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Abstract 
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the 

importance of their accurate computation. This paper is concerned with computing LPC coefficients using 

evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential 

Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV). In this 

method, evolutionary algorithms try to find the LPC coefficients which can predict the original signal with 

minimum prediction error. To this end, the fitness function is defined as the maximum prediction error in all 

evolutionary algorithms. The coefficients computed by these algorithms are compared to coefficients 

obtained by traditional autocorrelation method in terms of the prediction accuracy. Our results showed that 

coefficients obtained by evolutionary algorithms predict the original signal with less prediction error than 

autocorrelation methods. The maximum prediction error is achieved by autocorrelation method: GA, PSO, 

DE and PSO-DV are 0.35, 0.06, 0.02, 0.07 and 0.001, respectively. This finding shows that the hybrid 

algorithm, PSO-DV, is superior to other algorithms in computing linear prediction coefficients. 

Keywords: Linear prediction coefficients, evolutionary, algorithms, PSO, DE, PSO-DV 

1. Introduction 
Linear predictive coding (LPC) is a very powerful 

method for speech analysis [1, 2]. This method is 

widely used because it is fast and simple and yet 

an effective way of estimating the main 

parameters of speech signals. Linear predictive 

coding gets its name from the fact that it predicts 

the current sample of speech signal, x[n], as a 

linear combination of its past p samples, as 

follow: 
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where ak and en[n] represent the LPC coefficients 

and the estimation error, respectively. The linear 

prediction model described by equation (1) can be 

schematically shown as Figure 1 wherein z
-1

 

indicates the transfer function of a delay system. 

 

Figure 1. Signal estimation using LPC coefficients. 

The prediction error can be written as follow: 
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where ˆ [ ]x n  is the estimated signal. The basic 

approach is to find a set of ak coefficients that 

minimize the mean square prediction error over a 

short time of speech signal. There are several 

traditional methods, such as the covariance 

method, the autocorrelation method, and the 

lattice method to determine the LPC coefficients 

[1-3]. The vast use of Linear Prediction 

Coefficients (LPC) in speech processing systems 
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has intensified the importance of their accurate 

computation. 

Our contribution in this work is to determine LPC 

coefficients using four evolutionary algorithms: 

Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), DE (Differential Evolution) 

and PSO-DV. These algorithms try to find the 

best LPC coefficients which predict the speech 

signal with less prediction error. The LPC 

coefficients obtained from traditional 

autocorrelation method are used here as a 

benchmark to verify whether the proposed 

evolutionary methods can find better coefficients. 

The paper is organized as follows: Next section 

focuses on the evolutionary algorithms include 

GA, PSO, DE and PSO-DV are detailed by the 

proposed method in section 3. The experimental 

results for applying evolutionary algorithms to 

determine optimal LPC coefficients are presented 

and discussed in section 4, and finally the paper is 

concluded in section 5. 

2.Evolutionary algorithms 
The use of evolutionary strategies (ESs) is to 

solve non-linear optimization problems has 

attracted much attention recently. The common 

underlying idea behind all the evolutionary 

algorithms is the same: A population of 

individuals tries to survive under the 

environmental pressure. The fittest individuals 

have the more chance to survive and this yields a 

rise in the fitness of the population. Given a 

fitness function to be maximized (or minimized), 

a set of candidate solutions can randomly be 

created. Based on the fitness function, some of the 

better candidates are chosen to generate the next 

population using various generation operators, 

such as recombination and mutation. 

Recombination is an operator applied to two or 

more selected candidates (the so-called parents) 

and generate one or more new candidates (the 

children). Mutation is applied to one candidate 

and generates one new candidate. Various 

evolutionary algorithms take different strategies to 

upgrade a population in consecutive generations. 

In this section, four evolutionary algorithms, GA, 

PSO, DE and PSO-DV are described. 

2.1.Genetic Algorithm (GA) 
A basic element of the biological genetics is the 

chromosomes. Chromosomes cross over each 

other, and mutate themselves, and a new set of 

chromosomes is generated. Based on the 

requirement, some of the chromosomes survive. 

This is the cycle of one generation in biological 

genetics. The above process is repeated for many 

generations and finally the best set of 

chromosomes based on the requirement are 

available. The Mathematical algorithm equivalent 

to the above behavior used as the optimization 

technique is called as an Artificial Genetic 

Algorithm [4, 5]. GA flowchart is shown in 

Figure 2. 

Figure 2. GA flowchart. 

