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Abstract

Stockpiling and blending play a major role in maintaining the quantity and quality of the raw materials fed
into processing plants, especially the cement, iron ore and steel making, and coal-fired power generation
industries that usually require a much uniformed feed. Due to the variable nature of such materials, they even
come from the same source and the produced ores or concentrates are seldom homogeneous enough to be
directly fed to the processing plant ore furnaces. Processing plants in iron ore mines need uniform feed
properties in terms of each variable (in this work, iron phosphorous ratio and Fe content in magnetite phase)
grade of ore, and therefore, homogenization of iron ore from different benches of an open pit or ore dumps
has become an essential part of modern mine scheduling. When ore dumps are considered as an ore source,
the final grade of the material leaving the dump to the blending bed cannot be easily determined. This
difficulty contributes to mixing the materials of different grades in a dump. In this work, the ore dump
elements were treated as normally distributed random variables. Then a stochastic programming model was
formulated in an iron ore mine in order to determine the optimum amount of ore dispatched from different
bench levels in open pit and also four ore dumps to a windrow-type blending bed in order to provide a mixed
material of homogenous composition. The chance-constrained programming technique was used to obtain
the equivalent deterministic non-linear programming problem of the primary model. The resulting non-linear
model was then solved using LINGO. The results obtained showed a better feed grade for the processing
plant with a higher probability of grade blending constraint satisfaction.
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1. Introduction

In mining industries, raw material stockpiling homogenization as a part of their process.

reduces the amount of fluctuation of feed quality
characteristics sent to the processing plant and
convert heterogeneous materials into a stable
homogenous product. The raw materials going
from multiple production faces and ore dumps
must be blended to provide the required minimum
quality of ore. It is rarely possible to have an even
quality of mined ore with direct feeding from
mine. Robinson also explained the buffering
function of stockpiles. Stockpiles can operate as
buffers so that previous processes and the
subsequent processes can operate independently
[Robinson]. Therefore, many open-pit or
underground mines require a level of raw material

Commonly, stockpiles are constructed by stackers
and are depleted by reclaimers by slicing across
the pile perpendicular to the direction of layering.
Therefore, multiple layers are simultaneously
reclaimed from the base of a stockpile to its
surface. Achieving the required level of blending
and the efficiency of a stockpile system depend on
[1,2]:

e Stacking method: the blending process
starts with stacking. Four basic stacking
methods are cone shell, chevron, strata, and
windrow.

e Stockpiling parameters such as the
stockpile length, stockpile width, number of
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stockpile layers, size and shape of the slice,
and layer and position of the reclaimer in
relation to the stockpile.
e The equipment properties of the stackers
and reclaimers.
e Raw material characteristics such as bulk
density, particle size, and oxidation.
e Variability of stockpile inputs.
As it is clear, both the quality and quantity of
input materials from different sources and also
their nature of variation affect the quality of
homogenized ore. Usually there are several
sources of raw materials such as open-pit mines,
underground mines, and ore dumps. The mined
materials are either sent to the stockpiles for
homogenization or handled as waste or sent to the
ore dumps for a later re-handling and processing
according to their composition. The blasted block
grade is the weighted average of the blast holes
within the block. Incorporating ore dump in this
model causes difficulty in estimating the final
grade of material leaving the ore dumps to
stockpile. In reality, the final grade of material
leaving the dump becomes a complex function of
the material inside it. Many researchers like
Ramazan and Dimitrakopoulos [3], Senecal and
Dimitrakopoulos [4], and Goodfellow and
Dimitrakopoulos [5] assumed that the materials
within ore dump were mixed homogeneously
before later removal for processing. Bley et al.
supposed that at the beginning of each time period
of scheduling horizon, the ore-metal ratio of the
material leaving the ore dump equaled the
ore-metal ratio in the dump itself [6]. This causes
the non-linearity of some of the equations in the
model. Moreno et al. presented linear models for
the upper and lower approximations of the
non-linear  formulation of the long-term
production scheduling problem considering ore
dumps [7].
In this work, we assumed that the final grade of
material leaving the dump was a random variable
with a normal distribution. Accordingly, a
stochastic optimization model was developed in
an iron ore mine to solve the ore homogenization
problem.

