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Abstract 
Binary Decision Diagram (BDD) is a data structure proved to be compact in representation and efficient in 

manipulation of Boolean formulas. Using Binary decision diagram in network reliability analysis has already 

been investigated by some researchers. In this paper, we show how an exact algorithm for network reliability 

can be improved and implemented efficiently by using a Colorado University Decision Diagram (CUDD). 
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1. Introduction 
In many systems, such as a computer or electricity 

networks the connectivity of the network 

components is of a great concern. Sometimes we 

are only interested in the connectivity of some 

components or connectivity of just two special 

components. In this paper, we review the 

properties of a Binary Decision Diagram [12,3] 

which is a modern data structure in representation 

and manipulation of Boolean formulas, then we 

see how a network reliability can be measured 

efficiently by using this data structure. We also 

consider the CUDD [16], which is a standard open 

source package for construction and the 

manipulation of BDD and its variants, such as 

ZDD, Zero-suppressed Binary Decision Diagram. 

The network model is an undirected graph where 

vertices of the graph stand for the sites and the 

edges of the graph stand for the links between the 

sites. In practice each site or link can fail 

accidentally, but we suppose that sites (vertices) 

are perfect, but links may independently fail with 

some known probabilities. The problem of 

checking the connectivity is known to be NP-hard 

[1, 2]. 

There are two classes for computation of network 

reliability. The first class is for approximate 

computation while the second class is concerned 

with exact computation of network reliability 

computation. The existing algorithms in an exact 

computation are in two different categories: The 

first category deals with the enumeration of all the 

minimum paths or cuts. A path is defined as a set 

of network components in such a way that if these 

components are all failure-free, the system 

remains up. A path is minimal if it has no proper 

sub-paths. Conversely, a cut is a set of network 

components such that if any of the components 

fail, the system goes down. Using the enumeration 

method, one may only compute the reliability of 

networks consisting of a small number of 

components. In the second category, the 

algorithms are based on reducing the graph 

representing the network by removing some of its 

components.  

These reductions allow us to compute the 

reliability in a simpler way[15], that is, 

decompose the problem into two sub-problems: 

The first one  is assumed the component has 

failed, and the second one is assumed it functions. 

These reductions are recursively applied until it 

reaches very primitive instances. It is shown that 

the idea of eduction lets solve this problem more 

efficiently [17]. 

Binary Decision diagram is the state-of-the-art 
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data structure in Boolean formula representation 

and manipulation. It has been successfully used in 

VLSI CAD and widely integrated in commercial 

tools[11,4]. As a data structure for representation 

of Boolean functions it was first introduced by 

Lee and further popularized by Akers[13]. 

Bryant[4] introduced its restricted form OBDD 

(Reduced Ordered BDD), which is a canonical 

representation. He also proved that OBDDs allow 

efficient manipulations of Boolean formulas. This 

data structure and its variants can be implemented 

efficiently in modern computers using a 

programming language, such as C. CUDD 

(Colorado University Decision Diagram) Package, 

provided at the university of Colorado by Fabio 

Somenzi [16], is an open source package written 

in C. This package is known to be the most useful 

package for construction and manipulation of 

BDD and its variants. 

Using BDD in the reliability analysis framework 

was first introduced by Madre and Coudert [5], 

and developed by Odeh and Rauzy [14]. In the 

network reliability framework, Sekine and Imai 

[10], and Trivedi [18] have shown how to 

functionally construct the corresponding BDD. 

Gary Hardy, Corinne Lucet and Nikolaos Limnios 

[9] improved existing techniques by using the 

concept of partitions of network nodes. They 

presented an exact algorithm for computing the 

K -terminal reliability of a network graph with 

perfect vertices. 

The rest of this paper is organized as follows. 

First, we introduce BDD with an emphasis on its 

brilliant properties. In Section 3, we discuss about 

the network reliability problem and employ BDD 

in solving them. We give our CUDD based 

implementation for constructing the desired BDD 

in Section 4. Finally, we give conclusions in 

Section 5. 