As can be seen from figure 2, at the step 1 the 

chromosomes are initialized randomly, and then 

GA iteratively examines various sets of 

coefficients generated during the genetic operators 

crossover and mutation [6]. In each iteration, GA 

chooses the qualified chromosomes, which result 

in the minimum estimation error using Roulette 

wheel selection method. This algorithm is detailed 

in [7-9]. The classic crossover and mutation 

operators are schematically shown in Figure 3. 

      
Figure 3. Genetic operators: crossover and mutation. 

Table 1 shows the parameter setup for the GA 

employed here. 

Table 1. Genetic Algorithm (GA) parameters setup. 

Modeling description setting 

Population size 100 

Selection technique Roulette wheel 

Crossover type One point crossover 
Crossover rate 0.9 

Mutation rate 0.001 

Iteration number 100 
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2.2.Particle Swarm Optimization (PSO) 
In PSO, there is a society, wherein each of the 

members named as a particle is considered as a 

possible solution for the available problem. The 

number of particles which is usually chosen below 

100 is named as swarm size. In step 1 the particles 

are initialized randomly at the position xi(0). 

Then, particles are evaluated using a fitness 

function. The best position each particle has been 

so far, and The position of the best particle in the 

society are named pbest (personal best) and gbest 

(global best). Each particle has its own velocity, 

which is updated in each iteration. The velocity 

and position of i-th particle at current iteration 

could be written as [10, 11]: 

1 1

2 2

( 1) [ . ( )

. .( ( ) ( ))]

. .( ( ) ( ))

i i

i i

i

v t v t
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c gbest t x t
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  

  

 
(3) 

and 

)1()()1(  tvtxtx iii
 (4) 

where vi(t) and xi(t) are vectors which denote the 

previous velocity and position of the i-th particle 

in sequence. ζ is called the constriction factor. 

Venter and Sobeiski termed c1 as ‘self confidence’ 

and c2 as ‘swarm confidence’ [4,12].  

Since in this problem each particle represents an 

one possible solution for linear prediction 

coefficients, dimensionality of problem (each 

vector dimension) depends on the number of LPC 
coefficients or estimation degree.  Φ1 and Φ2 stand 

for a uniformly distributed random number in the 

interval (0, 1). There are many suggestions from 

researchers about ζ , c1 and c2. In this study, these 

parameters are determined as [4, 13]: 

22/ | 4 4 |        (5) 

where 

1 1 1 1( )( / )f i Max ic c c t t c    (6) 

and 

2 2 2 2( )( / )f i Max ic c c t t c    (7) 

where c1i=c2f=2.5, c2i=c1f=0.5 and tMax is the 

number of maximum allowable iterations. In this 

study the swarm size is set to 100. 

2.3.Differential Evolution (DE) 
In 1995, Price and Storn proposed a new floating 

point encoded evolutionary algorithm for global 

optimization and named it DE owing to a special 

kind of differential operator invoked to create new 

offspring from parent chromosomes instead of 

classical crossover or mutation [4, 14]. Easy 

methods of implementation and negligible 

parameter tuning made the algorithm quite 

popular very soon. 

Like any other evolutionary algorithm, DE also 

starts with a population of PS D-dimensional 

search variable vectors. We will represent 

subsequent generations in DE by discrete time 

steps like t=0, 1, 2 ...t, t+1 etc. Since the vectors 

are likely to be changed over different generations 

we may adopt the following notation for 

representing the i-th vector of the population at 

the current generation (i.e. at time t=t) as: 

)](),...,(),([)( ,2,1, txtxtxtX Diiii 


 
(8) 

These vectors are referred in literature as 

‘genomes’ or ‘chromosomes’. DE is a very simple 

evolutionary algorithm and works through a 

simple cycle, presented in Figure 3.  

 
Figure 4. DE flowchart. 

 

In step 1 the chromosomes are initialized 

randomly at position )0(ix . Now in each 

generation (or one iteration of the algorithm) to 

change each population member ( )
i

x t , a donor 

vector ( )
i

v t is created. To create ( )
i

v t for i-th 

member, three other parameter vectors (e.g., the 

r1, r2, and r3-th vectors) are chosen in a random 

fashion from the current population. Next, a scalar 

number F scales the difference of any two of the 

three vectors and the scaled difference is added to 

the third one whence we obtain the donor 

vector ( )
i

v t . The process for the, j-th component 

of each vector can be expressed as [15,16]: 

))()(()()( ,3,2,1, tXtXFtXtV jrjrjrji   (9) 

Next, to increase the potential diversity of the 

population, a crossover scheme comes into play. 

