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A GENERALIZATION OF CORETRACTABLE
MODULES

A. R. MONIRI HAMZEKOLAEE

Abstract. Let R be a ring and M a right R-module. We call
M , coretractable relative to Z(M) (for short, Z(M)-coretractable)
provided that, for every proper submodule N of M containing

Z(M), there exists a nonzero homomorphism f :
M

N
→ M . We

investigate some conditions under which two concepts of core-
tractable and Z(M)-coretractable, coincide. For a commutative
semiperfect ring R, we show that R is Z(R)-coretractable if and
only if R is a Kasch ring. Some examples are provided to illustrate
different concepts.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring
with identity and all modules will be unitary right R-modules. Let
M be an R-module and N a submodule of M . We use EndR(M),
annr(M), annl(M) to denote the ring of endomorphisms of M , the
right annihilator in R of M and the left annihilator in R of M , re-
spectively. Let M be a module and K a submodule of M . Then K is
essential in M denoted by K ≤e M , if L∩K ̸= 0 for every nonzero sub-
module L of M . Dually, K is small in M (K ≪ M), in case M = K+L
implies that L = M . We also recall that a module M is a small module
in case there is a module L containing M such that M ≪ L. It is well-
known that a module M is small if and only if M is a small submodule
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of its injective hull. Of course, the concept of small submodules has a
key role throughout the paper.

A submodule N of a module M is called supplement if there is a
submodule K of M such that M = N +K and N ∩K ≪ N . A module
M is called supplemented if every submodule ofM has a supplement. A
module M is called amply supplemented, in case M = A+B implies A
contains a supplement A′ of B in M . The reader can find more details
about classes of all versions of supplemented modules in [7] and [13].

Let R be a ring and M a right R-module. Recall that M is sin-
gular provided that Z(M) = M where Z(M) = {x ∈ M | xI =
0, I ≤e RR}. Suppose that S denotes the class of all small right R-
modules. In [10] the authors defined Z(M) as the reject of S in M ,
i.e. Z(M) = ∩{Kerf | f : M → U,U ∈ S}. In this way, M is called
(non)cosingular, in case (Z(M) = M) Z(M) = 0. They investigated
some general properties of Z(M). For a ring R, the submodule Z(RR)
(Z(RR)) is a two-sided ideal of R by [3, Corollary 8.23]. Throughout
the paper, for every R-module M , we suppose that Z(M) ̸= M unless
otherwise stated.

Khuri in [4] introduced the concept of a retractable module. A mod-
ule M is retractable in case for every nonzero submodule N of M ,
there is a nonzero homomorphism f : M → N , i.e HomR(M,N) ̸= 0.
Toloee and Vedadi in [11] studied retractable rings and their relations
with other known rings. In the literature, there are some works about
retractable modules (see [5, 14, 16]). Amini, Ershad and Sharif in [2]
defined dual notation namely coretractable modules. A module M is

coretractable provided that, HomR(
M

N
,M) ̸= 0 for every proper sub-

module N of M . There are also some papers whose main subject is
coretarctablity of modules. We refer readers to [1, 8, 15] for more
information about coretractable modules.

This work is devoted to coretractable modules relative to just an im-
portant submodule namely Z(M). If in the definition of a coretractable
module M , we fix the submodule Z(M) and focus just on nonzero ho-

momorphisms from
M

K
to M where K contains Z(M), we have a gen-

eralization of coretractable modules. We present some conditions to
prove that when two concepts coretractable and Z(M)-coretractable
are equivalent. Among them, we show that if Z(M) is δ-small in M or
it is a coretractable module, then M is coretractable if and only if M is
Z(M)-coretractable. We show that RR is Z(RR)-coretractable if and
only if every simple right R-module that annihilated by Z(RR), can
be embedded in RR. As a consequence, we prove for a commutative
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semiperfect ring R that, R is a coretractable R-module if and only if
R is a Kasch ring.

2. Z(M)-coretractable modules

In this section we introduce a new generalization of coretractable
modules namely, Z(M)-coretractable modules.

Recall that a module M is coretractable, in case for every proper

submoduleN ofM , there exists a nonzero homomorphism f :
M

N
→ M .