2. Binary decisions diagram and its 

variants 
Binary Decision diagram (BDD) is the state-of-

the-art data structure in Boolean formula 

representation and manipulation. They have been 

successfully used in VLSI CAD and widely 

integrated in commercial tools. In this section we 

review the basic definitions of BDD and learn 

about their theoretical and practical aspects. There 

are several extensions of BDD, of which we are 

interested in ZDD, shown to be more efficient in 

solving some related problems [6]. 

2.1. Definition and examples of BDD 
Mostly BDD is meant to be an ordered BDD or 

OBDD. An OBDD is a graphic description of an 

algorithm for the computation of a Boolean 

function. The following definition describes the 

syntax of OBDD, i.e., the properties of the 

underlying graph. The semantics of OBDD, i.e., 

the functions represented by OBDD, are specified 

by the following definitions.  

Definition 1: An OBDD G  representing the 

Boolean functions 
mff ,,1   over the variables 

nxx ,,1   is a directed acyclic graph with the 

following properties: 

1. For each function if  there is a pointer to a 

node in G .  

2. The nodes without outgoing edges, which 

are called sinks or terminal nodes, are 

labeled by 0  or 1.  

3. All non-sink nodes of G , which are also 

called internal nodes, are labeled by a 

variable and have two outgoing edges, a 

0-edge and a 1-edge.  

4. On each directed path in the OBDD, each 

variable occurs at most once as the label 

of a node.  

5. There is a variable ordering  , which is a 

permutation of nxx ,,1  , and on each 

directed path the variables occur 

according to this ordering. This means, if 

ix  is arranged before jx  in the variable 

ordering, then it must not happen that on 

some path there is a node labelled by 
jx  

before a node labeled by 
ix .  

 

In Figure 1, we draw sink nodes as squares and 

internal nodes as circles. We always assume that 

edges are directed downwards. 0-edges are drawn 

as dashed lines while 1-edges are drawn as solid 

lines. Figure 1 shows an OBDD fG  with the 

variable ordering 231 ,, xxx  and an OBDD gG  

with the variable ordering 
0011 ,,, yxyx .  

Definition 2: Let G  be an OBDD for the 

functions 
mff ,,1   over the variables 

nxx ,,1  , and let ),,(= 1 naaa   be an input. 

The computation path for the node v  of G  and 

the input a  is the path starting at v  obtained by 

choosing at each internal node labelled by 
ix  the 

outgoing 
ia -edge. 

Each node v  represents a function
vf , 
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where )(afv is defined as the value of the sink at 

the end of the computation path starting at v  for 

the input a . Finally, jf  
is defined as the function 

represented at the head of the pointer for jf . 

Definition 2 can be seen as the description of an 

algorithm to obtain the computation path and 

therefore the value of )(af j
for each 

function jf and each input a .  

In the OBDD fG  in Figure 1, the computation 

path for the input (1,1,0)=),,( 321 xxx  passes 

from 
1x  in the root, then from the right 

3x , then 

from the right 
2x  

and finally goes to the 0-Sink. 

Furthermore, for each node v  of fG  the 

function
vf  represented at v  is given.  Definition 2 

is easy to verify that the OBDD fG  in Figure 1, 

represents the function 

321321 =),,( xxxxxxf   and the OBDD gG  

represents function ),,(=),,,( 0120011 sssyxyxg , 

where ),,( 012 sss  is the sum of the two 2-bit 

numbers ),( 01 yy  and ),( 01 xx . 

 

Figure 1. Examples of OBDDs. 
 

