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Abstract 

Stockpiling and blending play a major role in maintaining the quantity and quality of the raw materials fed 

into processing plants, especially the cement, iron ore and steel making, and coal-fired power generation 

industries that usually require a much uniformed feed. Due to the variable nature of such materials, they even 

come from the same source and the produced ores or concentrates are seldom homogeneous enough to be 

directly fed to the processing plant ore furnaces. Processing plants in iron ore mines need uniform feed 

properties in terms of each variable (in this work, iron phosphorous ratio and Fe content in magnetite phase) 

grade of ore, and therefore, homogenization of iron ore from different benches of an open pit or ore dumps 

has become an essential part of modern mine scheduling. When ore dumps are considered as an ore source, 

the final grade of the material leaving the dump to the blending bed cannot be easily determined. This 

difficulty contributes to mixing the materials of different grades in a dump. In this work, the ore dump 

elements were treated as normally distributed random variables. Then a stochastic programming model was 

formulated in an iron ore mine in order to determine the optimum amount of ore dispatched from different 

bench levels in open pit and also four ore dumps to a windrow-type blending bed in order to provide a mixed 

material of homogenous composition. The chance-constrained programming technique was used to obtain 

the equivalent deterministic non-linear programming problem of the primary model. The resulting non-linear 

model was then solved using LINGO. The results obtained showed a better feed grade for the processing 

plant with a higher probability of grade blending constraint satisfaction. 

 

Keywords: Stochastic Programming, Iron Ore Mine, Homogenization, Processing Plant. 

1. Introduction 

In mining industries, raw material stockpiling 

reduces the amount of fluctuation of feed quality 

characteristics sent to the processing plant and 

convert heterogeneous materials into a stable 

homogenous product. The raw materials going 

from multiple production faces and ore dumps 

must be blended to provide the required minimum 

quality of ore. It is rarely possible to have an even 

quality of mined ore with direct feeding from 

mine. Robinson also explained the buffering 

function of stockpiles. Stockpiles can operate as 

buffers so that previous processes and the 

subsequent processes can operate independently 

[Robinson]. Therefore, many open-pit or 

underground mines require a level of raw material 

homogenization as a part of their process. 

Commonly, stockpiles are constructed by stackers 

and are depleted by reclaimers by slicing across 

the pile perpendicular to the direction of layering. 

Therefore, multiple layers are simultaneously 

reclaimed from the base of a stockpile to its 

surface. Achieving the required level of blending 

and the efficiency of a stockpile system depend on 

[1, 2]: 

 Stacking method: the blending process 

starts with stacking. Four basic stacking 

methods are cone shell, chevron, strata, and 

windrow. 

 Stockpiling parameters such as the 

stockpile length, stockpile width, number of 
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stockpile layers, size and shape of the slice, 

and layer and position of the reclaimer in 

relation to the stockpile. 

 The equipment properties of the stackers 

and reclaimers. 

 Raw material characteristics such as bulk 

density, particle size, and oxidation. 

 Variability of stockpile inputs. 

As it is clear, both the quality and quantity of 

input materials from different sources and also 

their nature of variation affect the quality of 

homogenized ore. Usually there are several 

sources of raw materials such as open-pit mines, 

underground mines, and ore dumps. The mined 

materials are either sent to the stockpiles for 

homogenization or handled as waste or sent to the 

ore dumps for a later re-handling and processing 

according to their composition. The blasted block 

grade is the weighted average of the blast holes 

within the block. Incorporating ore dump in this 

model causes difficulty in estimating the final 

grade of material leaving the ore dumps to 

stockpile. In reality, the final grade of material 

leaving the dump becomes a complex function of 

the material inside it. Many researchers like 

Ramazan and Dimitrakopoulos [3], Senecal and 

Dimitrakopoulos [4], and Goodfellow and 

Dimitrakopoulos [5] assumed that the materials 

within ore dump were mixed homogeneously 

before later removal for processing. Bley et al. 

supposed that at the beginning of each time period 

of scheduling horizon, the ore-metal ratio of the 

material leaving the ore dump equaled the  

ore-metal ratio in the dump itself [6]. This causes 

the non-linearity of some of the equations in the 

model. Moreno et al. presented linear models for 

the upper and lower approximations of the  

non-linear formulation of the long-term 

production scheduling problem considering ore 

dumps [7]. 