Definition 2.1. Let M be a module. We say M is Z(M)-coretractable
in case for every proper submodule N of M containing Z(M), there is

a nonzero homomorphism from
M

N
to M .

Example 2.2. (1) Every coretractable module is coretractable rel-
ative to its Z. In particular every semisimple module M is Z(M)-
coretractable.

(2) Let M be a noncosingular module. Then it is obvious that M is
Z(M)-coretractable. In other words, there is a noncosingular module

which is not coretractable. Since HomZ(
Q
Z
,Q) = 0, then as an Z-

module Q is not coretractable. Note that Q is noncosingular.

Recall from [9] that a ring R is right GV (generalized V -ring), in
case every simple singular right R-module is injective.

Proposition 2.3. Let R be a right GV -ring. If M is an indecomposable

module with 0 ̸= M

Z(M)
having a maximal submodule, then M is Z(M)-

coretractable if and only if M is simple projective.

Proof. Let M be Z(M)-coretractable. By assumption there is a max-
imal submodule K of M containing Z(M). Now there is a monomor-

phism g :
M

K
→ M , sinceM is a Z(M)-coretractable module. It follows

that Img is a simple submodule of M . Then Img is either singular or
projective. If Img is projective, then K is a direct summand of M and
hence K = 0 or K = M . So that K = 0. If Img is singular, it will
be injective as R is right GV . Therefore, Img is a summand of M and
since g ̸= 0 we conclude that Img = M , a contradiction. The converse
is obvious. □

Note that for a cosingular module M , concepts coretractable and
Z(M)-coretractable coincide.
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Let M be a module and N a submodule of M . Following [17], N

is δ-small in M (denoted by N ≪δ M), in case M = N +K with
M

K
singular implies that M = K. Note that by definitions, every small
submodule of M is δ-small in M . The sum of all δ-small submodules
of M is denoted by δ(M). Also δ(M) is the reject of the class of all
simple singular modules in M .

Lemma 2.4. Let M be a module. In each of the following cases M is
Z(M)-coretractable if and only if M is coretractable.

(1) Z(M) ≪δ M (Z(M) ≪ M).
(2) Z(M) is a coretractable module.

Proof. (1) We shall prove the δ case. The other follows immediately.
Let M be Z(M)-coretractable and K a proper submodule of M . Sup-
pose that M ̸= Z(M) + K. Since M is Z(M)-coretractable, there is

a homomorphism f :
M

(Z(M) +K)
→ M . So that foπ :

M

K
→ M is

the required homomorphism where π :
M

K
→ M

(Z(M) +K)
is natural

epimorphism. Otherwise, M = Z(M)+K. It follows from [17, Lemma
1.2], there is a decomposition M = Y ⊕ K where Y is a semisimple
projective submodule of Z(M). Therefore, there is a monomorphism

from
M

K
to M since K is a direct summand of M . Therefore, M is

coretractable. The converse is clear.
(2) Let K be a proper submodule of M . Then K + Z(M) ̸= M or

K +Z(M) = M . If first one happens, then similar to (1), we will have
required nonzero homomorphism. Now suppose that K + Z(M) =

M . Then h :
M

K
→ Z(M)

(Z(M) ∩K)
is an isomorphism induced from

M = Z(M) + K. Since Z(M) is coretractable, there is a nonzero

homomorphism g :
Z(M)

(Z(M) ∩K)
→ Z(M). Therefore, jogoh :

M

K
→

M is a nonzero homomorphism where j : Z(M) → M is the inclusion.
□

Proposition 2.5. Let M be a module such that
M

Z(M)
is coretractable.

If
M

Z(M)
can be embedded in M (for example,

M

Z(M)
is semisimple and

Z(M) is a direct summand of M), then M is Z(M)-coretractable.
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Proof. Let K be a proper submodule of M containing Z(M). Then
K

Z(M)
is a proper submodule of

M

Z(M)
. Since

M

Z(M)
is coretractable,

there is a nonzero homomorphism g :
M

K
→ M

Z(M)
. Because,

M

Z(M)
can be embedded in M , we conclude that there will be a nonzero ho-

momorphism from
M

K
to M . □

Let M be a module and K ≤ M . We say M is Z(K)-coretractable if
for every proper submodule T ofM containing Z(K), there is a nonzero

homomorphism g :
M

T
→ M .

