

Journal of AI and Data Mining

Vol.1, No.1, 2013, 19- 25.

An improved algorithm for network reliability evaluation

M. Ghasemzadeh

*

Electrical and Computer Engineering Department, Yazd University

Received 19 January 2013; accepted 14 February 2013

*Corresponding author: m.ghasemzadeh@yazd.ac.ir (M. Ghasemzadeh)

Abstract
Binary Decision Diagram (BDD) is a data structure proved to be compact in representation and efficient in

manipulation of Boolean formulas. Using Binary decision diagram in network reliability analysis has already

been investigated by some researchers. In this paper, we show how an exact algorithm for network reliability

can be improved and implemented efficiently by using a Colorado University Decision Diagram (CUDD).

Keywords: Network Reliability, Efficienty, CUDD, Binary Decision Diagram.

1. Introduction
In many systems, such as a computer or electricity

networks the connectivity of the network

components is of a great concern. Sometimes we

are only interested in the connectivity of some

components or connectivity of just two special

components. In this paper, we review the

properties of a Binary Decision Diagram [12,3]

which is a modern data structure in representation

and manipulation of Boolean formulas, then we

see how a network reliability can be measured

efficiently by using this data structure. We also

consider the CUDD [16], which is a standard open

source package for construction and the

manipulation of BDD and its variants, such as

ZDD, Zero-suppressed Binary Decision Diagram.

The network model is an undirected graph where

vertices of the graph stand for the sites and the

edges of the graph stand for the links between the

sites. In practice each site or link can fail

accidentally, but we suppose that sites (vertices)

are perfect, but links may independently fail with

some known probabilities. The problem of

checking the connectivity is known to be NP-hard

[1, 2].

There are two classes for computation of network

reliability. The first class is for approximate

computation while the second class is concerned

with exact computation of network reliability

computation. The existing algorithms in an exact

computation are in two different categories: The

first category deals with the enumeration of all the

minimum paths or cuts. A path is defined as a set

of network components in such a way that if these

components are all failure-free, the system

remains up. A path is minimal if it has no proper

sub-paths. Conversely, a cut is a set of network

components such that if any of the components

fail, the system goes down. Using the enumeration

method, one may only compute the reliability of

networks consisting of a small number of

components. In the second category, the

algorithms are based on reducing the graph

representing the network by removing some of its

components.

These reductions allow us to compute the

reliability in a simpler way[15], that is,

decompose the problem into two sub-problems:

The first one is assumed the component has

failed, and the second one is assumed it functions.

These reductions are recursively applied until it

reaches very primitive instances. It is shown that

the idea of eduction lets solve this problem more

efficiently [17].

Binary Decision diagram is the state-of-the-art

Ghasemzadeh/ Journal of AI and Data Minin , Vol.1, No.1, 2013

20

data structure in Boolean formula representation

and manipulation. It has been successfully used in

VLSI CAD and widely integrated in commercial

tools[11,4]. As a data structure for representation

of Boolean functions it was first introduced by

Lee and further popularized by Akers[13].

Bryant[4] introduced its restricted form OBDD

(Reduced Ordered BDD), which is a canonical

representation. He also proved that OBDDs allow

efficient manipulations of Boolean formulas. This

data structure and its variants can be implemented

efficiently in modern computers using a

programming language, such as C. CUDD

(Colorado University Decision Diagram) Package,

provided at the university of Colorado by Fabio

Somenzi [16], is an open source package written

in C. This package is known to be the most useful

package for construction and manipulation of

BDD and its variants.

Using BDD in the reliability analysis framework

was first introduced by Madre and Coudert [5],

and developed by Odeh and Rauzy [14]. In the

network reliability framework, Sekine and Imai

[10], and Trivedi [18] have shown how to

functionally construct the corresponding BDD.

Gary Hardy, Corinne Lucet and Nikolaos Limnios

[9] improved existing techniques by using the

concept of partitions of network nodes. They

presented an exact algorithm for computing the

K -terminal reliability of a network graph with

perfect vertices.

The rest of this paper is organized as follows.

First, we introduce BDD with an emphasis on its

brilliant properties. In Section 3, we discuss about

the network reliability problem and employ BDD

in solving them. We give our CUDD based

implementation for constructing the desired BDD

in Section 4. Finally, we give conclusions in

Section 5.

2. Binary decisions diagram and its

variants
Binary Decision diagram (BDD) is the state-of-

the-art data structure in Boolean formula

representation and manipulation. They have been

successfully used in VLSI CAD and widely

integrated in commercial tools. In this section we

review the basic definitions of BDD and learn

about their theoretical and practical aspects. There

are several extensions of BDD, of which we are

interested in ZDD, shown to be more efficient in

solving some related problems [6].

