
 

 

JME 
Journal of Mining & Environment, 
Vol. 9, No. 3, 2018, 691-701. 

DOI: 10.22044/jme.2018.6736.1494 
 

Improvement of coal mine roof rating classification using fuzzy type-2 

 
R. Rafiee

1*
 and A. Azarfar

2 

1. School of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran 
2. Faculty of Electrical and Computer Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran 

 
Received 4 February 2018; received in revised form 7 March 2018; accepted 8 March 2018 

*Corresponding author: raminrafiee@shahroodut.ac.ir (R. Rafiee). 

 

Abstract 

One of the main concerns of an underground coal mining engineer is the safety and stability of the mine. One 

way that the safety and stability can be ensured is to know and understand the coal mine geology and how it 

reacts to the mining process. One technique that has shown a lot of success in the coal mining industry for 

geologic technical evaluation purposes is the coal mine roof rating (CMRR). The CMRR classification is 

based on geotechnical data taken from the immediate roof layers within the mine. Since the uncertainty 

exists in geotechnical data, and CMRR process depends on the expert’s idea implicitly, the final value may 

be inaccurate. In this paper, the fuzzy type 2 is used to overcome this uncertainty. To design the fuzzy 

system for calculating the CMRR, only quantitative variables (UCS, spacing, and persistence) are considered 

as fuzzy inputs. Finally, the scores of CMRR and FCMRR for four units of Riccall mine are compared. 
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1. Introduction 

One of the main goals of a mining engineer is to 

guarantee the safety, stability, and productivity of 

the mine. The stability of the mine opening is of 

major concern because it directly influences both 

the safety and productivity of the entire mining 

system [1]. A mining engineer’s main concern 

regarding mine stability is to reduce and prevent 

roof and rib falls from occurring. The ability of 

the mining engineer to observe and possibly 

predict the changing geology, along with its effect 

on the roof stability, is one of the most useful 

skills to increase mine safety and productivity [2]. 

Over the years, many useful tools have been 

created to help the mine engineer in analyzing and 

interpreting geologic and structural mine features. 

One tool that was developed to specifically 

evaluate the competence of coal mine roof rock is 

the Coal Mine Roof Rating (CMRR) [1, 3-5]. 

Since its inception, CMRR has been used very 

successfully throughout the world in the 

evaluation of the competency of coal mine roof 

rock [4, 5]. The value of CMRR is calculated 

based on four parameters including: the uniaxial 

compressive strength (UCS) of the intact rock, the 

intensity (spacing and persistence) of 

discontinuities such as bedding planes and 

slickensides, the shear strength (cohesion and 

roughness) of discontinuities, and the moisture 

sensitivity of the rock [6]. Many researchers used 

CMRR parameter in their study [7, 4, 8-12]. 

On the other hand, uncertainty plays a critical role 

in geotechnical design projects. In addition to the 

natural variability of geomaterials,  

knowledge-based uncertainty involving testing, 

transformation and modeling errors must also be 

considered to develop an accurate geomechanical 

model [13]. Consequently, several approaches 

have been suggested to deal with uncertainty. The 

fuzzy logic approach has been proposed as an 

objective tool to overcome this uncertainty [14]. 

After introducing the fuzzy method, this method 

have been applied successfully to most rating 

based rock engineering classifications such as 

RMR [15-17], GSI [18, 19], RME [20]. The 

CMRR classification assigns quantifiable values 

to predefined classified parameters of a rock mass. 
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In this classification, assigning a single value 

rather than a range to each parameter is a source 

of uncertainty. Therefore, using a proper 

technique which can simultaneously take both the 

complexity and inherent uncertainty is very 

beneficial. Fuzzy logic is a useful mathematical 

tool for modeling the existing uncertainty and 

complexity [11]. 

Type-1 fuzzy logic has been used successfully in a 

wide range of problems such as control system 

design, decision making, classification, system 

modelling and information retrieval [21-23, 10, 

24-28]. However, type-1 approach can not directly 

model uncertainties and minimize its effects [29]. 