The crossover is performed on each of the D 

variables whenever a randomly picked number 

between 0 and 1 is lower the Crossover Rate (CR). 

Then the trial vector forms as: 

)]()...(),([)( ,2,1, tUtUtUtU Diiii 


 (10) 
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CR and F are two control parameters for DE. For 

each trial vector, ( )
i

x t , an offspring vector, ( )
i

U t , 

is created. To keep the population size constant 

over subsequent generations, the next step of the 

algorithm calls for ‘selection’ to determine which 

one of the target vectors and trial vectors will 

survive in the next generation (i.e. at time t = t+1). 

DE actually involves the Darwinian principle of 

‘Survival of the fittest’ in its selection process 

which may be outlined as: 
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where f( ) is the function to be minimized. So, if 

the new trial vector yields a better value of the 

fitness function, it replaces its target in the next 

generation; otherwise, the target vector is retained 

in the population. Hence the population either gets 

better (the fitness function) or remains constant 

but the population never deteriorates. Table 2 

shows the parameter setup for the DE employed 

here. 

Table 2. Differential Evolution (DE) parameters setup. 
Modeling description setting 

Number of genomes 100 

Crossover rate (CR) 0.9 
Scaling factor (F) 0.01 

Iteration number 100 

2.4.PSO-DV 
PSO-DV is a hybrid evolutionary algorithm 

introduces a differential operator (borrowed from 

DE) in the velocity-update scheme of PSO [4, 11]. 

The operator is invoked on the position vectors of 

two randomly chosen particles, not on their 

individual best positions. Further, unlike the PSO 

scheme, a particle is actually shifted to a new 

location only if the new location yields a better 

fitness value, that is,, a selection strategy has been 

incorporated into the swarm dynamics. In the 

proposed algorithm, for each particle i in the 

swarm two other distinct particles, say j and k 

( kji  ) are selected randomly. The difference 

between their positional coordinates is taken as a 

difference vector: 

ijkXX jk 


,  
(13) 

Then the d-th velocity component (1 < d < n) of 

the target particle i is updated as: 


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where CR is the crossover rate, d is the d-th 

component of the difference vector defined 

earlier, and β is a scale factor in [0, 1]. Now, a 

new trial location Tri is created for the particle by 

adding the updated velocity to the previous 

position Xi : 

)1()( 


tVtXrT iii
 (15) 

The particle is placed at this new location only if 

the coordinates of the location yield a better 

fitness value. Thus, if we are seeking the 

minimum of an n-dimensional function ( )f x , 

then the target particle is relocated as follows: 


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Therefore, every time its velocity changes, the 

particle either moves to a better position in the 

search space or sticks to its previous location. The 

current location of the particle is thus the best 

location it has ever found [4]. Table 3 shows the 

parameter setup for the DE employed here. 

Table 3. Differential Evolution (DE) parameters setup. 
Modeling description setting 

Swarm size 100 

Crossover rate (CR) 0.5 

Scaling factor (β) 0. 1 

Iteration number 100 

3.Proposed method 
Designing the individuals and the fitness function 

are two common parts of coding a non-linear 

optimization problem to be solved by ESs. Each 

individual is known as chromosome in GA and a 

particle in PSO should be able to represent a 

possible solution for the available problem. The 

fitness function must be capable to evaluate 

individuals as possible solutions for the 

optimization problem. 

In this study, the problem is to find LPC 

coefficients which can estimate the speech signal 

with less prediction error. Therefore, each set of 

LPC coefficients can be an individual in the ES 

and all individual construct the population. Since 

the main problem is to minimize the prediction 

error, the fitness functions is defined as the 

maximum prediction error as: 

( ) max(| [ ] [ ] |),1f i s n s n i N     (17) 
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Where [ ]s n and [ ]s n indicate the predicted 

signal and original signal, respectively. N is the 

number of individuals presented in the population. 

Minimizing the fitness function during the 

algorithm improves the prediction accuracy. 

Figure 5 represents the diagram of the proposed 

evolutionary algorithm to find the optimal LPC 

coefficients. 

In Figure 5, Ci , 1 8i  represents the ith LPC 

coefficient. In this study, we use 8 LPC 

coefficients to predict the speech signal (order 8 

LPC). 

