fn,4 \ u)/v, x)]
+ (x3 + 2x2)Dt(P3, x)

n−1.

Since pw((Fn,4 \ u)/v, x) = Dt(P3, x)
n−1, so we have the result. □

3. Total domination polynomial of cactus chains

In this section, we consider another kind of point-attaching graphs
and study their total domination polynomials. These kind of graphs
are important in Chemistry. A cactus graph is a connected graph in
which no edge lies in more than one cycle. Consequently, each block
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Figure 5. Graphs which considered in Theorem 2.7

of a cactus graph is either an edge or a cycle. If all blocks of a cactus
G are cycles of the same size i , the cactus is i -uniform. A triangular
cactus is a graph whose blocks are triangles, i.e., a 3 -uniform cactus.
We call the number of triangles in G the length of the chain. Obviously,
all chain triangular cactus of the same length are isomorphic. Hence,
we denote the chain triangular cactus of length n by Tn (see Figure 6).
By replacing triangles in this definition by cycles of length 4 we obtain
cacti whose every block is C4. In this section we shall study the total
domination polynomial of some cactus chains.

3.1. Total domination polynomial of the chain triangular cac-
tus. In this subsection we shall study the total domination polynomial
of chain triangular cactus. To do this, we consider graph Gn as shown
in Figure 6, which is also a kind of point attaching graphs. Note that
Gn is a point attaching of Tn and P2. First we state and prove the
following theorem:

uu

v w v

Figure 6. The graphs Tn and Gn, respectively.

Theorem 3.1. For every n ≥ 2,

Dt(Gn, x) = (x+ 1)[Dt(Tn, x)−Dt(Gn−1, x)] + x2Dt(Gn−2, x),

where Dt(G0, x) = x2, Dt(G1, x) = x4 + 3x3 + 3x2 and Dt(T2, x) =
x5 + 5x4 + 6x3 + 4x2.



134 ALIKHANI AND JAFARI

Proof. Consider the graph Gn as shown in Figure 6. Since Gn \ u is
isomorphic to Gn/u, by Theorem 2.6(i), we have

Dt(Gn, x) = (x+ 1)Dt(Gn/u, x)

+ x2Dt(Gn \N [{u, v}], x)− (x+ 1)pu(Gn)

= (x+ 1)Dt(Tn, x) + x2Dt(Gn−2, x)− (x+ 1)Dt(Gn−1, x).

□
Theorem 3.2. For every n ≥ 3,

Dt(Tn, x) = (x+ 1)Dt(Gn−1, x) + x2[Dt(Gn−2, x) +Dt(Gn−3, x)].

Proof. Consider the graph Tn and its vertex u as shown in the Figure
6. By Theorem 2.6(iii), we have

Dt(Tn, x) = (x+ 1)Dt(Tn/u, x) + x2[Dt(Tn \N [{u, v}], x)
+Dt(Tn \N [{u,w}], x)]
= (x+ 1)Dt(Gn−1, x) + x2[Dt(Gn−2, x) +Dt(Gn−3, x)].

□
3.2. Total domination polynomial of para-chain square cactus
graphs. In this subsection we consider a para-chain of length n , Qn

, as shown in Figure 7 and obtain a recurrence relation for the total
domination polynomial of Qn.

u

w
v

Figure 7. Para-chain square cactus graph Q1, Q2, Q3

and Qn, respectively.

u u

e

u

v

w

v

w

w

v

Figure 8. graphs Qn(2), Qn(1), Qn + e and Q∆
n , respectively.
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Figure 9. graph Q′n.

Lemma 3.3. For graphs in Figures 8 and 9:

(i) Dt(Qn(1), x) = xDt(Qn, x) + x2[Dt(Qn−1, x) + 3Dt(Q
′
n−1, x)],

where Dt(Q0(1), x) = x2.
(ii) Dt(Qn(2), x) = x2[Dt(Qn, x) + (x+ 1)Dt(Qn−1, x)

+ (3x+ 1)Dt(Q
′
n−1, x)], where Dt(Q0(2), x) = x3 + 2x2.