Therefore, existence of uncertainties in most  

real-world applications makes the use of type-1 

fuzzy logic inappropriate in many cases. 

Problems related to modelling uncertainty using 

crisp membership functions of type-1 fuzzy sets 

have been recognized early, and Zadeh [30] 

introduced higher types of fuzzy sets called type-2 

[31, 32]. Type-2 fuzzy sets embed a large number 

of type-1 fuzzy sets to describe variables with a 

detailed description, and can handle numerical 

and linguistic uncertainties because its 

membership function is fuzzy and has a footprint 

of uncertainty (FOU), while type-1 fuzzy sets 

membership function is precise [33]. Many 

researchers used fuzzy type-2 in their studies  

[34-38]. 

In this paper, to overcome these uncertainties, a 

fuzzy type-2 is applied to CMRR classification. 

To design the fuzzy system for calculating the 

CMRR, only quantitative variables are considered 

as fuzzy inputs. The fuzzy system output is then 

added to the score obtained from qualitative 

variables. Finally, the Riccal mine is chosen as a 

case study, and crisp CMRR and FCMRR (fuzzy 

CMRR) are calculated for panel H438 at 214 

metre mark of this mine. 

2. CMRR Method 

The CMRR was developed by the USBM in 1994 

as a means to mechanistically quantify bedded 

coal mine roof rock, and to improve the safety and 

design of U.S. coal mines [1]. This system 

quantitatively describes the geotechnical aspects 

of the mine roof rather than recording a detailed 

lithology. The CMRR has the same format as 

Bieniawski’s RMR [39], summing various 

individual ratings to obtain a final CMRR on a 

scale of 0 to 100. The classification was 

developed to be applicable to all coal measure 

rocks regardless of depositional environment, age, 

rank or geographical location [40]. 

2.1. CMRR Determination 

To determine the CMRR, the mine roof is first 

divided into structural units at least 15cm thick 

[1]. A rating is then determined for each unit 

based primarily on an evaluation of the CMRR 

components which include: 

 Compressive Strength 
One of the critical parameters of the CMRR is the 

compressive strength of each unit. This parameter 

is important because the compressive strength 

determines the ability of the unit to anchor a bolt 

and to allow fractures to form within the unit. 

Laboratory testing is generally considered the 

standard method of determining the UCS [1]. The 

strength rating scale used in the CMRR 

classification is shown in Table 1. 

 
Table 1. Strength rating [1]. 

Strength (MPa) Rating 

>103 30 

55 to 103 22 

21 to 55 15 

7 to 21 10 

<7 5 

 

 Discontinuity Intensity 

The intensity of the discontinuities is determined 

by measuring the spacing and the persistence of 

the similar discontinuities within a unit. The 

spacing is measured by finding the average 

distance between each discontinuity within a 

discontinuity set. The persistence of a 

discontinuity set is the measure of the size of the 

discontinuity set plane in both vertical and 

horizontal direction. A discontinuity set with very 

wide spacing that does not cover much area has 

little consequence to the mine roof, whereas a 

discontinuity set that is either closely spaced or 

covers a wide area can cause severe problems 

regarding roof control. Similar to the roughness 

and cohesion parameters, the intensity of the 

discontinuities can also account for up to 35% of 

the final CMRR [1]. Table 2 shows the bedding 

/discontinuity rating scale for CMRR 

classification. 
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Tbale 2. Spacing- persistence rating [1]. 

Persistence (m) 

Spacing 

(1) (2) (3) (4) (5) 

>1.8 m 0.6 to 1.8 m 20 to 61 cm < 6 to 20 cm < 6 cm 

(1) 0 to 1 35 30 24 17 9 

(2) 1 to 3 32 27 21 15 9 

(3) > 3 30 25 20 13 9 

 

 Moisture Sensitivity 

The moisture sensitivity of the rocks present in the 

mine roof can greatly affect their competence 

when water and/or high humidity is present in the 

mining environment. Although some roof rock 

has little or no reaction to water, some clay stones 

and mud stones react poorly to the presence of 

water. They may swell or lose all competence as a 

roof material. The moisture sensitivity is 

determined through visual estimation along with 

water immersion testing over a 24-hour period, 

and a moisture adjustment to the CMRR is 

assigned accordingly [1]. Table 3 shows the 

moisture sensitivity rating scale for CMRR 

classification. 