2.1. Definition and examples of BDD
Mostly BDD is meant to be an ordered BDD or

OBDD. An OBDD is a graphic description of an

algorithm for the computation of a Boolean

function. The following definition describes the

syntax of OBDD, i.e., the properties of the

underlying graph. The semantics of OBDD, i.e.,

the functions represented by OBDD, are specified

by the following definitions.

Definition 1: An OBDD G representing the

Boolean functions
mff ,,1  over the variables

nxx ,,1  is a directed acyclic graph with the

following properties:

1. For each function if there is a pointer to a

node in G .

2. The nodes without outgoing edges, which

are called sinks or terminal nodes, are

labeled by 0 or 1.

3. All non-sink nodes of G , which are also

called internal nodes, are labeled by a

variable and have two outgoing edges, a

0-edge and a 1-edge.

4. On each directed path in the OBDD, each

variable occurs at most once as the label

of a node.

5. There is a variable ordering  , which is a

permutation of nxx ,,1  , and on each

directed path the variables occur

according to this ordering. This means, if

ix is arranged before jx in the variable

ordering, then it must not happen that on

some path there is a node labelled by
jx

before a node labeled by
ix .

In Figure 1, we draw sink nodes as squares and

internal nodes as circles. We always assume that

edges are directed downwards. 0-edges are drawn

as dashed lines while 1-edges are drawn as solid

lines. Figure 1 shows an OBDD fG with the

variable ordering 231 ,, xxx and an OBDD gG

with the variable ordering
0011 ,,, yxyx .

Definition 2: Let G be an OBDD for the

functions
mff ,,1  over the variables

nxx ,,1  , and let),,(= 1 naaa  be an input.

The computation path for the node v of G and

the input a is the path starting at v obtained by

choosing at each internal node labelled by
ix the

outgoing
ia -edge.

Each node v represents a function
vf ,

Ghasemzadeh/ Journal of AI and Data Minin , Vol.1, No.1, 2013

21

where)(afv is defined as the value of the sink at

the end of the computation path starting at v for

the input a . Finally, jf
is defined as the function

represented at the head of the pointer for jf .

Definition 2 can be seen as the description of an

algorithm to obtain the computation path and

therefore the value of)(af j
for each

function jf and each input a .

In the OBDD fG in Figure 1, the computation

path for the input (1,1,0)=),,(321 xxx passes

from
1x in the root, then from the right

3x , then

from the right
2x

and finally goes to the 0-Sink.

Furthermore, for each node v of fG the

function
vf represented at v is given. Definition 2

is easy to verify that the OBDD fG in Figure 1,

represents the function

321321 =),,(xxxxxxf  and the OBDD gG

represents function),,(=),,,(0120011 sssyxyxg ,

where),,(012 sss is the sum of the two 2-bit

numbers),(01 yy and),(01 xx .

Figure 1. Examples of OBDDs.

The function represented at the sink labelled by

{0,1}c is the constant function c . Now let v

be an internal node which is labelled by
ix . Let

0v be the 0-successor of v , i.e., the node reached

via the 0-edge leaving v , and let 1v be the 1-

successor of v . We consider the computation

of
vf for some input. If in the input the value of

ix

is 0 , then by definition 2 we may obtain
vf by

evaluating
0

vf and, if the value of
ix is 1, by

evaluating
1

vf . This can be expressed by the

equation:

10
..= viviv fxfxf  (1)

Using equation 1 we may compute the functions

represented at the nodes of an OBDD in a bottom-

up fashion. However, the opposite is also true. If a

node v labelled by
ix represents the function

vf ,

then the 0-successor of v represents the

subfunction (sometimes called cofactor)
0=|

i
xvf

and the 1-successor the subfunction 1=|
i

xvf . In

other words, at v the function
vf is decomposed

using Shannons decomposition rule:

1=|0=| ..=
i

xvi
i

xviv fxfxf  (2)

We point out that there are variants of OBDDs

where Shannons decomposition rule is replaced

by a different decomposition rule. Equation 2

shows that we can decompose the function
vf in

different ways by choosing different variables
ix

for decomposition. Hence, we may get different

OBDDs for the same function if we use different

variable orderings. Later on, we will see that the

size of an OBDD usually depends strongly on the

chosen variable ordering.