 
Figure 5. Diagram of the proposed method. 

As can be seen from Figure 5, each individual 
include 8 LPC coefficients, which can be a 
possible solution for the problem. In step 1, 
individuals are initialized randomly. After that, 
the population is upgraded in an evaluation-
selection-regeneration loop. In this loop 
individuals are evaluated using fitness function 
described by equation (17). The best individuals 
are chosen in the selection stage to reconstruct the 
next generation. Finally, next population is 
produced using generation operators. Various 
evolutionary algorithms are usually different in 
the employed selection and generation strategies.  

In this study, we employ four different 
evolutionary algorithms (GA, PSO, DE and PSO-
DV) to find optimal LPC coefficients which can 
estimate the speech signal with less prediction 
error. The results of our experiments are presented 
and discussed in the next section. 

4.Experimental results 
In this section, we compare the proposed 
evolutionary algorithms and traditional 
autocorrelation method by means of the prediction 
error. The first 8 LPC coefficients estimated from 
autocorrelation, GA, PSO, DE and PSO-DV 
algorithms are used to estimate two 20ms frames 
of speech.  
Figures 6 to 15 show the original signals, 
estimated signals and the prediction error curves 
obtained for the two frames using autocorrelation 
method, GA, PSO, DE and PSO-DV algorithms. 
As can be seen from these figures, all of the 
evolutionary algorithms employed to estimate 
signal using LPC coefficients outpoint the 
traditional autocorrelation method in term of 
prediction error. The error reduction rate of these 
algorithms is shown in Figure 16 and 17, 
respectively for the two speech frames. 

 
Figure 6. Autocorrelation method (frame 1). 

 
Figure 7. Autocorrelation method (frame 2). 
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Figure 8. GA (frame 1). 

 
Figure 9. GA (frame 2). 

 
Figure 10. PSO (frame 1). 

 
Figure 11. PSO (frame 2). 

 
Figure 12. DE (frame 1). 

 
Figure 13. DE (frame 2). 

 
Figure.14. PSO-DV (frame 1). 

 
Figure 15. PSO-DV (frame 2). 

Sample 

A
m

p
li

tu
d
e 

Sample 

A
m

p
li

tu
d
e 

Sample 

A
m

p
li

tu
d
e 

Sample 

A
m

p
li

tu
d
e 

Sample 

A
m

p
li

tu
d
e 

Sample 

A
m

p
li

tu
d
e 

Sample 

A
m

p
li

tu
d
e 

Sample 

A
m

p
li

tu
d
e 



Marvi et al./ Journal of AI and Data Mining, Vol.1, No.2, 2013 

 

117 

 

 
Figure 16. Error rate for GA, PSO, DE and PSO-DV 

(frame 1). 

 
Figure.17. Error rate for GA, PSO, DE and PSO-DV 

(frame 2). 

From Figures16 and 17, it can be seen that after 

50 iterations the error rates of the GA, PSO and 

PSO-DV are converged, while DE is not 

converged yet. Also, it could be seen that PSO-

DV outperforms other techniques in term of 

convergence speed and predicted error. It is 

interesting to see that all the evolutionary 

algorithms reached to the error rate lower that 

autocorrelation scheme after just 10 iterations. 

According to Figures 16 and 17, PSO seems to be 

the most efficient method for iteration number 

below 50, while PSO-DV is superior since then. 

Figure 18 shows the minimum prediction error 

obtained using each method. 

As can be seen from Figure 18, the proposed 

PSO-DV is superior to autocorrelation and also 

other evolutionary algorithms. Also, the success 

of evolutionary algorithms in computing efficient 

LPC coefficients which result in minimum 

prediction error encourages the idea of employing 

these algorithms for this problem. 

The LPC coefficients obtained by each method 

are presented in Tables 4 and 5 for first and 

second speech frames, respectively. As can be 

seen from these tables, the computed coefficients 

are by no means similar, but all of them estimate 

the original speech signal properly.  

 
 

Figure 18. minimum prediction error achieved each 

various methods (frame 1 and 2). 

5.Conclusion 
The purpose of the current study was to determine 

the LPC coefficients for speech signal using 

evolutionary algorithms: GA, PSO, DE and PSO-

DV. The  findings in this study suggest that the 

evolutionary algorithms are superior to traditional 

methods, such as Autocorrelation method in terms 

of prediction accuracy. The following conclusions 

can be drawn from the present study.  