 
Tbale 3. Moisture sensitivity rating [1]. 

Moisture Sensitivity Rating 

(1) Not sensitive 0 

(2) Slightly sensitive -3 

(3) Moderately sensitive -10 

(4) Severely sensitive -25 

 

 Shear Strength of Discontinuity 

In order to determine how much a discontinuity 

will affect the strength of the coal mine roof, both 

the cohesion and roughness of the discontinuity 

surface must be found. A low cohesion or a planar 

contact, and a low roughness value of a 

discontinuity surface can greatly reduce the ability 

of the rock to resist lateral movement. The shear 

strength of the discontinuities is so important that 

it may account for up to 35% of the overall 

CMRR [1]. Table 4 shows the Shear Strength 

rating scale for CMRR classification. 

2.1.1. Adjustments Factors 
When all the information is gathered for each unit, 

to obtain the CMRR for the roof as a whole, first, 

each of the unit ratings is multiplied by the 

thickness of that unit. These ratings are then 

summed and then divided by the total thickness to 

produce a thickness weighted rating for the roof. 

Adjustments are then made to the thickness 

weighted rating to account for strong beds, unit 

contacts, groundwater and surcharge [1]. In Figure 

1, the process of CMRR calculation is shown. 

The adjustments value for strong beds, unit 

contacts, groundwater and surcharge are shown in 

Tables 5 to 8. The CMRR can be divided into 3 

classes which are weak (CMRR 0-40), moderate 

(CMRR 40-60) and strong (CMRR 60-100) [1]. 

 
Tbale 4. Cohesion- roughness rating [1]. 

Roughness 

Cohesion 

(1) (2) (3) (4) 

Strong Cohesion Moderate Cohesion Weak Cohesion Slickenside 

(1) Jagged 35 29 24 10 

(2) Wavy 35 27 20 10 

(3) Planar 35 25 16 10 

 

 
Figure 1. Flowchart for the CMRR [6]. 
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Table 5. Strong bed adjustment [1]. 

Thickness of Strong Bed (m) 
Storong Bed Difference 

5-9 10-14 15-19 20-24 25-29 30-34 35-34 >40 

0.3 to 0.6 0 2 4 5 7 8 9 10 

0.6 to 0.9 2 4 7 9 12 14 17 20 

0.9 to 1.2 3 5 10 14 18 21 25 30 

>1.2 4 8 13 18 23 28 34 40 

 
Table 6. Unit contacts adjustment [1]. 

Number of major contact Adjustment 

0 0 

1 to 2 -2 

3 to 4 -4 

>4 -5 

 
Table 7. Groundwater adjustment [1]. 

Condition Adjustment 

Dry 0 

Damp -2 

Light Drip -4 

Heavy Drip -7 

Flowing -10 

 
Table 8. Surcharge adjustment [1]. 

Condition Adjustment 

Upper units approximately equal in strength to bolter interval 0 

Upper units significantly weaker than bolted interval -2 to -5 

 

3. Fuzzy type-2 

Type-2 Fuzzy Sets (FSs) were introduced by 

Zadeh in 1975 [30] as an extension of Type-1 FSs, 

but it gained much more attention recently with 

the several developments proposed by Mendel and 

Karnik [41]. Type-1 FSs introduced an important 

fuzziness degree to create linguistic partitions of a 

crisp domain. Nonetheless, the MFs used to do so 

are themselves crisp since they are totally defined 

without considering any uncertainty on their 

parameters. Type-2 FS overcome this limitation 

by defining a secondary degree of fuzziness, i.e. 