Ghasemzadeh/ Journal of AI and Data Minin , Vol.1, No.1, 2013

22

2.2. Synthesis
Synthesis is probably the most important

operation, because it is needed in almost all

applications. The usual way of generating a new

BDD is to combine existing BDDs with

connectives like AND, OR, EX-OR. If we want to

make an OBDD for a given Boolean function.

First, we make OBDDs for each variable of the

Boolean function, and then we parse the Boolean

function and combine the existing OBDDs to

make OBDDs for the needed sub functions.

Finally the OBDD representing the whole given

Boolean function would be obtained. As

suggested by Brace, Rudell, and Bryant [3], in

OBDD packages, the synthesis algorithm is

usually called an ITE (''if-then-else'') where:

hfgfhgfite ..=),,(

The ITE() procedure receives OBDDs for two

Boolean functions f and g , builds the OBDD for

gopf >< . In fact, it receives three arguments:

I,T,E which are OBDDs and returns the OBDD

representing:)()(EITI  . All binary

Boolean operations can be simulated by the ite-

operator, e.g.:),1 ,(= gfitegf  ,

,0),(= gfitegf  or),,(= ggfitegf  .

ITE() is a combination of depth-first traversal and

dynamic programming. (A recursive, Bottom-up

procedure with tabulation). The basic idea of

ITE() comes from the expansion theorem:

)><()><(=>< vvvv GopFvGopFvGopF 


ITE() maintains a table called Computed Table to

avoid computing the same combination

repeatedly. It also maintains another table called

Unique Table to avoid producing subgraphs

representing the same sub-function. The benefit of

this technique is the important result that ITE()

becomes polynomial rather than exponential.

Figure 2 displays the pseudocode for the ITE

operator.

If f and g are given by OBDDs with different

variable orderings, the ITE() procedure would not

work, because for the simultaneous traversal, the

variables have to be encountered in the same

ordering in both OBDDs. In this situation the

synthesis method would be much harder.

2.3. The variable ordering problem for

OBDDs
OBDDs share a fatal property with all kinds of

representations of switching functions: The

representation of almost all functions need

exponential space. Bryant [4] discovered that

OBDD size strongly depends on the chosen

variable ordering. Figure 3, shows the effect of

variable ordering for a switching function. Notice

that both OBDDs represent the same Boolean

function:)()()(= 332211 bababaF  .

ITE(f, g, h)

 {

 If (f == 1) return g;

 If (f == 0) return h;

 If (g == h) return g;

 if(

p=IN_COMPUTED_TABLE(f,g,h))

return p;

 v = TOP_VARIABLE(f, g, h);

 fn = ITE(fv0,gv0,hv0);

 gn = ITE(fv1,gv1,hv1);

 if(fn == gn) return gn;

if(!p=IN_UNIQUE_TABLE(v,fn,gn))

 p = CREATE_NODE(v,fn,gn);

NSERT_COMPUTED_TBL(p,HASH(

f,g,h));

 return p;

 }

Figure 2. The ITE algorithm for ROBDDs.

Figure 3. Effect of variable ordering on OBDD size

(Bryant, 1986).

Different functions have different ordering

sensitivities. Some functions have a high and

others have a low variable order sensitivity. The

practicability of OBDDs strongly depends on the

existence of suitable algorithms and tools for

minimizing the graphs in the relevant

applications. There are many improvements,

optimization algorithms, and additions to the basic

OBDD model. It is known by experience that:

• Many tasks have reasonable OBDD

Ghasemzadeh/ Journal of AI and Data Minin , Vol.1, No.1, 2013

23

representations.

• Algorithms remain practical for up to

100,000 OBDD nodes.

• Most proposed heuristic ordering

methods are generally satisfactory.

However, because of the practical applicability of

this data structure, investigation and development

of new optimization techniques for OBDDs is still

a rewarding research topic.

3. Reliability measurment
As mentioned above, the exact method in

evaluating the reliability can be achieved in two

different methods. In this section we introduce

these methods and discuss a how BDD can be

used to gain considerable improvements.

3.1. Enumeration method
We consider the model used in most publications

and used by Lucet and Limnios [9]. In this regard,

a network model is an undirected stochastic graph

),(= EVG , where V stands for vertices

representing sites, and E stands for edge set

representing the links between the sites. Each

edge ie of the graph G is subject to failure with

known probability [0,1])(ii qq . The probability

that edge ie functions can be obtained from

ii qp 1= . In the following, we consider the

vertices as perfect. In classical enumerative

methods, all the states of the graph are generated,

evaluated as a failing state or as a functioning

state, then probabilistic methods are used to

compute the resulting reliability. Since there are

two states for each edge, there are
m2 possible

states for the graph G . Let
iX be the binary

random variable state of the link ie in G  ,

defined by 1=iX when link ie is operational,

and when 0=iX link ie is down.