The function represented at the sink labelled by 

{0,1}c  is the constant function c . Now let v  

be an internal node which is labelled by 
ix . Let 

0v  be the 0-successor of v , i.e., the node reached 

via the 0-edge leaving v , and let 1v  be the 1-

successor of v . We consider the computation 

of
vf  for some input. If in the input the value of

ix  

is 0 , then by definition 2 we may obtain
vf  by 

evaluating
0

vf  and, if the value of 
ix  is 1, by 

evaluating
1

vf . This can be expressed by the 

equation:  

10
..= viviv fxfxf  (1) 

Using equation 1 we may compute the functions 

represented at the nodes of an OBDD in a bottom-

up fashion. However, the opposite is also true. If a 

node v  labelled by
ix  represents the function

vf , 

  

then the 0-successor of v represents the  

subfunction (sometimes called cofactor)
0=|

i
xvf  

and the 1-successor the subfunction 1=|
i

xvf . In 

other words, at v  the function 
vf  is decomposed 

using Shannons decomposition rule:  

1=|0=| ..=
i

xvi
i

xviv fxfxf  (2) 

  

We point out that there are variants of OBDDs 

where Shannons decomposition rule is replaced 

by a different decomposition rule. Equation 2 

shows that we can decompose the function
vf  in 

different ways by choosing different variables
ix  

for decomposition. Hence, we may get different 

OBDDs for the same function if we use different 

variable orderings. Later on, we will see that the 

size of an OBDD usually depends strongly on the 

chosen variable ordering. 
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2.2. Synthesis 
Synthesis is probably the most important 

operation, because it is needed in almost all 

applications. The usual way of generating a new 

BDD is to combine existing BDDs with 

connectives like AND, OR, EX-OR. If we want to 

make an OBDD for a given Boolean function. 

First, we make OBDDs for each variable of the 

Boolean function, and then we parse the Boolean 

function and combine the existing OBDDs to 

make OBDDs for the needed sub functions. 

Finally the OBDD representing the whole given 

Boolean function would be obtained. As 

suggested by Brace, Rudell, and Bryant [3], in 

OBDD packages, the synthesis algorithm is 

usually called an ITE (''if-then-else'') where:  

hfgfhgfite ..=),,(   

The ITE() procedure receives OBDDs for two 

Boolean functions f and g , builds the OBDD for 

gopf >< . In fact, it receives three arguments: 

I,T,E which are OBDDs and returns the OBDD 

representing: )()( EITI  . All binary 

Boolean operations can be simulated by the ite-

operator, e.g.: ),1 ,(= gfitegf   , 

,0),(= gfitegf   or ),,(= ggfitegf  . 

ITE() is a combination of depth-first traversal and 

dynamic programming. (A recursive, Bottom-up 

procedure with tabulation). The basic idea of 

ITE() comes from the expansion theorem:  

)><()><(=>< vvvv GopFvGopFvGopF 


ITE() maintains a table called Computed Table to 

avoid computing the same combination 

repeatedly. It also maintains another table called 

Unique Table to avoid producing subgraphs 

representing the same sub-function. The benefit of 

this technique is the important result that ITE() 

becomes polynomial rather than exponential. 

Figure 2 displays the pseudocode for the ITE 

operator. 

If f and g are given by OBDDs with different 

variable orderings, the ITE() procedure would not 

work, because for the simultaneous traversal, the 

variables have to be encountered in the same 

ordering in both OBDDs. In this situation the 

synthesis method would be much harder. 

2.3. The variable ordering problem for 

OBDDs 
OBDDs share a fatal property with all kinds of 

representations of switching functions: The 

representation of almost all functions need 

exponential space. Bryant [4] discovered that 

OBDD size strongly depends on the chosen 

variable ordering. Figure 3, shows the effect of 

variable ordering for a switching function. Notice 

that both OBDDs represent the same Boolean 

function: )()()(= 332211 bababaF  . 
 

ITE(f, g, h) 

   { 

      If (f == 1) return g; 

      If (f == 0) return h; 

      If (g == h) return g; 

      if( 

p=IN_COMPUTED_TABLE(f,g,h)) 

return p; 

      v = TOP_VARIABLE(f, g, h );  

      fn = ITE(fv0,gv0,hv0);  

      gn = ITE(fv1,gv1,hv1); 

      if(fn == gn) return gn;  

      

if(!p=IN_UNIQUE_TABLE(v,fn,gn))  

         p = CREATE_NODE(v,fn,gn);  

      

NSERT_COMPUTED_TBL(p,HASH(

f,g,h)); 

      return p; 

   } 

Figure 2. The ITE algorithm for ROBDDs. 