2. Definition of problem

The selected case study was a large open-pit iron
ore mine at the center of I.R. of Iran, which was
exploited using the open-pit mining method. The
mine was supposed to produce 12 million tons of
annual ore feed to beneficiation plant and around
1 million tons of annual lump ore (high Fe content
and low phosphorous). In this mine, the orebody
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was divided into nine categories based on the rock
type and its grade. The high-grade iron ore had a
Fe content of more than 45% and the low-grade
iron ore had an Fe content of 20-45%. The low
phosphorous iron ore type had lower than 0.2% of
phosphorous, and the high phosphorous iron ore
type had more than 0.2% phosphorous. The sulfur
cut-off for separating the high and low sulfur
contents was 0.3%. The mine reserves are
presented at Table 1.

As the ore materials were extracted, they were
either sent to an ore dump for later re-handling
and processing or sent to a 2300 t/h gyratory
crusher for crushing and homogenization on the
blending bed. This dispatching was based upon
their Fe%, P%, and ore type. There were four
separate ore dumps named CF3H (high grade-high
phosphorous magnetite ore), CF3L (high
grade-low phosphorous magnetite ore), CF2 (low
grade magnetite ore), and SOD (low grade-high
grade hematite ore). The blasted ore coming from
the open pit and that dispatched from ore dumps
supplied the crusher feed. The primary crusher
reduced the material size to 300 mm. After
crushing the material, it was transported via a
1256 m conveyer belt to the blending bed. The
four variables Fe (total Fe), P, ratio (Fe/FeO), and
Fem (Fe content in magnetite phase) were
considered as critical variables due to the quality
requirement of the processing plant. The operating
conditions of the processing plant in terms of
critical variables can be seen in Table 2.

In order to determine the ore dump characteristics,
the samples were collected from each dump and
assayed for Fe, P, ratio, and Fem. Table 3 shows
the mean, variance, minimum, maximum, and
median of ore variables in each dump.

There are two stockpile lines for homogenization.
One is stacking, while the other is reclaiming.
Once stockpile reaches its nominated tons, it is
closed-off and is then available to be reclaimed
until empty, while a new similar stockpile begins.
The stacking method of piles is the windrow
method (Figure 1). This stockpile is stacked by
means of many lines of a small volume, and the
main direction of movement of the stacker boom
is parallel to the base area of the stockpile.
Stacking starts in the lowest position of the
hoisting gear at the edge of the stockpile opposite
to the stacker (Figure 2). For stacking a line, the
travel gear travels between two specified final
positions. After the first line has been completely
stacked, the slewing angle is changed by a
specified value and the next line is stacked in the
opposite direction. The whole base area of the
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stockpile is stacked in this way. After the first spaces of the first ones [8]. This is repeated
level has been completed, the boom is lifted to the accordingly until the desired height of the
second level and the next lines are stacked in the stockpile has been completed.

Table 1. Rock types within orebody according to its characteristics.

Rock type Reserve (million tons)

Low phosphorus - low sulfur - non oxidized - high grade iron ore 279
Low phosphorus - low sulfur - oxidized - high grade iron ore 6.3
High phosphorus - low sulfur - non oxidized - high grade iron ore 179.2
High phosphorus - low sulfur - oxidized - high grade iron ore 80.1
Low phosphorus - high sulfur - non oxidized - high grade iron ore 3.8
High phosphorus - High sulfur - non oxidized - high grade iron ore 52.1
High phosphorus - High sulfur - oxidized - high grade iron ore 2.1
Non oxidized - Low grade iron ore 37.4
Oxidized - Low grade iron ore 10

Total 398.9

Table 2. Operating conditions of processing plant.
Fe (%) P (%) Ratio Fem (%)

Lower bound 52 - 35 40

Upper bound 54 1 5 50

Table 3. Results of data analysis from sampling process in four dumps.
Dump Variable Mean Variance Minimum Median Maximum

Fe 50.89 67.14 34.97 53.96 61.63
CF3H Fe/FeO  3.903 1.215 2.402 4.019 7.704
P 0.9839 0.059 0.56 0.953 1.584
Fem 42.63 200.67 23.29 41.37 73.13
Fe 58.58 25.865 41.04 60.575 64.72
CF3L Fe/FeO  3.321 0.943 2.588 3.237 8.904
P 0.9698  0.0489 0.524 0.99 1.689
Fem 58.4 135.67 18.3 59.14 76.02
Fe 49.501  71.316 19.54 49.21 67.66
CF2 Fe/FeO  4.382 5.498 2.241 3.435 15.593
P 09115  0.0766 0.383 0.899 2.093
Fem 42.11 289.67 7.51 41.67 84.41
Fe 56.175  17.448 46.38 56.18 65.51
SOD Fe/FeO  8.324 21.478 2.598 7.782 21.117
P 1.0548  0.0759 0.501 1.008 2.13
Fem 29.29 360.51 6.41 20.79 78.52

Figure 1. Windrow method of stacking.
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Figure 2. Boom movement for first level of stacking in windrow method [8].