Proposition 2.6. Let M = M1 ⊕ . . . ⊕ Mn. If each Mi is Z(Mi)-
coretractable, then M is Z(M)-coretractable.

Proof. The proof is exactly similar to proof of [2, Proposition 2.6]. Note
that Z(M1 ⊕ . . .⊕Mn) = Z(M1)⊕ . . .⊕ Z(Mn). □

Lemma 2.7. (1) Let M =
⊕n

i=1Mi be a Z(Mi)-coretractable module

for at least one i ∈ {1, . . . , n}. Then M is Z(M)-coretractable.
(2) Let M be Z(M)-coretractable. If Z(M) contains no nonzero

image of any endomorphism of M , then
M

Z(M)
is coretractable.

(3) Let M be Z(M)-coretractable. If
M

Z(M)
has a maximal sub-

module, then Soc(M) ̸= 0. In particular, if M is a finitely generated
Z(M)-coretractable module, then Soc(M) ̸= 0.

Proof. (1) This is straightforward.

(2) Let
T

Z(M)
be a proper submodule of

M

Z(M)
. Then Z(M) ⊆

T ⊂ M . Since M is Z(M)-coretractable, there exists a nonzero ho-

momorphism g :
M

T
→ M . Now define h :

M
Z(M)

T

Z(M)

→ M

Z(M)
by

h(x + Z(M) +
T

Z(M)
) = g(x + T ) for every x ∈ M . If Imh = Z(M),

then Img ⊆ Z(M), a contradiction. So that,
M

Z(M)
is coretractable.
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(3) Let
K

Z(M)
be a maximal submodule of

M

Z(M)
. Then K is a

maximal submodule of M also containing Z(M). So there is a h :
M

K
→ M . It follows that Imh is a simple submodule of M .

□

Let M be a module and N ≤ M . Then N is called fully invariant, if
for every f ∈ EndR(M), f(N) ⊆ N . There are some well-known fully
invariant submodules of a module M such as Rad(M), Soc(M), Z(M).

Proposition 2.8. (1) Let M be a module, K,L ≤ M with Z(L) = L
and K is a fully invariant supplement of L in M . If M is Z(L)-
coretractable, then K is coretractable.

(2) Let M be a module such that Z(M) has a fully invariant supple-

ment K in M . If Z
2
(M) = Z(M) and M is Z(M)-coretractable, then

K is coretractable.

Proof. (1) Let N be a proper submodule ofK. Consider the submodule
N + Z(L) of M . If N + Z(L) = M , then by modularity N + (K ∩
Z(L)) = K which implies that N = K, a contradiction (note that
K ∩ Z(L) ⊆ K ∩ L ≪ K). It follows that N + Z(L) is a proper
submodule of M . Being M , Z(L)-coretractable, implies that there is

nonzero homomorphism g :
M

(N + Z(L))
→ M . Now (goπ)(K) ⊆ K as

K is fully invariant where π : M → M

N + Z(L)
is natural epimorphism.

Define the homomorphism h :
K

N
→ K by h(x+N) = g(x+N+Z(L)).

Since g is nonzero, there is a x ∈ M \ (N +Z(L)) such that g(x+N +
Z(L)) ̸= 0. Set x = k+ l where k ∈ K and l ∈ L. To contrary, suppose
that k ∈ N . Now x /∈ N+L implies that l /∈ L, which is a contradiction.
Therefore, h(k + N) = g(k + l + N + Z(L)) = g(x + N + Z(L)) ̸= 0.
Hence K is coretractable.