(iii) Dt(Q
′
n, x) = x(x+ 1)Dt(Qn, x) + x2(x+ 2)Dt(Qn−1, x)

+ 3x2(x+ 1)Dt(Q
′
n−1, x), where Dt(Q

′
0, x) = x3 + 2x2.

(iv) Dt(Q
∆
n , x) = x(x+ 1)Dt(Qn, x) + x2(x+ 2)Dt(Qn−1, x)

+ x2(3x+ 4)Dt(Q
′
n−1, x), where Dt(Q

∆
0 , x) = x3 + 3x2.

Proof. (i) Consider graph Qn(1) and its vertex u in Figure 8. By
Theorem 2.6(iii),

Dt(Qn(1), x) =

0︷ ︸︸ ︷
Dt(Qn(1) \ u, x)+xDt(Qn(1)/u, x)

+ x2[Dt(Qn(1) \N [{u, v}], x) + 2Dt(Qn(1) \N [{u,w}], x)]
= xDt(Qn + e, x) + x2[Dt(Qn−1x) + 2Dt(Q

′

n−1, x)].

By applying Theorem 2.6(iv) on Qn + e, we have

Dt(Qn + e, x) = Dt(Qn, x) + x2Dt(Q
′
n−1, x).

So we have result.
(ii) Consider the vertex u as shown in Figure 8. By Theorem

2.6(iii), we have

Dt(Qn(2), x) =

0︷ ︸︸ ︷
Dt(Qn(2) \ u, x)+xDt(Qn(2)/u, x)

+ x2[Dt(Qn(2) \N [{u, v}], x) +Dt(Qn(2) \N [{u,w}], x)]
= xDt(Qn−1(1), x) + x2[Dt(Q

′

n−1, x) +Dt(Qn−1, x)].

By using Part (i) in the above equation, we have result.
(iii) Consider graph Q

′
n in Figure 9. By Theorem 2.6,

Dt(Q
′

n, x) = Dt(Q
′

n \ u, x) + xDt(Q
′

n/u, x) + x2Dt(Q
′

n \N [{u,w}], x)
= (x+ 1)Dt(Qn(1), x) + x2Dt(Qn−1, x).

Using Part (i) in the above equation, we have result.
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(iv) By Theorem 2.6(iii), we have

Dt(Q
∆
n , x) = Dt(Q

∆
n \ u, x) + xDt(Q

∆
n /u, x)

+ x2[Dt(Q
∆
n \N [{u, v}], x) +Dt(Q

∆
n \N [{u,w}], x)]

= (x+ 1)Dt(Qn(1), x) + x2[Dt(Q
′

n−1, x) +Dt(Qn−1, x)].

So by using Part (i) in the above equation, we have result.
□

Theorem 3.4. The total domination polynomial of para-chain Qn is
given by

Dt(Qn, x) = x2(x+ 2)[Dt(Qn−1, x) + (x+ 1)Dt(Qn−2, x)]

+ x2(3x2 + 7x+ 2)Dt(Q
′

n−2, x),

where Dt(Q1, x) = x4 + 4x3 + 4x2 and Dt(Q2, x) = Dt(F2,4, x).

Proof. With regards to Figure 7 and Theorem 2.6, we have

Dt(Qn, x) = Dt(Qn \ u, x) + xDt(Qn/u, x)

+ x2[Dt(Qn \N [{u, v}], x) +Dt(Qn \N [{u,w}], x)]
= Dt(Qn−1(2), x) + xDt(Q

∆
n−1, x)

+ x2[Dt(Q
′

n−2, x) +Dt(Qn−2, x)].

Now by Lemma 3.3 results is obtained. □

3.3. Total domination polynomial of ortho-chain square cactus
graphs. In this subsection we consider an ortho-chain of length n, On,
as shown in Figure 10. We shall obtain a recurrence relation for the
total domination polynomial of On. Similar to Lemma 3.3 using

Figure 10. ortho-chain square cactus graphs O1, O2, O3

and On, respectively.