First, evolutionary algorithms, such as GA, PSO, 

DE and PSO-DV can predict speech signal more 

accurate than traditional autocorrelation method. 

Second, our experiments show that the hybrid 

algorithm, PSO-DV, which resulted from the 

contribution of PSO and DE, is the fastest 

algorithm and DE is the slowest one. According to 

our experiments, GA, PSO and PSO-DV 

converged after 50 iterations while DE did not 

converge after 100 iterations. 

Moreover, PSO-DV achieved the best results after 

100 iterations. After the PSO-DV, PSO and GA 

were the most powerful methods to estimate the 

speech signal with less prediction error.  

Another flexibility of evolutionary algorithms is 

to find solutions with any desirable criterion. In 

other words, we can limit our results with more 

constrictions, such as stability of the constructed 

LPC filter. This could be realized by designing a 

proper fitness function for the problem. 

Algorithms try to find the fittest solution to the 

function.  In this work the fitness function is 

defined as maximum prediction error, therefore, 

algorithms tried to find LPC coefficients with less 

prediction error.  
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It is clear that for the hardware implementation of 

a signal processing system, the LPC coefficients 

should be quantized and its effect on the 

efficiency of the system would not remain optimal 

after the quantization procedure the coefficients. 

Evolutionary algorithms can be employed to find 

the optimal quantized coefficients. Moreover, 

applying LPC coefficients obtained by 

evolutionary algorithms for speech processing 

applications may improve their efficiency.

Table 4. LPC coefficients obtained by each method for frame 1. 
Method C1 C2 C3 C4 C5 C6 C7 C8 

Autocorrelation 1.4849 -0.8596 0.0345 0.7340 -0.7169 0.3087 0.3699 -0.4936 

GA 0.0389 -0.1377 0.0643 -0.0688 0.1961 -0.1710 0.1506 0.8969 

PSO -0.0212 0.0475 -0.0489 0.0162 0.0369 -0.0602 0.0489 0.9794 
DE -0.0336 0.0425 -0.1215 0.1630 -0.1065 0.0468 0.0562 0.9379 

PSO-DV -0.0008 0.0008 0.0007 -0.0015 0.0015 -0.0011 0.0003 1 

Table 5. LPC coefficients obtained by each method for frame 2. 
Method C1 C2 C3 C4 C5 C6 C7 C8 

Autocorrelation 1.6647 -1.1798 0.5273 0.3132 -0.9179 1.1388 -0.8051 0.1637 

GA -0.1694 0.3606 -0.3501 0.0077 0.3515 -0.5047 0.5034 0.7723 

PSO 0.0020 -0.0066 0.0210 -0.0349 0.0116 0.0176 -0.0253 1.0136 

DE -0.0520 0.0916 -0.1205 0.1200 -0.1426 0.0844 -0.0608 1.0789 

PSO-DV -0.0019 0.0042 -0.0039 -0.0006 0.0042 -0.0049 0.0051 0.9978 

References 
[1] Huang, X., Acero, A. and Hon, H. W. (2001). 

Spoken Language Processing. Upper saddle River. NJn 

And Prentice Hall.  

[2] Rabiner, L. R. and Schafer, R. W. (1978). Digital 

processing of speech signals. Englewood cliffs. NJ, 

Prentice Hall. 

[3] Gopal, E. S. (2007). Algorithm collections for 

digital signal processing applications using matlab. 

Natural institute of Technology, Tiruchi, India. 

[4] Das, S., Abraham, A. and Konar, A. (2007). 

Particle Swarm Optimization and differential Evolution 

Algorithms: Technical analysis, Applications and 

Hybridization perspectives. Dept of Electronics and 

Telecomunications Engineering, Jadavpur University, 

Kolkata, 700032.  

[5] Manoj, V. J. and Elias, E. (2009). Design of 

multiplier-less non uniform filter bank trans 

multiplexer using genetic algorithm. Signal Processing. 

Volume 89, Issue 11. 

[6] Lim, Y. H., Tana, J. and Abramsonb, D. (2012). 

Solving Optimization Problems in Nimrod/OK using a 

Genetic Algorithm. Procedia Computer Science. 9, 

1647 – 1656. 

[7] Xiang , L., Gang, D. and BSTBGA. (2013). A 

hybrid genetic algorithm for constrained multi-

objective optimization problems. Computers & 

Operations Research. 40, 282–302. 

[8] Gen, M., Cheng, R. (2000). Genetic Algorithms and 

Engineering Optimization. vol. 68, Wiley Interscience 

Publication.  