(2) This case is a direct consequence of (1).
□

Let M be an R-module. A submodule K is said to be dense in M
if, for any y ∈ M and 0 ̸= x ∈ M , there exists r ∈ R such that xr ̸= 0
and yr ∈ K. Obviously, any dense submodule of M is essential. It
follows from [6, Proposition 8.6] that, K is dense in M if and only if

HomR(
P

K
,M) = 0 for every submodule K ⊆ P ⊆ M .
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Remark 2.9. Let M be a module such that Z(M) ̸= M . If Z(M) is
dense in M , then M is not Z(M)-coretractable. In fact for a Z(M)-
coretractable module M with Z(M) ̸= M , we have Z(M) is not dense
in M . This follows from the fact that if M is Z(M)-coretractable such

that Z(M) ̸= M , then there is a nonzero homomorphism from
M

Z(M)
to M .

Proposition 2.10. Let M be a module such that Z(M) ̸= M . If M
is quasi-injective or every proper submodule of M is contained in a
maximal submodule, then M is Z(M)-coretractable if and only if every
proper submodule of M containing Z(M) is not dense in M .

Proof. (1) Let M be a quasi-injective module such that every proper
submodule of M containing Z(M) is not dense in M . Suppose that K
is a proper submodule of M containing Z(M). Since K is not dense in

M , there is a f :
P

K
→ M where P is a submodule of M containing K.

It follows that foπ : P → M is a nonzero homomorphism such that

π : P → P

K
is natural epimorphism. Consider inclusion homomorphism

j : P → M . Since M is quasi-injective, there exists h : M → M such

that hoj = foπ. By defining h :
M

K
→ M with h(m + K) = h(m)

we conclude that M is Z(M)-coretractable. Note that h is nonzero.
Conversely, if M is Z(M)-coretractable and Z(M) ⊆ K < M , then

there is a homomorphism g :
M

K
→ M which shows that K is not

dense in M .
(2) Suppose that every proper submodule of M contained in a max-

imal submodule of M . Let Z(M) ⊆ K ⊂ M . Then there is a maximal
submodule L of M such that K ≤ L. Since L is not dense in M , there

is a nonzero homomorphism h :
M

L
→ M . Since f :

M

K
→ M

L
with

f(x +K) = x + L is a nonzero homomorphism, then hof is nonzero.
It follows that M is Z(M)-coretractable. The converse is the same as
the converse of (1). □

Theorem 2.11. Let R be a ring. Then the following are equivalent:
(1) RR is Z(RR)-coretractable;
(2) Every finitely generated free right R-module F is

Z(F )-coretractable;
(3) For every right ideal I containing Z(RR), annl(I) ̸= 0;



170 MONIRI HAMZEKOLAEE

(4) Every simple right R-module annihilated by Z(RR) can be em-
bedded in RR.

Proof. (1) ⇔ (2) Follows from Proposition 2.6.
(1) ⇒ (3) Let I be a right ideal containing Z(RR). Since RR is

Z(RR)-coretractable, there is a nonzero homomorphism f :
R

I
→ R.

Consider the endomorphism g = foπ : R → R where π is the natural

epimorphism from R to
R

I
. Then there is an element a ∈ R such that

g(x) = ax. Let y ∈ I. Then g(y) = ay = 0 as I ⊆ Kerg.
(3) ⇒ (1) Let I be a right ideal containing Z(RR). Since annl(I) ̸= 0,

there exists an element of R such as a which aI = 0 and a ̸= 0. Define

f :
R

I
→ R by f(x + I) = ax. It is easy to check that f is an R-

homomorphism and in particular f ̸= 0.

(1) ⇒ (4) Let M ∼=
R

K
be a simple right R-module such that

MZ(RR) = 0. It follows that Z(RR) ⊆ K. Since R is Z(RR)-

coretractable, there is a nonzero homomorphism f :
R

K
→ R.

(4) ⇒ (1) Let T be a proper right ideal of R containing Z(RR). Now
there exists a right maximal ideal K of R such that Z(RR) ⊆ T ⊆ K.

Consider the simple right R-module M =
R

K
. Since MZ(RR) = 0,

there is a nonzero homomorphism g :
R

K
→ R by assumption. Being T

a submodule ofK, there exists f :
R

T
→ R

K
defined by f(x+T ) = x+K.

Hence gof is the desired homomorphism. □
Remark 2.12. Let R be a ring with annl(Z(RR)) = 0. Then RR is not
Z(RR)-coretractable. By [12, Proposition 2.1], J(R) ⊆ annl(Z(RR)).
So J(R) = 0.