the membership value for each input of a FS is 

itself defined as a FS in the [0,1] domain. For 

better illustration, consider the process of defining 

a concept as a Type-1 FS by polling a group of 

experts. When all responses are collected, it will 

certainly be noticed that the endpoints of the 

membership function will vary from person to 

person. The union of all embedded Type-1 FSs 

eventually will end up in a blurred area, known as 

Footprint of Uncertainty (FOU), that is bounded 

by two MFs, namely the Upper Membership 

Function (UMF) and the Lower Membership 

Function (LMF). Furthermore, each membership 

function given by a person can be assigned a 

variable weight according to the amount of 

confidence associated to its opinion, defining this 

way the secondary degree of fuzziness. For this 

reason, a Type-2 FS representation embeds 

additional degrees of freedom which can better 

handle uncertainties caused by noisy data and 

changing environments as is required for example 

when developing a process’s model. Figure 2 

gives a better overview of the new concepts 

introduced by Type-2 FS. 

However, the additional degree of freedom results 

in increasing the computational complexity. To 

cope with this problem, a simplified model of 

fuzzy type 2 is introduced, known as Interval 

Type-2 Fuzzy Sets (IT2FSs) in which each fuzzy 

set is characterized solely by its lower 

membership function (LMF) and upper 

membership function (UMF). 

The structure of a Type-2 FLS has the same 

components of its Type-1 counterpart, namely: a 

Fuzzifier, a Rule-Base, an Inference Engine and 

ultimately the Output Processor. While in Type-1 

FLSs their final stage resumes to a defuzzification 

procedure, in the Type-2 case, the Output 

Processor embraces an additional stage, so a 

Type-2 FS is firstly converted into an equivalent 

Type-1 FS. This work is performed by a  

Type-Reduction (TR) algorithm. The structure of 

fuzzy type 2 system is depicted in Figure 3 [43]. 
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Figure 2. Type 2 Fuzzy sets. Lower membership function and upper membership function are defined by LMF 

and UMF [42]. 

 

 
Figure 3. The structure of Type 2 Fuzzy Logic Systems (T2FLS) [43]. 

 

The main difference between a Type-1 FLS and a 

Type-2 FLS resides in their inference engine. The 

result of the input and corresponding antecedent 

operations in the ith rule in Type-1 FLS yields a 

crisp number referred as membership degree. In 

an IT2FS the result of this operation is an interval. 

Consider the fuzzy type 2 rule base in the 

following form [43]: 

1 1:      n nR IF x is X  and…. And 

 
    ,          , 

  1,2, , 

n n
I Ix is X THEN y isY

n N
 

(1) 

where N is the number of rules, 
n
iX  (i=1,2,…I), 

are IT2 FSs, I is the number of system inputs and 

,         
n n nY y y is an interval which can be 

introduced as consequent part of Takagi Sugeno 

type fuzzy systems, or the center of output fuzzy 

type 2 membership functions in Mamdani 

systems. 

Given input 
´ ´ ´ ´
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fired by an interval weight introduced as 
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Now, type reduction methods should be 

performed to combine 
´ 

 
 

nF X  and consequents 

part of rules. The center of sets type reducer is 

commonly used for this purpose [43]: 

 
´

´ ,

1

1
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f F X

n n
y Y

Y X y y

n nN

n

nN

n

f y

f  (3) 

Where ly  and ry  are calculated by  

Karnik-Mendel (KM) algorithm in [42] which is 

not discussed more in this paper. Finally, the 

defuzzified output can be determined as [43]: 

2


 r ly y

y  (4) 

In the following section, the fuzzy type-2 CMRR 

calculation system is discussed. 

 

4. Fuzzy type ІІ CMRR calculation 

Since the boundary of different classes of CMRR 

inputs, such as UCS and Spacing, are not crisp, 

and different experts have different ideas about 

the bounds of fuzzified inputs, fuzzy type 2 

system can be very useful in this area. To design 

the fuzzy system for calculating the CMRR, only 

quantitative variables (UCS, Spacing, and 

Persistence) are considered as fuzzy inputs. The 

fuzzy system output is then added to the score 

obtained from qualitative variables (moisture, 

cohesion and roughness) according to Table 3 and 

4. The type-2 FSs introduced for fuzzy system 

inputs are displayed in Figures 4-6. 