In this work, we assumed that the final grade of 

material leaving the dump was a random variable 

with a normal distribution. Accordingly, a 

stochastic optimization model was developed in 

an iron ore mine to solve the ore homogenization 

problem. 

2. Definition of problem 

The selected case study was a large open-pit iron 

ore mine at the center of I.R. of Iran, which was 

exploited using the open-pit mining method. The 

mine was supposed to produce 12 million tons of 

annual ore feed to beneficiation plant and around 

1 million tons of annual lump ore (high Fe content 

and low phosphorous). In this mine, the orebody 

was divided into nine categories based on the rock 

type and its grade. The high-grade iron ore had a 

Fe content of more than 45% and the low-grade 

iron ore had an Fe content of 20-45%. The low 

phosphorous iron ore type had lower than 0.2% of 

phosphorous, and the high phosphorous iron ore 

type had more than 0.2% phosphorous. The sulfur 

cut-off for separating the high and low sulfur 

contents was 0.3%. The mine reserves are 

presented at Table 1. 

As the ore materials were extracted, they were 

either sent to an ore dump for later re-handling 

and processing or sent to a 2300 t/h gyratory 

crusher for crushing and homogenization on the 

blending bed. This dispatching was based upon 

their Fe%, P%, and ore type. There were four 

separate ore dumps named CF3H (high grade-high 

phosphorous magnetite ore), CF3L (high  

grade-low phosphorous magnetite ore), CF2 (low 

grade magnetite ore), and SOD (low grade-high 

grade hematite ore). The blasted ore coming from 

the open pit and that dispatched from ore dumps 

supplied the crusher feed. The primary crusher 

reduced the material size to 300 mm. After 

crushing the material, it was transported via a 

1256 m conveyer belt to the blending bed. The 

four variables Fe (total Fe), P, ratio (Fe/FeO), and 

Fem (Fe content in magnetite phase) were 

considered as critical variables due to the quality 

requirement of the processing plant. The operating 

conditions of the processing plant in terms of 

critical variables can be seen in Table 2. 

In order to determine the ore dump characteristics, 

the samples were collected from each dump and 

assayed for Fe, P, ratio, and Fem. Table 3 shows 

the mean, variance, minimum, maximum, and 

median of ore variables in each dump. 

There are two stockpile lines for homogenization. 

One is stacking, while the other is reclaiming. 

Once stockpile reaches its nominated tons, it is 

closed-off and is then available to be reclaimed 

until empty, while a new similar stockpile begins. 

The stacking method of piles is the windrow 

method (Figure 1). This stockpile is stacked by 

means of many lines of a small volume, and the 

main direction of movement of the stacker boom 

is parallel to the base area of the stockpile. 

Stacking starts in the lowest position of the 

hoisting gear at the edge of the stockpile opposite 

to the stacker (Figure 2). For stacking a line, the 

travel gear travels between two specified final 

positions. After the first line has been completely 

stacked, the slewing angle is changed by a 

specified value and the next line is stacked in the 

opposite direction. The whole base area of the 
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stockpile is stacked in this way. After the first 

level has been completed, the boom is lifted to the 

second level and the next lines are stacked in the 

spaces of the first ones [8]. This is repeated 

accordingly until the desired height of the 

stockpile has been completed. 
 

Table 1. Rock types within orebody according to its characteristics. 

Rock type Reserve (million tons) 

Low phosphorus - low sulfur - non oxidized - high grade iron ore 27.9 

Low phosphorus - low sulfur - oxidized - high grade iron ore 6.3 

High phosphorus - low sulfur - non oxidized - high grade iron ore 179.2 

High phosphorus - low sulfur - oxidized - high grade iron ore 80.1 

Low phosphorus - high sulfur - non oxidized - high grade iron ore 3.8 

High phosphorus - High sulfur - non oxidized - high grade iron ore 52.1 

High phosphorus - High sulfur - oxidized - high grade iron ore 2.1 

Non oxidized - Low grade iron ore 37.4 

Oxidized - Low grade iron ore 10 

Total 398.9 

 
Table 2. Operating conditions of processing plant. 

 Fe (%) P (%) Ratio Fem (%) 

Lower bound 52 - 3.5 40 

Upper bound 54 1 5 50 

 
Table 3. Results of data analysis from sampling process in four dumps. 