),,(= 21 mXXXX  is the random network

state vector. A state x of G is denoted by

),,(= 21 mxxxx  where
ix stands for the state

of edge ie , 0=ix if ie is down and 1=ix if it

works. Probability of x is can be computed by:

)).(1.(=)=(
1=

iiii

m

i

qxpxxXPr 

K-terminal network reliability is defined by:

)=(=);(xXPrGpR
o n in g sta texisa fu n cti

k 

Because of exponential number of states, if

classical methods are applied, the complexity

would be).2(mmO . So, these methods are not

applicable in large networks.

3.2. Graph reduction
In order to avoid drawbacks of the enumeration

method, Lucet and Limnios [9] define two graph

operations: The edge deletion, and the edge

contraction.),(= EVG is a given graph such that

there is an edge Eei  . iG is to be the subgraph

obtained from G by deleting)\=(, ii eGiGe 
.

If),(= yxei such that yinVx, , then edge

contraction consists of merging vertices x and y

in one single vertex. We denote iG* to represent

the subgraph obtained from G by contracting ie .

When edge ie fails, the network behavior is

equivalent to iG ; and when functions, the

network behavior is equivalent to iG8 . According

to this decomposition the following result is

emerged and could be applied recursively:

);(.);(.=);(* ikiikik GpRqGpRpGpR 

if we consider ie and je as two edges of E then

jiG *
 means subgraph obtained by contracting ie

and deleting je . Figure 4 shows how this idea

works.

4. Employing BDD in encoding and

evaluation
We can learn from the ITE() operation on BDDs

that although in its primitive form it is

exponential, by embedding the idea of tabulation,

its complexity has been reduced to quadratic.

When we look at the algorithm of evaluating

network reliability based on reducing the graph

representing the network by removing some of its

components (decompose the problem into two

sub-problems) we can realize that the same

technique and also be employed for this problem

to gain similar benefits. In this section, we

compute network reliability by taking advantage

of the BDD data structure.

The mystery of BDD is merging equivalent

subfunctions of a Boolean formula to get compact

representation of the entire formula. All main

operations on BDD, such as the ITE() function,

perform this kind of merging in a recursive

manner and in a systematic way to get the most

benefits of it, while preserving the canonicity of

representation. In has been shown that the

recursive network reliability relation in BDD can

Ghasemzadeh/ Journal of AI and Data Minin , Vol.1, No.1, 2013

24

be formulated as:

:][1 mi  1)=(=);(fPrGpRk

1)=(.1)=(.=);(
0=1= i

Xi
i

Xik fPrqfPrpGpR 

We obtain values of
0=i

Xf and
1=i

Xf recursively

untill it reaches the sink nodes. The probability is

stored in each internal node. We may use the

CUDD package to implement the corresponding

algorithm and operations.

Figure 4: Network decomposition based on edge

deletion/contraction (Lucet and Limnios).

4.1. Implementation in the CUDD Package
In this section, we introduce the CUDD package,

which is known to be the best open source

package for manipulating the BDD and its

variants. Content of this subsection is prepared

very briefly from its help manual [16].

The CUDD package provides functions to

manipulate Binary Decision Diagram (BDD),

Algebraic Decision Diagram (ADD), and Zero-

suppressed Binary Decision Diagram (ZDD).

BDDs are used to represent switching functions;

ADDs are used to represent function from n{0,1}

to an arbitrary set. ZDDs represent switching

functions like BDDs; however, they are more

efficient than BDDs when the functions to be

represented are characteristic functions of cube

sets, or in general, when the ON-Set of the

function to be represented is sparse. They are

inferior to BDDs in other cases.

The CUDD package can be used in three ways:

• As a black box. The application

program that needs to manipulate

decision diagrams only uses the

exported functions of the package.

The rich set of functions included in

the CUDD package allows many

applications to be written in this

way. An application written in terms

of the exported functions of the

package needs not concern itself

with the details of variable

reordering, which may take place

behind the scenes.

• As a clear box. When writing a

sophisticated application based on

decision diagrams, efficiency often

dictates that some functions be

implemented as direct recursive

manipulation of the diagrams,

instead of being written in terms of

existing primitive functions.

• Through an interface. Object oriented

languages like C++ can free the

programmer from the burden of

memory management. A C++

interface is included in the

distribution of CUDD. It

automatically frees decision

diagrams that are no longer used by

the application. Almost all the

functionality provided by the CUDD

exported functions is available

through the C++ interface, which is

especially recommended for fast

prototyping.