The proposed fuzzy system is Takagi-Sugeno 

type, and the consequent part of rules are 

intervals. Considering the number of MFs 

introduced for system input, we have 75 rules 

(5 5 3 75)    which should be determined. The 

rules are designed based on crisp score defined in 

Table 1 and 2. The type-2 Takagi-Sugeno fuzzy 

systems rule base is introduced in Tables 9-11. 

The structure of the proposed fuzzy system is 

displayed in Figure 7. 

 
Figure4. Type 2 fuzzy sets for input variable “UCS”. 

 
Figure 5. Type 2 fuzzy sets for input variable “Spacing”. 
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Figure 6. Type 2 fuzzy sets for input variable “Persistence”. 

 
Table 9. Type 2 Takagi- Sugeno Fuzzy system rule base. Persistence is considered as “low”. 

UCS 
Very Low Low Medium High Very high 

P
er

sisten
ce

 is lo
w

 

Spacing 

Very Low [13 15] [18 20] [23 25] [30 32] [38 40] 

Low [21 23] [26 28] [31 33] [38 40] [46 48] 

Medium [28 30] [33 35] [38 40] [45 47] [53 55] 

High [34 36] [39 41] [44 46] [51 53] [59 61] 

Very high [39 41] [44 46] [49 51] [56 58] [64 66] 

 
Table 10. Type 2 Takagi- Sugeno Fuzzy system rule base. Persistence is considered as “Medium”. 

UCS 
Very Low Low Medium High Very high P

er
sisten

ce
 is 

M
ed

iu
m

 

Spacing 

Very Low [13 15] [18 20] [23 25] [30 32] [38 40] 

Low [19 21] [24 26] [29 31] [36 38] [44 46] 

Medium [25 27] [30 32] [35 37] [42 44] [50 52] 

High [31 33] [36 38] [41 43] [48 50] [56 58] 

Very high [36 38] [41 43] [46 48] [53 55] [61 63] 

 
Table 11. Type 2 Takagi- Sugeno Fuzzy system rule base. Persistence is considered as “High”. 

UCS 
Very Low (5) 

Low 

(10) 
Medium (15) 

High 

(22) 
Very high (30) 

P
er

sisten
ce

 is H
ig

h
 

Spacing 

Very Low [13 15] [18 20] [23 25] [30 32] [38 40] 

Low [17 19] [22 24] [27 29] [34 36] [42 44] 

Medium [24 26] [29 31] [34 36] [41 43] [49 51] 

High [29 31] [34 36] [39 41] [46 48] [54 56] 

Very high [34 36] [39 41] [44 46] [51 53] [59 61] 

 

 
Figure 7. Structure of the proposed type 2 fuzzy system for calculation CMRR. 
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The output of the fuzzy system is the sum of 

scores corresponding to UCS, Spacing and 

Persistence. The final CMRR is calculated by 

adding the score of qualitative variables (Moisture 

and Shear strength of discontinuities) to the fuzzy 

system output. 

5. Application of F-CMRR 

To illustration the FCMMR application, the 

Riccall mine is considered as the case study. 

Riccall mine forms one of the six mines that 

comprise the Selby complex which is situated in 

the Vale of York to north of the town of Selby. 

All the mines in the complex work the Barnsley 

seam which varies between 300 meters’ depth in 

the west of the area to approximately 1000 meters 

at the North Selby, Riccall and Whitemoor mines 

in the east and north of the complex [44]. 

Riccall mine started production in 1988 and by 

1993 was producing coal at the rate of 2.5 million 

tons a year. The depth of cover varies from 600 to 

1100 meters across Riccall's reserve area and the 

thickness of the Bamsley seam varies from 1.9 to 

2.4 meters. Like all mines within the Selby 

complex, coal is extracted using retreat mining 

techniques. Case study information and roof rock 

cores were obtained for a total of twelve localities 

within the gate roads. The usage data are from 

roadway roof of panel H438 at 214 metre mark 

[45]. The summary of the geological and 

geotechnical information and final value of 

CMRR are shown in Table 12. The roof 

stratigraphic of 4 units are shown in Table 13. 