As is clear in Figure 1, each stockpile has 21
blocks; the blocks of the first level (numbers 1 to
6) are called the base blocks, whilst the others are
called the main blocks. If all blocks have the same
triangle cross-section, each pile contains 36
blocks (Figure 3). The cross-sectional area of the
base blocks is only half of the main blocks. Each
main block is composed of 7 rows (each sweep of
loading boom makes a row), and each row is
composed of 17 trucks with a carrying capacity of
about 120 tons; as a result, each row must be
about 2000 tons, each base block is about 7500
tons, and each main block is about 15000 tons.
With these values, each pile has a weight of about
270000 tons.
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Figure 3. Section view of stockpile with 36 blocks of
equal cross-section area.

As mentioned earlier, each block of these 36
triangular blocks of the piles comes from different
sources including open-pit levels or ore dumps.
The number of blocks from different sources
should be determined in such a way as:
e The blending specifications regarding both
the quality and the tonnage requirement to
be met.
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e Sending the blasted high grade-low
phosphorous material (Fe > = 60% and
P <= 0.1%) to the blending bed should be
minimized. These materials are only
required to be crushed and sieved, and no
more beneficiation is required.

e Extraction of low-grade and
high-phosphorus  dumps  should be
prioritized.

e Extraction from the nearest dump should be
prioritized.

In the next section, a mathematical optimization
model will be developed to solve the
homogenization problem in this open-pit mine.

3. Mathematical modeling of problem

In this section, at first, the basic linear

programming model for the homogenization
problem is presented. Symbols are introduced as
follow:

1 Ore dump identification number,
i=1,2,...n

] Blasted block identification, j = 1,2,...,m
n Number of ore dumps

m Number of accessible blasted blocks.

Fed, Average grade of iron at the i" dump,

which is a random variable with the expected
values for E(Fed;) and variance of Var(Fed;)

Pd; Average grade of phosphorous at the i"
dump, which is a random variable with the
expected value of E(Pd;) and variance of Var(Pd;)
Rd; Average ratio at the i dump, which is a
random variable with the expected value of E(Rd;)
and variance of Var(Rd;)

Magd; Average grade of Fem at the i™ dump,
which is a random variable with the expected
value of E(Magd;) and variance of Var(Magd;)
Feb;  Average grade of iron at the j™ blasted
block
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Pb,  Average grade of phosphorous at the j"
blasted block

Rb; Average ratio at the j™ blasted block
Magb; Average grade of Fem at the j™ blasted
block

MinFe Minimum acceptable grade of iron ore
MaxFe Maximum acceptable grade of iron ore
MinR Minimum acceptable grade of iron ore
ratio

MaxR Maximum acceptable grade of iron ore
ratio

MinMag Minimum acceptable grade of
Fem

MaxMag Maximum acceptable grade of
Fem

MaxP Maximum acceptable grade of
phosphorus

L Total number of blocks at each pile (in

this study, 36)
TBW; Total weight of the j blasted block

X; Number of blocks dispatching from the i"
dump
Y; Number of blocks dispatching from the ™

blasted block within open pit.

Objective function: Here, we want to maximize
the total weight attributed to the piled blocks in
the stockpile:

Max Z =S WX, + Y WY,

i=1 j=1

(1)

X1, X5, X3, and X, are decision variables related to
the SOD, CF2, CF3H, and CF3L ore dumps,
respectively.