 

 
Figure 3. Effect of variable ordering on OBDD size 

(Bryant, 1986). 

 

Different functions have different ordering 

sensitivities. Some functions have a high and 

others have a low variable order sensitivity. The 

practicability of OBDDs strongly depends on the 

existence of suitable algorithms and tools for 

minimizing the graphs in the relevant 

applications. There are many improvements, 

optimization algorithms, and additions to the basic 

OBDD model. It is known by experience that:   

• Many tasks have reasonable OBDD 
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representations.  

• Algorithms remain practical for up to 

100,000 OBDD nodes.  

• Most proposed heuristic ordering 

methods are generally satisfactory.  

However, because of the practical applicability of 

this data structure, investigation and development 

of new optimization techniques for OBDDs is still 

a rewarding research topic. 

3. Reliability measurment 
As mentioned above, the exact method in 

evaluating the reliability can be achieved in two 

different methods. In this section we introduce 

these methods and discuss a how BDD can be 

used to gain considerable improvements.  

3.1. Enumeration method 
We consider the model used in most publications 

and used by Lucet and Limnios [9]. In this regard, 

a network model is an undirected stochastic graph 

),(= EVG , where V  stands for vertices 

representing sites, and E  stands for edge set 

representing the links between the sites. Each 

edge ie  of the graph G  is subject to failure with 

known probability [0,1])( ii qq . The probability 

that edge ie  functions can be obtained from 

ii qp 1= . In the following, we consider the 

vertices as perfect. In classical enumerative 

methods, all the states of the graph are generated, 

evaluated as a failing state or as a functioning 

state, then probabilistic methods are used to 

compute the resulting reliability. Since there are 

two states for each edge, there are 
m2  possible 

states for the graph G . Let 
iX  be the binary 

random variable state of the link ie  in G  , 

defined by 1=iX  when link ie  is operational, 

and when 0=iX  link ie  is down. 

),,(= 21 mXXXX   is the random network 

state vector. A state x  of G  is denoted by 

),,(= 21 mxxxx   where 
ix  stands for the state 

of edge ie , 0=ix  if ie  is down and 1=ix  if it 

works. Probability of x  is can be computed by:  

)).(1.(=)=(
1=

iiii

m

i

qxpxxXPr   

K-terminal network reliability is defined by:  

)=(=);( xXPrGpR
o n in g sta texisa fu n cti

k   

Because of exponential number of states, if 

classical methods are applied, the complexity 

would be ).2( mmO . So, these methods are not 

applicable in large networks. 

3.2. Graph reduction 
In order to avoid drawbacks of the enumeration 

method, Lucet and Limnios [9] define two graph 

operations: The edge deletion, and the edge 

contraction. ),(= EVG  is a given graph such that 

there is an edge Eei  . iG  is to be the subgraph 

obtained from G  by deleting )\=(, ii eGiGe 
. 

If ),(= yxei  such that yinVx, , then edge 

contraction consists of merging vertices x  and y  

in one single vertex. We denote iG*  to represent 

the subgraph obtained from G  by contracting ie . 

When edge ie  fails, the network behavior is 

equivalent to iG ; and when functions, the 

network behavior is equivalent to iG8 . According 

to this decomposition the following result is 

emerged and could be applied recursively:  

);(.);(.=);( * ikiikik GpRqGpRpGpR   

if we consider ie  and je  as two edges of E  then 

jiG *
 means subgraph obtained by contracting ie  

and deleting je . Figure 4 shows how this idea 

works. 

4. Employing BDD in encoding and 

evaluation 
We can learn from the ITE() operation on BDDs 

that although in its primitive form it is 

exponential, by embedding the idea of tabulation, 

its complexity has been reduced to quadratic. 

When we look at the algorithm of evaluating 

network reliability based on reducing the graph 

representing the network by removing some of its 

components (decompose the problem into two 

sub-problems) we can realize that the same 

technique and also be employed for this problem 

to gain similar benefits. In this section, we 

compute network reliability by taking advantage 

of the BDD data structure. 