To calculate the CMRR by the proposed method, 

the quantitative variables firstly applied to type 2 

fuzzy system. The presented fuzzy system 

computes the score of three variables UCS, 

Spacing and Persistence. So, the input vector for 4 

units of presented case study will be [41 100 4] 

for unit 1, [48 100 4] for unit 2, [57 100 0.9] for 

unit 3 and [53 100 0.9] for unit 4. The inputs are 

applied to fuzzy system, and the results in 

compare with crisp score of CMRR are presented 

in Table 14. 

 
Table 12. Classification data sheet of panel H438 at 214 metre mark [45]. 

 

Unit Number 1 2 3 4 

Height above seem roof 0.12 to 0.72 0.72 to 1.1 1.1 to 4 4 to 5 

UCS (MPa) 41 48 57 53 

Bedding Properties 

Bed spacing (m) 

Topography 

Roughness (JRC) 

Cohesion 

Parting planes 

0.017 0.031 0.038 0.031 

Planar Planar Planar Planar 

4 4 4 4 

0 0 0 0 

25 28 3 15 

Joint Persistence 
Set 1 (m) 

Set 2 (m) 

4 4 0.9 0.9 

4 4 0.9 0.9 

Joint Roughness 
Set 1 

Set 2 

Slightly Rough Slightly Rough Slightly Rough Slightly Rough 

Slightly Rough Slightly Rough Slightly Rough Slightly Rough 

Average Spacing 

Set 1 (mm) 

Set 2 (mm) 

Set 3 (mm) 

1000 1000 1000 1000 

1000 1000 1000 1000 

1000 1000 1000 1000 

Moisture sensitivity Not Required (Dry) * * * * 

CMRR 50 50 62 55 

 

Table 13. description of roof stratigraphic of 4 units [45]. 

Unit Distance above top of coal seam (m) Description 

1 0.12 to 0.72 
MUDSTONE: grey many parting horizons, occasional smooth 

districted low angle joint 

2 0.72 to 1.1 MUDSTONE: grey, silty occasional low angle joint, 

3 1.1 to 4 MUDSTONE: grey, silty, Fissile parting band at 1.47 to1.49 

4 4 to 5 MUDSTONE: grey, silty, frequent parting planes 
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Table 14. Final score of CMRR and FCMMR. 

Unit number 1 2 3 4 

Fuzzy system input vector 

[UCS Spacing Persistence] 
[41 100 4] [48 100 4] [57 100 0.9] [53 100 0.9] 

Fuzzy system output 40.002 40.05 49.0826 47.76 

Final fuzzy CMRR 50.002 50.05 59.0826 57.76 

FCMRR Classification Moderate Moderate Moderate Moderate 

Crisp CMRR 50 50 62 55 

CMRR Classification Moderate Moderate Strong Moderate 

 

It should be noticed that for units 1 and 2, the 

value of fuzzy CMRR is very close to crisp 

CMRR. This is because the values of inputs are in 

the middle of predetermined classes. For example, 

UCS equal to 41 only belongs to the fuzzy 

“Medium” set with membership value equal to 1. 

It is the same for UCS equal to 48 in unit 2. The 

spacing equal to 100 only activates the “High” set 

and Persistence equal to 4 belongs to “High” set. 

Therefore, one rule is just fired with this input, 

that is, 

 “If UCS is “Medium”, Spacing is “High” and 

Persistence is “High” then fuzzy output is [39 41]. 

The fired weight is also equal to 1, so the system 

output would be equal to 40. By aggregating this 

score with the score of qualitative variable which 

is equal to 10, the final CMRR would be 50 and 

very close to crisp CMRR. The conditions are 

different for the other two units. The values of 

UCS and Persistence are near the boundaries. 