Constraint: The average grade (in terms of Fe,
Fem, P, ratio) of the material sent to the stockpile
has to be more than a lower bound and less than
an upper bound:

iFedl.Xl. +iFeijj

— — 2
=l /=1 < MaxFe @
L
2 Fed X+ FebY, )
= = > MinFe
L
ZMagdiXi + ZMagijj A
= A > MinMag @
L
ZMagdl.Xi + ZMagijj 5
= = < MaxMag ®)

L
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Phosphorous content of feed must be as low as
possible, and therefore, the lower bound for
phosphorous is not considered:

S PdX,+Y PbY,
j=1

= 6
= : < MaxP (©)
L
D Rd.X,+ RbY, @)
= i > MinR
L
D Rd.X,+) RbY, q
= = < MaxR ®

L

The total weigh of the dispatched material from
the j™ blasted block within the open pit should be
equal or less than its weight:

7500xY, <TBW, forj=12,.,m )
The total number of stacked blocks within the
stockpile should be equal to L:

DY XA+, =L (10)

All the variables should be non-negative and
integer:

X.,Y, 20 and Integer (11)

4. Stochastic
homogenization
As mentioned earlier, ore dump grades are not
known with certainty. Only the statistical
information of the random grades is available;
therefore, constraints 2 to 8 contain random
parameters. The main difficulty of such models is
due to the optimal decisions that have to be taken
prior to the observation of random parameters.
There are several methods available to handle the
uncertainty in this problem. The
chance-constrained programming method was
used in this work. This approach ensures that the
probability of meeting a certain constraint is
above a certain level (f). Chance-constrained
programming was originally proposed by
Charnes, Cooper, and Symonds [9] and Charnes
and Cooper [10], and then applied by Charnes and
Cooper [11]. This approach was previously used
in mining industries by many researchers like
Gholamnejad et al. [12], Gangwar [13], and
Kumral [14].

In the following, the chance -constrained
programming approach was applied to handle

formulation of iron ore
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dump grade uncertainty to the proposed integer
model. We began with constraint (2). The generic
way to express such constraints is:

i:FediXi + iFeijj

Pr i=1 j=1
L

< MaxFe | > (12)

The value for B is called the probability level, and
it is chosen by the decision-maker in order to
model the safety requirements. Equation (12)
indicates that constraint (2) has to be satisfied
with the probability of at least B. Let’s define:

S Fed X, +3 Feb,Y,

.- (13)
L

As a result, Equation (12) can be re-written as:

Pr[H < MaxFe]> j (14)

As it is clear, H is the average grade of material
sent to the stockpile, which is a random variable.
It is assumed that the distribution of H can be
approximated by a normal distribution function
with the following mean and variance:

ZE(Fed )X, +ZFeb Y,

B - 3 (15)

L

z Var(Fed, ).(X; Y+ z 2 (X xXk)COV(Fed JFed, )
Var(i)=i=1 i=1i) ik (16)
L

Equation (14) can be re-written by subtracting
E(H) from both sides of Equation (14), and

dividing by /Var(H) , as follows:

H E(H) MaxFe — E(H)

1/Var(H Var(H)

Let’s define H = w

Var(H)
standard normal distribution function with a zero
mean and unit standard deviation. There will be a
value of ng that can then be determined from the
area under normal curve such that:

>p (7

. Therefore, H isa

_ g 1 2
Pr(H <177,) = jg.em(—%)dx:ﬁ (18)

Thus combining Equations (17) and (18) results
in:

MaxFe — E(H [
L()Zn,, = E(H) + 1 /Var(H) < MaxFe  (19)

«fVar(H)

The deterministic equivalent form of constraint
(12) can be achieved by combination of Equations
(15), (16), and (19), as follows:

ZE(Fed )X, +ZFeb Y, +1, ZVar(Fed )X +ZZ (X,X, )-Cov(Fed,,Fed,) < L.MaxFe (20)

j=1 i=l k=1

Similarly, the equivalent form of Equation (3) is:

iE(Fedi).Xi + Zm:FebJ. Y, +n; \/Zn:Var(Fedi).Xf + anzn:(xi X, )-Cov(Fed,,Fed, ) > LMinFe @0

i=1 j=1

where:

77/1

Pr(H <17, ) = j—exp(——)dx 1-p

The value for 1-f is the acceptable risk level for
not satisfying the grade constraint.

i=1 i=l k=1

(22)