Corollary 2.13. Let R be a semiperfect ring with Z(RR) ̸= R. Then
the following statements are equivalent:

(1) R is Z(RR)-coretractable;
(2) Every simple cosingular right R-module can be embedded in RR.

Proof. (1) ⇒ (2) It follows from (1) ⇒ (4) of Theorem 2.11 and the
fact that over a semiperfect ring, a simple module is annihilated by
Z(RR) if and only if it is cosingular ([10, Theorem 3.5]).

(2) ⇒ (1) This is a consequence of (4) ⇒ (1) of Theorem 2.11 and
the fact the over a semiperfect ring, a simple module is annihilated by
Z(RR) if and only if it is cosingular. □
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Recall from [6], a ringR is right (left)Kasch in case every simple right
(left) R-module can be embedded in RR (RR). In [2, Theorem 2.14], the
authors proved that R is right Kasch if and only if RR is coretractable.
The following maybe an analogue for commutative semiperfect rings.

We should note that a ring R is semilocal in case
R

J(R)
is a semisimple

ring.

Corollary 2.14. Let R be a commutative semiperfect ring with Z(R) ̸=
R. Then the following statements are equivalent:

(1) R is Z(R)-coretractable;
(2) Every simple cosingular R-module can be embedded in R;
(3) R is a Kasch ring.

Proof. (1) ⇔ (2) See Corollary 2.13.
(1) ⇒ (3) From [12, Corollary 2.7(3)], we have Soc(R) = Z(R) since

R is a commutative semilocal ring. Now let K be a proper essential

ideal of R. Then HomR(
R

K
,R) ̸= 0 because Z(R) ⊆ K. Therefore, R

is a coretractable R-module. Hence R is a Kasch ring (see [2, Theorem
2.14]).

(3) ⇒ (1) In this case R is a coretractable R-module and hence
Z(R)-coretractable. □

Example 2.15. (1) Let R =

[
K K
0 K

]
whereK is a field. Then J(R) =[

0 K
0 0

]
. It is easy to check that R is a semilocal ring as

R

J(R)
∼=

K × K which is a semisimple ring. Now by [3, Exercise 10, Page

113] and [12, Corollary 2.7], Z(RR) = Soc(RR) =

[
K K
0 0

]
. However,

Z(RR) = Soc(RR) =

[
0 K
0 K

]
. Set m1 = Z(RR) and m2 = Z(RR).

Then both m1 and m2 are left maximal and right maximal ideals of
R. A quick calculation shows that annl(m1) = m2, annl(m2) = 0,
annr(m1) = 0 and annr(m2) = m1. Now by Theorem 2.11, RR is
Z(RR)-coretractable while RR is not Z(RR)-coretractable. Also left
version of Theorem 2.11, implies that RR is Z(RR)-coretractable but it

is not Z(RR)-coretractable. Since the simple right R-module
R

m2

can

not be embedded in RR and the simple left R-module
R

m1

can not be

embedded in RR, the ring R is neither right Kasch nor left Kasch.
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(2) Let K be a division ring and

R =

A =


a 0 b c
0 a 0 d
0 0 a 0
0 0 0 e

 | a, b, c, d, e ∈ K


.

Then, J(R) = {A ∈ R | a = 0 = e}, Soc(RR) = annl(J(R)) = {A ∈
R | a = 0}, Soc(RR) = annr(J(R)) = J(R). Since

R

J(R)
∼= K × K,

R is a semilocal ring. Now from [12, Corollary 2.7], we have Z(RR) =
Soc(RR) = {A ∈ R | a = 0} and Z(RR) = Soc(RR) = J(R). From
[6, Example 8.29], Z(RR) is a left maximal and right maximal ideal of
R. Since annr(Z(RR)) = {A ∈ R | a = e = 0} = J(R) ̸= 0, it follows

from [6, Corollary 8.28],
R

Z(RR)
can be embedded in RR (see also

Theorem 2.11). Therefore, RR is Z(RR)-coretractable. Now an easy
computation shows that annl(Z(RR)) = {A ∈ R | a = c = d = e =

0} ̸= 0. So
R

Z(RR)
can be embedded in RR by [6, Corollary 8.28]. As

Z(RR) is a maximal right ideal of R, then RR is Z(RR)-coretractable.
Also from [6, Example 8.29], R is a right Kasch ring while it is not a
left Kasch ring.