When UCS is 57, the “Medium” set is activated 

with membership value equal to interval [0.1 

0.21] and the “High” set is also activated by 

membership value of [0.44 0.85]. Persistence 

equal to 0.9 is belong to “low” set by interval 

weight of [0.44 0.73] and to “Medium set with 

membership value of [0.16 0.26]. Therefore 4 

rules are fired with different interval weights, 

which results to fuzzy output of 49.826. The 

computation is the same for unit 4. It is worth to 

explain that when UCS is 57, it is arranged at 

beginning of the upper interval class, so the crisp 

value is higher. But, the fuzzy value is decreased 

because it also belongs to lower class with a 

determined weight. For the fourth unit, the 

condition is the reverse. The UCS value is at the 

end of the lower class so the fuzzy CMRR value is 

greater than crisp CMRR value. It can be 

concluded that fuzzy system makes the borders 

softer and smoother. It can be said that the fuzzy 

system has balanced the expert different ideas on 

class boundaries. 

6. Conclusions 

The Coal Mine Roof Rating (CMRR) has been 

developed to quantify the weakness in the rock 

mass, and to apply a strength value which can be 

used for engineering design. In this paper, a type 2 

Takagi-Sugeno fuzzy system is designed to 

calculate the CMRR. The fuzzy system just 

calculates the score of quantitative variables, and 

the qualitative variables score is then added to 

fuzzy value to compute the final CMRR. Since 

different experts have different opinions about the 

boundaries of classes of CMRR effecting 

parameters, fuzzy type-2 system can be very 

useful to this kind of issues. To illustrate the 

FCMMR application, the Riccall mine in UK is 

considered as a case study. The scores of 

FCMMR and CMRR are calculated for 4 units of 

panel H438 at 214 metre mark. In unit 1 and 2, the 

final score of FCMMR (50.002, 50.05) and 

CMRR (50, 50) are the same. In the unit 3 and 4, 

the final score of FCMRR (59.082, 57.76) and 

CMRR (62, 55) are different. In the unit 3, the 

FCMRR value is lower than CMRR value, and in 

unit 4, the value of FCMRR is more that the 

CMRR value. The final results of fuzzy system 

can demonstrate how the fuzzy system smooths 

the boundaries. 
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 :چکیده

توان از ایمنی و پایداری اطمینان حاصل کرد، هایی که میسنگ است. یکی از راهزیرزمینی زغالهای اصلی مهندسان در معادن ایمنی و پایداری یکی از نگرانی

 استخراج صنایع در که هایروش از ها در حین فرآیند معدنکاری است. یکیسنگ و نحوه رفتار لایهشناسی معادن زغالآگاهی و شناخت از خصوصیات زمین

است. این روش بر اساس  (CMRR)سنگ  زغال معدن سقف بندی رتبه است، داشته بزرگی هایموفقیت شناسیینزم فنی ارزیابی برای سنگمعادن زغال

قطعیت  دارای عدم ژئوتکنیکی های داده آنجایی که شود. ازآوری شده، محاسبه میهای سقف بلاواسطه در حین معدنکاری جمعاطلاعات ژئوتکنیکی که از لایه

باشد. در این پژوهش از  نادرست است محاسبه شده ممکن نهایی مقدار دارد، بستگی ایده و نظر کارشناسان به ضمنی به طور CMRRمحاسبه  روند و هستند

تنها متغیرهای کمی )مقاومت  CMRRبرای غلبه بر این عدم قطعیت استفاده شده است. به منظور طراحی سیستم فازی برای محاسبه مقدار  2روش فازی نوع 

برای  FCMRRو  CMRRداری و پایایی درزه( به عنوان پارامترهای ورودی سیستم فازی در نظر گرفته شده است. در نهایت مقدار ره، فاصلهمحو فشاری تک

 چهار بخش از معدن ریکال محاسبه و با هم مقایسه شده است.

 .FCMRRسنگ،  ، ، معادن زغال2، فازی نوع CMRR کلمات کلیدی:

 