Dump Variable Mean Variance Minimum Median Maximum 

CF3H 

Fe 50.89 67.14 34.97 53.96 61.63 

Fe/FeO 3.903 1.215 2.402 4.019 7.704 

P 0.9839 0.059 0.56 0.953 1.584 

Fem 42.63 200.67 23.29 41.37 73.13 

CF3L 

Fe 58.58 25.865 41.04 60.575 64.72 

Fe/FeO 3.321 0.943 2.588 3.237 8.904 

P 0.9698 0.0489 0.524 0.99 1.689 

Fem 58.4 135.67 18.3 59.14 76.02 

CF2 

Fe 49.501 71.316 19.54 49.21 67.66 

Fe/FeO 4.382 5.498 2.241 3.435 15.593 

P 0.9115 0.0766 0.383 0.899 2.093 

Fem 42.11 289.67 7.51 41.67 84.41 

SOD 

Fe 56.175 17.448 46.38 56.18 65.51 

Fe/FeO 8.324 21.478 2.598 7.782 21.117 

P 1.0548 0.0759 0.501 1.008 2.13 

Fem 29.29 360.51 6.41 20.79 78.52 

 

 
Figure 1. Windrow method of stacking. 
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Figure 2. Boom movement for first level of stacking in windrow method [8]. 

 
As is clear in Figure 1, each stockpile has 21 

blocks; the blocks of the first level (numbers 1 to 

6) are called the base blocks, whilst the others are 

called the main blocks. If all blocks have the same 

triangle cross-section, each pile contains 36 

blocks (Figure 3). The cross-sectional area of the 

base blocks is only half of the main blocks. Each 

main block is composed of 7 rows (each sweep of 

loading boom makes a row), and each row is 

composed of 17 trucks with a carrying capacity of 

about 120 tons; as a result, each row must be 

about 2000 tons, each base block is about 7500 

tons, and each main block is about 15000 tons. 

With these values, each pile has a weight of about 

270000 tons. 

 

 
Figure 3. Section view of stockpile with 36 blocks of 

equal cross-section area. 

 

As mentioned earlier, each block of these 36 

triangular blocks of the piles comes from different 

sources including open-pit levels or ore dumps. 

The number of blocks from different sources 

should be determined in such a way as: 

 The blending specifications regarding both 

the quality and the tonnage requirement to 

be met. 

 Sending the blasted high grade-low 

phosphorous material (Fe > = 60% and  

P < = 0.1%) to the blending bed should be 

minimized. These materials are only 

required to be crushed and sieved, and no 

more beneficiation is required. 

 Extraction of low-grade and  

high-phosphorus dumps should be 

prioritized. 

 Extraction from the nearest dump should be 

prioritized. 

In the next section, a mathematical optimization 

model will be developed to solve the 

homogenization problem in this open-pit mine. 

3. Mathematical modeling of problem 

In this section, at first, the basic linear 

programming model for the homogenization 

problem is presented. Symbols are introduced as 

follow: 

i Ore dump identification number,  

i = 1,2,…,n 

j Blasted block identification, j = 1,2,…,m 

n Number of ore dumps 

m Number of accessible blasted blocks. 

Fedi Average grade of iron at the i
th
 dump, 

which is a random variable with the expected 

values for E(Fedi) and variance of Var(Fedi) 

Pdi Average grade of phosphorous at the i
th
 

dump, which is a random variable with the 

expected value of E(Pdi) and variance of Var(Pdi) 

Rdi Average ratio at the i
th
 dump, which is a 

random variable with the expected value of E(Rdi) 

and variance of Var(Rdi) 

Magdi Average grade of Fem at the i
th
 dump, 

which is a random variable with the expected 

value of E(Magdi) and variance of Var(Magdi) 

Febj Average grade of iron at the j
th
 blasted 

block 
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Pbj Average grade of phosphorous at the j
th
 

blasted block 

Rbj Average ratio at the j
th
 blasted block 

Magbj Average grade of Fem at the j
th
 blasted 

block 

MinFe Minimum acceptable grade of iron ore 

MaxFe Maximum acceptable grade of iron ore 

MinR Minimum acceptable grade of iron ore 

ratio 

MaxR Maximum acceptable grade of iron ore 

ratio 

MinMag Minimum acceptable grade of 

Fem 

MaxMag Maximum acceptable grade of 

Fem 

MaxP Maximum acceptable grade of 

phosphorus 

L Total number of blocks at each pile (in 

this study, 36) 

TBWj   Total weight of the j
th
 blasted block 

Xi Number of blocks dispatching from the i
th
 

dump 

Yj Number of blocks dispatching from the j
th
 

blasted block within open pit. 