Figure 5 shows the main procedure in CUDD for

the algorithm of evaluating the probability of

network reliability.

The decomposition shown in Figure 3 can be

mapped into BDD construction. Its root

corresponds to the original network graph and in

each level, one edge is deleted or contracted.

Children of a node in each level represent sub-

graphs obtained by successive edge deletion or

edge contractions.

Ghasemzadeh/ Journal of AI and Data Minin , Vol.1, No.1, 2013

25

float ComputeNetRel(DdNode *DecBDD)

 {

 float Rk;

 if (DecBDD==CuddOne) return 1;

 if (DecBDD==CuddZero) return 0;

 if (Rk = Computed(DecBDD))

return(Rk);

 Pr1 = CaculReliability(

Cudd_T(DecBDD));

 Pr0 = CaculReliability(

Cudd_E(DecBDD));

 Rk = (1-q[i]) * Pr1 + q[i] * Pr0;

 InsertComputed(DecBDD , Rk);

return(Rk);

 }

Figure 5. Network reliability evaluation / part of cudd

code.

5. Conclusion
Two exact methods for evaluation of network

reliability were discussed. We saw how by

inspiration from the ITE() operator in BDD

construction, an algorithm with lower complexity

for evaluation of network reliability can be

obtained. In fact employing a variant of BDD

called ZDD can lead to even more advantages.

References
[1] Ball, M. O. (1980). Complexity of network

reliability computations. Networks, 10,153-165.

[2] Ball, M. O. (1986). Computational complexity of

network reliability analysis:An overview. IEEE Trans.

Reliability. R-35:230-239.

[3] Karl, S. (1990). Brace and Richard L. Rudell and

Randal E. Bryant. Efficient Implementation of a BDD

Package. DAC: Design Automation Conf. 40-45.

[4] Randal, E. (1986). Bryant. Graph-Based

Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers. 35(8),677-691.

[5] Coudert, O. and Madre, J. C. (1992). Implicit and

incremental computation of primes and essential

primes of Boolean functions. Proceedings of the 29th

ACM/IEEE Design Automation Conference. 36-39.

[6] Drechsler, R. and Sieling, D. (2001). Binary

decision diagrams in theory and practice. International

Journal on Software Tools for Technology Transfer

(STTT). 3(2),112-136.

[7] GhasemZadeh, M., Klotz, V. and Meinel, C.

(2004). Embedding Memoization to the Semantic Tree

Search for Deciding QBFs. Australian Conference on

Artificial Intelligence. 681-693.

[8] GhasemZadeh, M. and Meinel, C. (2005). Splitting

Versus Unfolding. 7th International Symposium on

Representations and Methodology of Future

Computing Technology, Tokyo, Japan, 2005.

[9] Hardy, G., and Lucet, C. and Limnios, N. (2007).

K-Terminal Network Reliability Measures With Binary

Decision Diagrams. IEEE Transactions on Reliability.

56(3), 506-515.

[10] Imai, H., Sekine, K. and Imai, K. (1999).

Computational investigations of allterminal network

reliability via BDDs. IEICE Transactions on

Fundamentals. E82-A(5),714-–721.

[11] Christoph Meinel and Jochen Bern and Anna

Slobodová. Efficient OBDD-Based Boolean

Manipulation in CAD beyond Current Limits. Design

Automation Conf.(DAC), pp 408-413, San Francisco,

CA, 1995.

[12] Meinel, C. and Theobald, T. (1998). Algorithms

and data structures in VLSI design: OBDD -

foundations and applications. Berlin, Heidelberg. New

York: Springer-Verlag.

[13] Moret, B. (1982). Decision trees and diagrams.

Computer Survey. (14), 593-623.

[14] Rauzy, A. (2003). A new methodology to handle

Boolean models with loops. IEEE Trans. Reliability.

R-52(1),96-105.

[15] Satyanarayana, A. and Chang, M. K. (1983).

Network reliability and the factoring theorem.

Networks, 13,107-120.

[16] Somenzi, F. CUDD Package.

ftp://vlsi.colorado.edu/pub/.

[17] Theologou, O. and Carlier, J. (1991). Factoring

and reductions for networks with imperfect vertices.

IEEE Trans. R-40, 210-217.

[18] Zang, X., Sun, H. and Trivedi, K. (1999). A BDD-

based algorithm for reliability evaluation of phased

mission systems. IEEE Trans. Reliability. R-48(1),50-

60.