The mystery of BDD is merging equivalent 

subfunctions of a Boolean formula to get compact 

representation of the entire formula. All main 

operations on BDD, such as the ITE() function, 

perform this kind of merging in a recursive 

manner and in a systematic way to get the most 

benefits of it, while preserving the canonicity of 

representation. In has been shown that the 

recursive network reliability relation in BDD can 
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be formulated as: 

:][1 mi   1)=(=);( fPrGpRk
 

1)=(.1)=(.=);(
0=1= i

Xi
i

Xik fPrqfPrpGpR   

We obtain values of 
0=i

Xf  and 
1=i

Xf  recursively 

untill it reaches the sink nodes. The probability is 

stored in each internal node. We may use the 

CUDD package to implement the corresponding 

algorithm and operations. 

 

Figure 4: Network decomposition based on edge 

deletion/contraction (Lucet and Limnios). 
 

4.1. Implementation in the CUDD Package 
In this section, we introduce the CUDD package, 

which is known to be the best open source 

package for manipulating the BDD and its 

variants. Content of this subsection is prepared 

very briefly from its help manual [16]. 

The CUDD package provides functions to 

manipulate Binary Decision Diagram (BDD), 

Algebraic Decision Diagram (ADD), and Zero-

suppressed Binary Decision Diagram (ZDD). 

BDDs are used to represent switching functions; 

ADDs are used to represent function from n{0,1}  

to an arbitrary set. ZDDs represent switching 

functions like BDDs; however, they are more 

efficient than BDDs when the functions to be 

represented are characteristic functions of cube 

sets, or in general, when the ON-Set of the 

function to be represented is sparse. They are 

inferior to BDDs in other cases. 

The CUDD package can be used in three ways:   

• As a black box. The application 

program that needs to manipulate 

decision diagrams only uses the 

exported functions of the package. 

The rich set of functions included in 

the CUDD package allows many 

applications to be written in this 

way. An application written in terms 

of the exported functions of the 

package needs not concern itself 

with the details of variable 

reordering, which may take place 

behind the scenes.  

• As a clear box. When writing a 

sophisticated application based on 

decision diagrams, efficiency often 

dictates that some functions be 

implemented as direct recursive 

manipulation of the diagrams, 

instead of being written in terms of 

existing primitive functions.  

• Through an interface. Object oriented 

languages like C++ can free the 

programmer from the burden of 

memory management. A C++ 

interface is included in the 

distribution of CUDD. It 

automatically frees decision 

diagrams that are no longer used by 

the application. Almost all the 

functionality provided by the CUDD 

exported functions is available 

through the C++ interface, which is 

especially recommended for fast 

prototyping.  

Figure 5 shows the main procedure in CUDD for 

the algorithm of evaluating the probability of 

network reliability. 

The decomposition shown in Figure 3 can be 

mapped into BDD construction. Its root 

corresponds to the original network graph and in 

each level, one edge is deleted or contracted. 

Children of a node in each level represent sub-

graphs obtained by successive edge deletion or 

edge contractions. 
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float ComputeNetRel( DdNode *DecBDD ) 

    {  

      float Rk;  

 

      if ( DecBDD==CuddOne) return 1;  

      if ( DecBDD==CuddZero) return 0; 

      if ( Rk = Computed(DecBDD) )                      

return(Rk); 

       Pr1 = CaculReliability( 

Cudd_T(DecBDD));  

     Pr0 = CaculReliability( 

Cudd_E(DecBDD)); 

      Rk = (1-q[i]) * Pr1 + q[i] * Pr0;  

      InsertComputed( DecBDD , Rk);  

return(Rk);  

     }  

 
Figure 5. Network reliability evaluation / part of cudd 

code. 

 

5. Conclusion 
Two exact methods for evaluation of network 

reliability were discussed. We saw how by 

inspiration from the ITE() operator in BDD 

construction, an algorithm with lower complexity 

for evaluation of network reliability can be 

obtained. In fact employing a variant of BDD 

called ZDD can lead to even more advantages. 
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