(3) Let K be a field and R = K×K×K× . . .. It is well-known that
R is a Von Nuemann regular V -ring. By [10, Corollary 2.6], every R-
module is noncosingular. So every R-moduleM is Z(M)-coretractable.
In particular R as a ring is Z(R)-coretractable. Now consider the ideal
I = K ⊕K ⊕ . . . of R. Then ann(I) = 0 and of course ann(m) = 0 for
every maximal ideal m of R containing I. Hence the simple R-module
R

m
can not be embedded in R (see [6, Corollary 8.28]). Therefore, R is

not a Kasch ring.

Proposition 2.16. Let R be a ring such that every free right R-module
F is Z(F )-coretractable. Then for every nonzero cosingular right R-
module M , HomR(M,R) ̸= 0.

Proof. Let M be a cosingular right R-module. Then there is a free

right R-module F and a submodule K of F such that M ∼=
F

K
. Since

M is cosingular, Z(F ) ⊆ K. Now there is a nonzero homomorphism

f :
F

K
→ F (note that F is Z(F )-coretractable). The homomorphism
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πof : M → R is the required one where π : F → R is natural epimor-
phism. □
Proposition 2.17. Let R be a ring having a radical right R-module
M with Z(M) ̸= M . If for every right ideal I of R, Rad(I) ̸= I, then
there is a free right R-module F which is not Z(F )-coretractable.

Proof. Let Rad(M) = M and Z(M) ̸= M . There exists a free right

R-module F and a submodule K of F such that
M

Z(M)
∼=

F

K
. Being

M radical implies that
M

Z(M)
is radical. So, HomR(

M

Z(M)
, R) = 0.

It follows that HomR(
F

K
,F ) = 0. Now being

F

K
cosingular implies

that Z(F ) ⊆ K (note that
M

Z(M)
is cosingular). Therefore, F is not

Z(F )-coretractable. □
Corollary 2.18. Let R be a semiperfect ring which is not right perfect.
If R has a radical module, then there is a free right R-module F which
is not Z(F )-coretractable.

Proposition 2.19. Let M be an amply supplemented module such that

every proper submodule of 0 ̸= M

Z(M)
is contained in a maximal sub-

module. If for every x ∈ M , the module xR is Z(xR)-coretractable,
then M is Z(M)-coretractable.

Proof. Let M be amply supplemented. Suppose that K is a submodule
of M containing Z(M). By assumption, K is contained in a maximal

submodule L of M . For every x ∈ M \ L, we know
M

L
∼=

xR

xR ∩ L
as

xR + L = M . Note that
M

L
is cosingular. Otherwise,

M

L
= Z(

M

L
) =

Z
2
(
M

L
) =

Z
2
(M) + L

L
= 0, which is a contradiction (see [10, Theorem

3.5]). Now Z(xR) ⊆ xR ∩ L. Because xR is Z(xR)-coretractable,

HomR(
xR

xR ∩ L
, xR) ̸= 0. Hence there is a nonzero homomorphism

f :
M

L
→ M . Therefore, HomR(

M

K
,M) ̸= 0 as K ⊆ L. □

The following result follows from Proposition 2.19 and the fact that
over a (semiperfect) right perfect ring, every (finitely generated) right
R-module is amply supplemented.
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Corollary 2.20. Let R be a (semiperfect) right perfect ring such that
every cyclic R-module xR is Z(xR)-coretractable. Then every (finitely
generated) right R-module M is Z(M)-coretractable.

Corollary 2.21. Let R be a commutative (semiperfect) perfect ring
such that every cyclic R-module xR is Z(xR)-coretractable. Then every
(finitely generated) projective R-module is coretractable. In particular,
R is a Kasch ring.