 

 

 

[9] Goldberg, D.E. (1989). Genetic Algorithm in 

search, optimization and machine learning. Addison-

Wesley, Reading, MA. 

[10] Wong, T. C. and Ngan, S. C. (2012). A 

comparison of hybrid genetic algorithm and hybrid 

particle swarm optimization to minimize makespan for 

assembly job shop. Applied Soft Computing. 

[11] Epitropakis, M. G., Plagianakos, V. P. and 

Vrahatis, M. N. (2012). Evolving cognitive and social 

experience in Particle Swarm Optimization through 

Differential Evolution: A hybrid approach. Information 

Sciences. 216, 50–92. 

[12] Upendar, J., Gupta, C. P. and Singh, G.K. (2010). 

Design of two-channel quadrature mirror filter bank 

using particle swarm optimization. Digital Signal 

Processing. Volume 20, Issue 2.  

[13] Khare, A. and Rangnekar, S. (2012). Particle 

swarm optimization: A review, Applied Soft 

Computing . 

[14] Chang, W. D. (2009). Two-dimensional 

fractional-order digital differentiator design by using 

differential evolution algorithm. Digital Signal 

Processing. Volume 19, Issue 4. 

[15] Mohamed, A. W. and Sabry, H. Z. (2012). 

Constrained optimization based on modified 

differential evolution algorithm. Information Sciences. 

194, 171–208. 

[16] Mohamed, A. W., Sabry, H. Z. and Khorshid, M. 

(2012). An alternative differential evolution algorithm 

for global optimization. Journal of Advanced Research. 

3, 149–165. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4W9XDSW-3&_user=3265407&_coverDate=11%2F30%2F2009&_alid=1485077404&_rdoc=6&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5668&_sort=r&_st=4&_docanchor=&_ct=3498&_acct=C000060129&_version=1&_urlVersion=0&_userid=3265407&md5=84d3394bb2fd4030bb50e707c8afa758&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4W9XDSW-3&_user=3265407&_coverDate=11%2F30%2F2009&_alid=1485077404&_rdoc=6&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5668&_sort=r&_st=4&_docanchor=&_ct=3498&_acct=C000060129&_version=1&_urlVersion=0&_userid=3265407&md5=84d3394bb2fd4030bb50e707c8afa758&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V18-4W9XDSW-3&_user=3265407&_coverDate=11%2F30%2F2009&_alid=1485077404&_rdoc=6&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5668&_sort=r&_st=4&_docanchor=&_ct=3498&_acct=C000060129&_version=1&_urlVersion=0&_userid=3265407&md5=84d3394bb2fd4030bb50e707c8afa758&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDJ-4WH2M19-1&_user=3265407&_coverDate=03%2F31%2F2010&_alid=1484983420&_rdoc=36&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6768&_sort=r&_st=4&_docanchor=&_ct=3878&_acct=C000060129&_version=1&_urlVersion=0&_userid=3265407&md5=75261cb639651287f788fb823023fa39&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDJ-4WH2M19-1&_user=3265407&_coverDate=03%2F31%2F2010&_alid=1484983420&_rdoc=36&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6768&_sort=r&_st=4&_docanchor=&_ct=3878&_acct=C000060129&_version=1&_urlVersion=0&_userid=3265407&md5=75261cb639651287f788fb823023fa39&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDJ-4VDS8F9-1&_user=3265407&_coverDate=07%2F31%2F2009&_alid=1485077404&_rdoc=8&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6768&_sort=r&_st=4&_docanchor=&_ct=3498&_acct=C000060129&_version=1&_urlVersion=0&_userid=3265407&md5=be6df596293dfcea6b63d9472c3ec922&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDJ-4VDS8F9-1&_user=3265407&_coverDate=07%2F31%2F2009&_alid=1485077404&_rdoc=8&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6768&_sort=r&_st=4&_docanchor=&_ct=3498&_acct=C000060129&_version=1&_urlVersion=0&_userid=3265407&md5=be6df596293dfcea6b63d9472c3ec922&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDJ-4VDS8F9-1&_user=3265407&_coverDate=07%2F31%2F2009&_alid=1485077404&_rdoc=8&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=6768&_sort=r&_st=4&_docanchor=&_ct=3498&_acct=C000060129&_version=1&_urlVersion=0&_userid=3265407&md5=be6df596293dfcea6b63d9472c3ec922&searchtype=a