Objective function: Here, we want to maximize 

the total weight attributed to the piled blocks in 

the stockpile: 

 
 


n

i

m

j

jii WjYXWZMax
1 1

 (1) 

X1, X2, X3, and X4 are decision variables related to 

the SOD, CF2, CF3H, and CF3L ore dumps, 

respectively. 

Constraint: The average grade (in terms of Fe, 

Fem, P, ratio) of the material sent to the stockpile 

has to be more than a lower bound and less than 

an upper bound: 

MaxFe
L

YFebXFed
m

j

jj

n

i

ii




 11

 

(2) 

MinFe
L

YFebXFed
m

j

jj

n

i

ii




 11

 

(3) 

MinMag
L

YMagbXMagd
m

j

jj

n

i

ii




 11

 

(4) 

MaxMag
L

YMagbXMagd
m

j

jj

n

i

ii




 11

 

(5) 

Phosphorous content of feed must be as low as 

possible, and therefore, the lower bound for 

phosphorous is not considered: 

MaxP
L

YPbXPd
m

j

jj

n

i

ii




 11

 
(6) 

MinR
L

YRbXRd
m

j

jj

n

i

ii




 11

 
(7) 

MaxR
L

YRbXRd
m

j

jj

n

i

ii




 11

 
(8) 

The total weigh of the dispatched material from 

the j
th
 blasted block within the open pit should be 

equal or less than its weight: 

jj TBWY 7500  for j = 1,2,...,m (9) 

The total number of stacked blocks within the 

stockpile should be equal to L: 

LYX ji   (10) 

All the variables should be non-negative and 

integer: 

IntegerandYX ji 0,   (11) 

4. Stochastic formulation of iron ore 

homogenization 

As mentioned earlier, ore dump grades are not 

known with certainty. Only the statistical 

information of the random grades is available; 

therefore, constraints 2 to 8 contain random 

parameters. The main difficulty of such models is 

due to the optimal decisions that have to be taken 

prior to the observation of random parameters. 

There are several methods available to handle the 

uncertainty in this problem. The  

chance-constrained programming method was 

used in this work. This approach ensures that the 

probability of meeting a certain constraint is 

above a certain level (β). Chance-constrained 

programming was originally proposed by 

Charnes, Cooper, and Symonds [9] and Charnes 

and Cooper [10], and then applied by Charnes and 

Cooper [11]. This approach was previously used 

in mining industries by many researchers like 

Gholamnejad et al. [12], Gangwar [13], and 

Kumral [14]. 

In the following, the chance constrained 

programming approach was applied to handle 
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dump grade uncertainty to the proposed integer 

model. We began with constraint (2). The generic 

way to express such constraints is: 

n m

i i j j

i 1 j 1

Fed X Feb Y

Pr MaxFe
L

 



  

 
 
 
 
  

 
 (12) 

The value for β is called the probability level, and 

it is chosen by the decision-maker in order to 

model the safety requirements. Equation (12) 

indicates that constraint (2) has to be satisfied 

with the probability of at least β. Let’s define: 

L

YFebXFed

H

m

j

jj

n

i

ii 





11

 
(13) 

As a result, Equation (12) can be re-written as: 

(14)    MaxFeHPr 

As it is clear, H is the average grade of material 

sent to the stockpile, which is a random variable. 

It is assumed that the distribution of H can be 

approximated by a normal distribution function 

with the following mean and variance: 

L

YFebXFedE

HE

m

j

jj

n

i

ii 





11

)(

)(  
(15) 

 
n n n

2Var(Fed ).(X ) X X .Cov(Fed ,Fed )
i i i k i k

i 1 i 1k 1Var(H)    i k
2L

   
     (16) 

Equation (14) can be re-written by subtracting 

E(H) from both sides of Equation (14), and 

dividing by )(HVar , as follows: 












 




)(

)(

)(

)(
Pr

HVar

HEMaxFe

HVar

HEH
 (17) 

Let’s define 
)(

)(

HVar

HEH
H


 . Therefore, H  is a 

standard normal distribution function with a zero 

mean and unit standard deviation. There will be a 

value of ηβ that can then be determined from the 

area under normal curve such that: 







  dx  )
2

exp(.
2

1
)Pr(

2

 


x
H  (18) 

Thus combining Equations (17) and (18) results 

in: 

