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Abstract 

Dependency parser is one of the most important fundamental tools in the natural language processing, which 

extracts the structure of sentences and determines the relations between words based on the grammar 

dependency. The dependency parser is proper for free-order languages such as Persian. In this work, data-

driven dependency parser is developed with the help of phrase-structure parser for Persian. The defined feature 

space in each parser is one of the important factors involved in its success. Our goal is to generate and extract 

appropriate features to dependency parsing of Persian sentences. In order to achieve this goal, new semantic 

and syntactic features are defined and added to the MSTParser by the stacking method. Semantic features are 

obtained using word clustering algorithms based on syntagmatic analysis, and the syntactic features are 

obtained using the Persian phrase-structure parser, and are used as bit-string. Experiments are conducted on 

the Persian Dependency Treebank (PerDT) and the Uppsala Persian Dependency Treebank (UPDT). The 

results obtained indicate that the definition of new features improves the performance of the dependency parser 

for Persian. The achieved unlabeled attachment scores for PerDT and UPDT are 89.17% and 88.96%, 

respectively. 
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1. Introduction 

Parsing forms the syntactic layer of NLP layers. 

The purpose of this processing layer is to consider 

a sentence as a linguistic unit. In other words, the 

sentence grammatical analysis is done in this layer. 

Breaking a sentence into its components is done by 

the parser. The aim of this analysis is to determine 

the grammatical role of words in the sentence. In 

order to determine the syntax structures, we need 

the grammar and parsing techniques (sentence 

analysis method for specifying its syntax structure 

based on linguistic grammar) [1]. 

In general, parsers are divided into two categories: 

“phrase-structure parsers and dependency parsers” 

[2].  

Phrase-Structure parsers: Phrase-structure 

parsers do the sentence structure extraction due to 

structural grammar (phrasal structure grammar) 

[3]. Structural grammars are used to describe 

formal languages.  

The phrase-structure parsers are divided into two 

categories [4]: 

1- Rule-based parser: Sentences are broken 

down on the basis of the pre-defined rules. 

Procurement of rules manually is difficult 

and time-consuming; it is impossible to 

provide comprehensive rules that have a 

high coverage power. This type of analysis 

is not efficient due to the complexity of a 

natural language, and will be failed in the 

face of statements outside the defined 

rules.  

2- Statistical-based parser: It tries to extract 

grammar automatically using statistical 

techniques and linguistic corpora. The 

problem of this method is the requirement 

for annotated treebank. 

Dependency parsers: Dependency parser 

extracts the sentence structure due to 

dependency grammar. Dependency grammar 

is based upon the syntactic and conceptual 

relationships between words [5]. Dependency 

parsing analyzes the relationships between 

words, and therefore, can be useful in resolving  
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structural ambiguity. For example, the sentence “I 

saw Zahra with Fatima.” has a phrase-structure 

tree (Figure 1-a) and two dependency trees 

(Figure 1-b); depending on the dependency 

parsing, the main meaning of the sentence can be 

obtained.   

 
                           a-Phrase-structure tree.   

 

 
b- Dependency trees. 

Figure 1. An example of parse tree. 

 

Dependency parsers are divided into two 

categories: 

1- Data-Driven: The machine learning 

method is used in the data-driven methods, 

and it is assumed that the input data has a 

correct syntax structure. The data-driven 

method is divided into two categories: 

transition-based and graph-based. In the 

transition-based approach, the automata 

are defined, and next, predicate is 

predicted due to a predicate history [6]. In 

a graph-based approach, a space of 

dependency graph is created, and the 

scoring to them is done and the graph with 

the highest score will be selected [7]. 

2- Grammar-Driven: In the grammar-driven 

approach, a number of grammars are 

defined, and the structures that are out-of-

grammar are assumed grammatically 

incorrect. The grammar-driven method is 

divided into two categories as well: 

“context-free and constraint-based” [7]. 