The deterministic equivalents of Equations (4) to

(8) can be achieved similarly as follow:

iE(Pdi )X, + ipbj Y, +n, \/iVar(Pdi )X+ Z":Z“:(Xi X, )-Cov(Pd,,Pd,) < L.MaxP (23)

i=1 j=1 i=1 i=l k=1

iE(Rdi).Xi - inj Y, +n, iVar(Rdi).Xf + zn‘i(xi X, ).Cov(Rd,,Rd,) <LMaxR (24)

i=1 j=1 i=1 i=l k=1

m

ZE(Rd )X, + D Rb.Y +n ZVar(Rd)X +ZZ(X X, )-Cov(Rd,,Rd,) > LMinR (25)

i=1 j=1 i=1 i=l k=1
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iE(Magdi )X, + iMa\Lgbj.Yj +1, iVar(Magdi )X+ izn:(Xi X, ).Cov(Magd,,Magd, )

i=l1 j=1 i=l1 i=l k=1 (26)

< L.MaxMag

D E(Magd,).X, + Y Magb .Y, +n; \/Z Var(Magd,).X; + D> (X, X, ).Cov(Magd,, Magd, ) o

i=1 j=1 i=1 i=l k=l

> L.MinMag

5. Solving non-linear model for a solution with the traditional one, we also resolved

homogenization problem the deterministic model assuming mng=0. The

Suppose that in the iron ore mine we have nine corresponding solutions are:

blasted blocks within the open pit. The X;=13, X,=2, X5=0, X,=21, Y =0, Y,=0, Y5=0,

characteristics of these nine blocks and also four Y4=0, Ys=0, Ys=0, Y,=0, Yg=0, Y,=0.

ore dumps can be seen in Table 4. In this case, the probability of constraint

Using the existing data, the non-linear satisfaction is 50% for all grade blending

programming model is developed and then solved constraints. As a result, the proposed model has

using the LINGO software for different values of increased the probability of constraint satisfaction

B. Execution of the program yields the following from 50% to at least 72.5%. Also due to

solutions: considering the uncertainty associated with the ore
X=5, Xo=4, X5=1, X4=3, Y,=0, Y,=3, Y;=4, dump characteristics, the solution forced the

Y+=3,Ys=4, Y¢=0, Y=1, Yg=3, Yo=5. model to decrease the dump re-handling. The

Also the corresponding maximum probabilities average grade of each variable in the stockpile,

for satisfaction of Fe, P, Ratio, and Fem which is obtained using the deterministic and

constraints were 72.5%, 84.1%, 93.3%, and stochastic methods, is shown in Table 5.

90.3%, respectively. In order to the compare this

Table 4. Means of four variables in production sources.
Source Fe Ratio P Fem Decision variable

B4273 5527 397 1.05 535 Y,
B4291 54.63 3.60 1.05 49.15 Y,
B4284 51.05 3.81 0.88 4292 Y;
B4302 49.07 328 093 51.02 Y,
B4308 5397 3.05 099 56.84 Ys
B4310 5854 337 0.87 54091 Ys
B496 52.73 8.79 1 29 Y,
B4319 5582 553 098 49.69 Ys
B4295 5543 348 0.88 50.68 Yo
SOD 54 7.65 093 2455 X
CF2 5048 3.76 0.85 45.10 X,
CF3L 5054 3.08 0.85 58.74 X3
CF3H 5254 324 091 51.03 X4

Table 5. Average grade of each variable in stockpile.
Fe (%) P (%) Ratio Fem (%)
Deterministic model 52.95 0.9139 4.86 41.14
Stochastic model 53.01 0.9275 4.36 45.72

6. Conclusions as a normally distributed random variable. A
Iron ore quality control between mine and stochastic programming model was then presented
processing plant is a complex issue, especially to solve a homogenization and blending problem
when ore dumps are one of the suppliers of the in the case of multiple feed resources containing
feed mill. This is due to the difficulty of correctly ore dumps in an iron ore mine. The stochastic
evaluating the grade of material leaving the ore model was then converted to its equivalent
dumps. In this work, the average grade of ore non-linear model using the chance-constrained
dump materials fed into the stockpile was treated programming approach. By solving the non-linear
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programming model, the amount of ore sent from
each source to the stockpile was determined. In
this model, the probability of satisfying each
constraint was also calculated. Comparison of the
original deterministic model with the stochastic
model shows that the proposed model reduces the
risk of non-satisfaction of grade blending
constraints from 50% to at most 27.5%. As a
results, the stochastic programming model
provides a useful decision tool for homogenizing
problems.
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