MaxFe E(H)
 E(H) Var(H) MaxFe

Var(H)
 


       (19) 

The deterministic equivalent form of constraint 

(12) can be achieved by combination of Equations 

(15), (16), and (19), as follows: 

 
n m n n n

2

i i j j i i i k i k

i 1 j 1 i 1 i 1 k 1

E(Fed ).X Feb .Y Var(Fed ).X X .X .Cov(Fed ,Fed ) L.MaxFe


    

         (20) 

Similarly, the equivalent form of Equation (3) is: 

 
n m n n n

2

i i j j i i i k i k

i 1 j 1 i 1 i 1 k 1

E(Fed ).X Feb .Y Var(Fed ).X X .X .Cov(Fed ,Fed ) L.MinFe


    

         
(21) 

 

where: 







 -1 dx  )
2

exp(.
2

1
)Pr(

2

 





x
H  (22) 

The value for 1-β is the acceptable risk level for 

not satisfying the grade constraint. 

The deterministic equivalents of Equations (4) to 

(8) can be achieved similarly as follow: 

 
n m n n n

2

i i j j i i i k i k

i 1 j 1 i 1 i 1 k 1

E(Pd ).X Pb .Y Var(Pd ).X X .X .Cov(Pd ,Pd ) L.MaxP


    

         (23) 

 
n m n n n

2

i i j j i i i k i k

i 1 j 1 i 1 i 1 k 1

E(Rd ).X Rb .Y Var(Rd ).X X .X .Cov(Rd ,Rd ) L.MaxR


    

         (24) 

 
n m n n n

2

i i j j i i i k i k

i 1 j 1 i 1 i 1 k 1

E(Rd ).X Rb .Y Var(Rd ).X X .X .Cov(Rd ,Rd ) L.MinR


    

         (25) 
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 
n m n n n

2

i i j j i i i k i k

i 1 j 1 i 1 i 1 k 1

E(Magd ).X Magb .Y Var(Magd ).X X .X .Cov(Magd ,Magd )

L.MaxMag



    

   



   
 (26) 

 
n m n n n

2

i i j j i i i k i k

i 1 j 1 i 1 i 1 k 1

E(Magd ).X Magb .Y Var(Magd ).X X .X .Cov(Magd ,Magd )

L.MinMag



    

   



   
 (27) 

 

5. Solving non-linear model for a 

homogenization problem 

Suppose that in the iron ore mine we have nine 

blasted blocks within the open pit. The 

characteristics of these nine blocks and also four 

ore dumps can be seen in Table 4. 

Using the existing data, the non-linear 

programming model is developed and then solved 

using the LINGO software for different values of 

β. Execution of the program yields the following 

solutions: 

X1=5, X2=4, X3=1, X4=3, Y1=0, Y2=3, Y3=4, 

Y4=3, Y5=4, Y6=0, Y7=1, Y8=3, Y9=5. 

Also the corresponding maximum probabilities 

for satisfaction of Fe, P, Ratio, and Fem 

constraints were 72.5%, 84.1%, 93.3%, and 

90.3%, respectively. In order to the compare this 

solution with the traditional one, we also resolved 

the deterministic model assuming ηβ=0. The 

corresponding solutions are: 

X1=13, X2=2, X3=0, X4=21, Y1=0, Y2=0, Y3=0, 

Y4=0, Y5=0, Y6=0, Y7=0, Y8=0, Y9=0. 

In this case, the probability of constraint 

satisfaction is 50% for all grade blending 

constraints. As a result, the proposed model has 

increased the probability of constraint satisfaction 

from 50% to at least 72.5%. Also due to 

considering the uncertainty associated with the ore 

dump characteristics, the solution forced the 

model to decrease the dump re-handling. The 

average grade of each variable in the stockpile, 

which is obtained using the deterministic and 

stochastic methods, is shown in Table 5. 

 
Table 4. Means of four variables in production sources. 

Source Fe Ratio P Fem Decision variable 

B4273 55.27 3.97 1.05 53.5 Y1 

B4291 54.63 3.60 1.05 49.15 Y2 

B4284 51.05 3.81 0.88 42.92 Y3 

B4302 49.07 3.28 0.93 51.02 Y4 

B4308 53.97 3.05 0.99 56.84 Y5 

B4310 58.54 3.37 0.87 54.91 Y6 

B496 52.73 8.79 1 29 Y7 

B4319 55.82 5.53 0.98 49.69 Y8 

B4295 55.43 3.48 0.88 50.68 Y9 

SOD 54 7.65 0.93 24.55 X1 

CF2 50.48 3.76 0.85 45.10 X2 

CF3L 50.54 3.08 0.85 58.74 X3 

CF3H 52.54 3.24 0.91 51.03 X4 

 
Table 5. Average grade of each variable in stockpile. 