The tree that is obtained from dependency parsing 

can be projective (that has disjunct edges), non-

projective (that has cross edges), and well-made 

(that has root, unique labels, acyclic, connected, 

and projective). In a projective tree, a word along 

with its dependents are seen as a substring of the 

sentence [8]. In Persian, the projective trees cover 

more sentences due to the free word-ordering 

property [9]. Also phrase-based approaches are not 

efficient in this language (due to the free word-

ordering property), and research works in this area 

have been conducted to dependency-based parsing. 

The research works are very limited, and the 

proposed methods are limited to grammar-based 

approaches. In addition, some studies have focused 

on adapting the existing tools with the Persian 

language. The focus of this research work was to 

develop a graph-based dependency parser for the 

Persian. 

One of the simplest ways to improve systems is to 

combine different systems. The improvement of 

data-driven dependency parsers is also possible by 

combining other parsers with the voting and 

stacking methods [10]. The voting method for 

dependency parsers was presented by Zeman and 

Zabokrtsky [11] for the first time. In this method, 

the input sentence is decomposed by independent 

parsers (at least three parsers), and then for the final 

analysis, the output of the parsers is combined 

based on the majority vote. In the stacking method, 

the output of one or more parsers is used as the 

input of the parser in question [10]. In other words, 

the output of other parsers is used to generate new 

features in the desired parser. In languages such as 

English and Czech, the voting and stacking 

methods have been used to improve the 

performance of parsers such as [12-14] but there 

are no research works in this regard in the Persian. 

In this work, we focused on improving the 

MSTParser [15] for Persian with the stacking 

method. Given the specific properties of the 

Persian, MSTParser is suitable for this language 

because in Persian: 

1- Due to the SOV property, the head and the 

S 

SS VP NP 
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dependent are usually spaced far from each 

other, and MSTParser is appropriate to 

determine long-distance relationships due 

to the creation of a sentence graph. 

2- Due to the free word-order property, most 

Persian sentences produce non-projective 

trees, and MSTParser is able to produce 

non-projective trees. 

In order to achieve our goal, firstly, the semantic 

features were defined by the Brown Clustering 

Algorithm (BCA), and then using the stacking 

method, we defined the syntactic features from the 

designed phrase-structure parser output for 

Persian. 

The rest of the paper is organized as what follows. 

In the second part, the conducted research works in 

the field of Persian parsers are discussed. In the 

third section, after a brief summary of MSTParser, 

our semantic and syntactic features are presented. 

The fourth section includes experiments and 

results. Finally, in the fifth section, a summary of 

the paper is presented with some future works. 

 

2. Related works 

2.1. Phrase-structure parser 

The parser presented by Estiri et al. [16] is the first 

Persian phrase-structure parser, and has six stages. 

In the first step, the required tags are defined with 

accurate signs and a hierarchical order. the tag 

collection is started from groups that form 

sentences; and includes five groups: nominal, 

verbal, adverbial, adjectival, and preposition; and 

according to the type of group and the tags of each 

word that forms the group, the tags that belong to 

the same group are developed with more details. 

The number of tags contains 24 labels. The second 

stage involves pre-processing (unification, remove 

the short space), sentence segmentation (using 

punctuation, Persian language grammar, and the 

sentence initial word) and identifying words (using 

space and punctuation). In the third stage, the 

words initial tag is identified by searching in the 

prepared database and defined rules. The fourth 

step identifies the features of its verbs. For this 

purpose, the verb is identified by the probability of 

presence in a specific situation, and then the word 

probability to be a verb is done with regular 

expressions; if it matches, the verb group is 

constructed, and the head is considered as a verb. 