Theorem 2.6 we can have the following result. Note that in the Part
(i), pu(On) = Dt(On−1(2), x).

Lemma 3.5. For graphs in Figure 11, we have

(i) Dt(On(1), x) = (x+ 1)[Dt(On, x)−Dt(On−1(2), x)],
where Dt(O0(1), x) = x2.
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u

uu

u

Figure 11. graphs On, O
∆
n , On(1) and On(2), respectively.

(ii) Dt(On(2), x) = x[(x+ 1)Dt(On, x)−Dt(On−1(2), x)],
where Dt(O0(2), x) = x3 + 2x2.

(iii) Dt(O
∆
n , x) = (x+ 1)2Dt(On, x)− (2x+ 1)Dt(On−1(2), x),

where Dt(O
∆
0 , x) = x3 + 3x2.

Theorem 3.6. For graph On in Figure 10, we have

Dt(On, x) = x(x+ 2)[(x+ 1)Dt(On−1, x)−Dt(On−2(2), x)],

where Dt(O1, x) = x4 + 4x3 + 4x2 and Dt(O2, x) = Dt(F2,4, x).

Proof. Consider graph On and vertex u as shown in Figure 11. By
Theorem 2.6 for vertex u, we have

Dt(On, x) = Dt(On−1(2), x) + xDt(O
∆
n−1, x) + x2Dt(On−2(2), x).

Now by using Lemma 3.5(ii) and (iii), we have result. □

4. Conclusion

Calculating the total domination polynomial of a graph G is difficult
in general, as the smallest power of a non-zero term is the total domi-
nation number γt(G) of the graph, and determining whether γt(G) ≤ k
is known to be NP-complete. Graphs with specific construction (which
call them point attaching graphs) considered and their total domina-
tion polynomials have studied. Graphs which obtain by a special point-
attaching of a graph H and |V (H)| copies of graph P3 considered and
proved that all graphs whose total domination polynomial have just
two roots {−2, 0} are in this form. Also we studied the total domi-
nation polynomial of some kind of generalized friendship graphs and
some cactus chains, which are special cases of point attaching graphs.
We think that the study of the total domination polynomial of point-
attaching graphs can be a good start for proving or disproving of a
conjecture in [2] which states that every integer total domination roots
is in the set {−3,−2,−1, 0}.
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TOTAL DOMINATION POLYNOMIAL OF GRAPHS
FROM PRIMARY SUBGRAPHS

S. ALIKHANI AND N. JAFARI

ابتدایی های زیرگراف اساس بر گراف ها تام غالب چندجمله ای

جعفری نسرین و علیخانی سعید
ریاضی دانشکده یزد، دانشگاه یزد، ایران،

تام غالب مجموعه را V از D زیرمجموعه یک است. ساده گراف یک G = (V,E) کنید فرض
تام غالب مجموعه های اندازه کوچکترین باشد. مجاور D از رأسی با V از رأس هر هرگاه می نامیم،
گراف تام غالب چندجمله ای می دهیم. نشان γt(G) با و نامیده G گراف تام غالب عدد را G گراف
مجموعه های تعداد dt(G, i) آن در که می شود تعریف Dt(G, x) =

∑
dt(G, i)xi صورت به G

مجزای دوبه دو همبند گراف های از که است همبندی گراف G کنید فرض است. i اندازه از G تام غالب
روند، این دادن ادامه و G٢ از دلخواه رأس یک به G١ از دلخواه رأس یک چسباندن با G١, . . . , Gk

زیرگراف ها Gi از یک هر که گویند G١, . . . , Gk نقطه ای اتصال گراف G گراف به می آید. دست به
آنها بیشتر که نقطه ای اتصال گراف های نوع این از خاصی حالت های مقاله این در می باشند. G ابتدایی

می دهیم. قرار مطالعه مورد را آن ها تام غالب چندجمله ای و گرفته نظر در را هستند مهم شیمی علم در

تام. غالب مجموعه ی تام، غالب چندجمله ای تام، غالب عدد کلیدی: کلمات

۴