 Fe (%) P (%) Ratio Fem (%) 

Deterministic model 52.95 0.9139 4.86 41.14 

Stochastic model 53.01 0.9275 4.36 45.72 

 

6. Conclusions 

Iron ore quality control between mine and 

processing plant is a complex issue, especially 

when ore dumps are one of the suppliers of the 

feed mill. This is due to the difficulty of correctly 

evaluating the grade of material leaving the ore 

dumps. In this work, the average grade of ore 

dump materials fed into the stockpile was treated 

as a normally distributed random variable. A 

stochastic programming model was then presented 

to solve a homogenization and blending problem 

in the case of multiple feed resources containing 

ore dumps in an iron ore mine. The stochastic 

model was then converted to its equivalent  

non-linear model using the chance-constrained 

programming approach. By solving the non-linear 
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programming model, the amount of ore sent from 

each source to the stockpile was determined. In 

this model, the probability of satisfying each 

constraint was also calculated. Comparison of the 

original deterministic model with the stochastic 

model shows that the proposed model reduces the 

risk of non-satisfaction of grade blending 

constraints from 50% to at most 27.5%. As a 

results, the stochastic programming model 

provides a useful decision tool for homogenizing 

problems. 
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 چکیده:

خصوص در صنایعی نظیر سییمان، فیو د   ه های فرآوری، بسازی ماده معدنی نقش مهمی را در کنترل کمیت و کیفیت خوراک ورودی به کارخانهدپوسازی و همگن

خیوراک از منیاب     نیتیمم کند. به خاطر طبیعت متغیر مواد معدنی و لیووم  باشند، بازی میکه نیازمند خوراک یکنواخت می سنگ زغالبرق با سوخت  یها روگاهینو 

هیای فیرآوری در معیادن سینگ     آوری مورد استفاده قرار گیرد. کارخانهدر کارخانه فر ماًیمستقتواند نمی که یطور بهندرت همگن بوده ه مختلف، خوراک تولیدی ب

 نیبنیابرا متغیرهایی نظیر عیار آهن، فسفر، درجه اکسیدگی و درصد آهن در فاز مگنتیت( یکنواخت باشد،  برحسبآهن نیازمند خوراکی هستند که عیار کانسنگ )

دپوهیای کانسینگ بیه     کیه  یزمیان ریوی تولید معدن اسیت.  ی کانسنگ یک بخش ضروری در برنامههای مختلف معدن و دپوهاسازی ماده خام ارسالی از پلههمگن

د. ایین مسیئله ناشیی از اخیتلا      کیر توان عیار کانسنگ ارسالی از دپوها به کارخانه فرآوری را به آسیانی مشیخ    خوراک کانسنگ هستند نمی نیتممعنوان منب  

عیار کانسنگ ارسالی از دپوها متغیر تصادفی با توزی  نرمال در نظر گرفته شید. سی د در ییک معیدن      پژوهشر این کانسنگ با عیارهای مختلف در دپوها است. د

های مختلف معیدن و همننیین اهیار دپیوی     ریوی تصادفی توسعه داده شد که هدف آن تعیین میوان بهینه خوراک ارسالی از پلهروباز سنگ آهن یک مدل برنامه

بیا شیاند میدل معیادل      توأمریوی خوراک همگن برای کارخانه فرآوری است. س د با استفاده از برنامه نیتمم منظور  به  کارخانه فرآوری کانسنگ به سایت اختلا

تیوان  حل شد. نتایج حاصل نشان داد کیه بیا ایین میدل میی      LINGOافوار آورده شد. س د مدل خطی حاصل، توسط نرم دست بهمدل اولیه  یرخطیغقطعی و 

 د.شوهای اختلا  عیار با احتمال با تری برآورده محدودیت که یطور بهکنترل عیار بهتری را برای کارخانه فرآوری انجام داد 

 ، کارخانه فرآوری.یساز همگنریوی تصادفی، معدن سنگ آهن، برنامه کلمات کلیدی:

 

 

 

 