Proof. From Corollary 2.20, every (finitely generated) projective R-
moduleM is Z(M)-coretractable. It follows from [12, Corollary 2.7(3)],
Soc(M) = Z(M) for every (finitely generated) projective R-module. It
is clear that for every proper essential submodule N of M and hence
for every proper submodule N of M , there is a nonzero homomorphism

f :
M

N
→ M (note that ifN ≤e M , then Soc(M) ⊆ N). This completes

the proof. □
Definition 2.22. Let SC be the class of all simple cosingular (small)
right R-modules. Then we set wZ(RR) = RejR(SC). By [3, Corollary
8.23], wZ(RR) is a two-sided ideal of R.

Example 2.23. (1) Since every simple cosingular right Z-module has

the form
Z
pZ

where p is a prime number, then wZ(Z) = 0.

(2) Let R be a local ring which is not a V -ring. Then the only simple

cosingular right R-module is
R

J(R)
. So wZ(RR) = J(R).

(3) Let R be a local ring with at least three proper ideals. Then by
[12, Corollary 2.7(1)], Z(RR) = Soc(RR). By (2), we have wZ(RR) =
J(R). Note that Z(RR) ⊆ wZ(RR). For instance Z(Z8) = {0, 4} while
wZ(Z8) = {0, 2, 4, 6}.

Some basic properties of wZ(RR) are listed below. The proof is
straightforward and omitted.

Lemma 2.24. Let R be a ring. Then;
(1) Z(RR) ⊆ wZ(RR) and J(R) ⊆ wZ(RR).

(2)
R

wZ(RR)
is a cosingular right R-module.

(3) wZ(RR) = R if and only if R is a right V -ring.
(4) wZ(RR) is the largest right ideal of R that annihilates all simple

cosingular right R-modules.

(5) If R is semilocal, then
R

wZ(RR)
is semisimple cosingular.
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Proposition 2.25. Let R be a ring with J(R) = 0. If RR is Z(RR)-
coretractable, then Soc(RR) + wZ(RR) = R. In particular, if wZ(RR)
is semisimple, then R is semisimple.

Proof. In contrary, suppose that I = Soc(RR) + wZ(RR) ̸= R. Since
I contains wZ(RR) and RR is Z(RR)-coretractable, we have K =
annl(I) ̸= 0. It follows that (IK)(IK) = 0. Now J(R) = 0, implies
that IK = 0. Since RR is Z(RR)-coretractable, every simple cosingular
right R-module can be embedded in RR. It follows that MK = 0 for
every simple cosingular right R-module. Hence K ⊆ wZ(RR). Since
wZ(RR)K = 0, we conclude that K2 = 0. Therefore K ⊆ J(R) = 0,
which is a contradiction. For the last part, suppose that wZ(RR) is
semisimple. So, I = Soc(RR) = R. This completes the proof. □

Corollary 2.26. Let R be a ring with J(R) = 0 and Soc(RR) ⊆
wZ(RR). If RR is Z(RR)-coretractable, then R is a right V -ring.

Proof. From the proof of last proposition, we get I = wZ(RR) = R.
Then, every simple right R-module is injective. It then follows that R
is a right V -ring. □
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مسطح مدول های از تعمیم یک

کلایی حمزه منیری علیرضا
بابلسر مازندران، دانشگاه ریاضی، علوم دانشکده ریاضی، گروه

Z(M) به نسبت مسطح را M مدول باشد. راست R-مدول یک M و حلقه یک R کنید فرض
یک است، Z(M)شامل که M از N مانند محض زیرمدول هر برای هرگاه می گوییم (Z(M)-مسطح)
دو که کنیم می بررسی را شرایطی مقاله این در ما باشد. موجود f : M

N
→ M مانند غیرصفر همریختی

نشان R مانند نیمه کامل جابجایی حلقۀ یک برای باشند. معادل هم با Z(M)-مسطح و مسطح مفهوم
مثال چند نهایت در باشد. کَش حلقۀ یک R اگر وتنها اگر است مسطح Z(R) به نسبت R که می دهیم

می دهیم. ارائه متفاوت مفاهیم تفاوت بیان و توضیح برای نیز

کَش. حلقۀ Z(M)-مسطح، مدول مسطح، مدول کلیدی: کلمات

٧