By considering the structure of the verb in Persian 

and using a dictionary, the features including tense, 

person, mood (imperative, indicative, subjunctive), 

and voice (active or passive) are extracted for 

verbs. In the fifth step, the noun features such as 

common or proper, definite or indefinite, and 

singular or plural are extracted. To do so, first, the 

stem of nouns in found, and then the features are 

extracted using a dictionary and considering the 

added affixes. In the last step, a generic label is 

assigned to multiple words or same label by 

combining tags and forming groups. Finally, the 

sentence parse tree is obtained by assigning labels 

to groups and words. Due to the lack of similar 

parser to Persian, the comparison and evaluation 

has not been done. One of the disadvantage of the 

parser can be the inability to deal with unstructured 

sentences and non-grammatical. 

 

2.2. Dependency parser 

Seraji et al. [17] have proposed a parser named 

“ParsPer”. At first, they found the best tag sets for 

POS tagging and depency relations using 

MaltParser [18], and then operated their tests with 

other parsers such as MSTParser [15], MateParser 

[19, 20], and TurboParser [21]; and they selected 

MateParser due to its good results for Persian. To 

evaluate ParsPer, first, parser was tested with 

Uppsala Treebank corpus, and then for the final 

results, parser was tested on the other corpus. 

MaltParser have used MaltOptimizer [22] to do the 

optimization processing. Based on their findings, 

graph-based parsers showed a better performance 

than transition-based parsers. The results obtained 

for the labeled and unlabeled attachment score was 

reported to be 82/58% and 86/69%. 

Falavarjani and Ghassem-Sani [9] have tested two 

state-of-the-art parsers, “MaltParser (transition- 

based), and MSTParser (graph-based)” for Persian. 

In Persian, due to the point that non-projective trees 

do not cover more sentences, they tested two 

parsers to find the appropriate parser for projective 

and non-projective sentences. To reach this goal, 

the authors divided the sentences in the corpus into 

two categories: “projective sentences and non-

projective sentences”, and used POS tags that were 

from the Treebank corpus as features. To apply the 

MaltParser and Arc-eager algorithms, and to apply 

MSTParser, the second-order and non-projective 

settings were selected. The authors introduced 

MSTParser appropriate for Persian during the tests. 

The accuracy obtained for projective sentences by 

MaltParser was 87%; by MSTParser, it was 84%; 

for non-projective sentences by MaltParser, it was 

73%; and by MSParser, it was 77%. 

Seraji et at. [23] have tested the two state-of-the-art 

parsers “MSTParser” and “MaltParser” using the 

UPEDT corpus for Persian. MSTParser was 

performed with four different settings: first-order 

projective, second-order projective, first-order-

non-projective, and second-order-non-projective. 
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MaltParser was performed with different 

algorithms, and features such as Nivre algorithms 

and Covington algorithms, gold standard POS 

features, and Auto generated POS tags, and the 

MaltOptimizer tool were used for optimization. 

The Nivre-eager algorithm was selected with the 

gold standard POS features for MaltParser due to 

tests and second-order feature, and projective was 

selected for MSTParser. During the experiments, 

MaltParser yielded better results. 

 

3. Features 

3.1. Default model features 

The graph-based dependency parsing consists of 

three main stages (definition of sentence space, 

learning, and parsing). In the first step, a space of 

candidate dependency directed graphs is created 

for the sentence. In the learning phase, a model for 

scoring is determined for the dependency graph of 

the sentence. The parsing stage seeks to find the 

highest-score dependency graph (to resolve the 

ambiguity). There are different algorithms for 

graph-based parsing, and the most notable one is 

the arc-factored model. In the arc-factored model, 

the dependency graph is divided into several sub-

graphs, P1, P2, ..., Pn; each sub-graph is individually 

scored, and the score of the graph is considered as 

the total score of the sub-graphs. In this model, 

each edge is represented by a feature vector. At the 

learning stage, each feature is weighted. Scoring to 

an edge in a weighted sum of all its features is done, 

(1). 

nn11 wf...wf)d,h(S   (1) 

 
w is the weight vector, which is calculated using 

the machine learning algorithms from the training 

samples (pairs of sentences and the corresponding 

dependency trees). 

The next step is to find the highest score graph. 

MSTParser converts the issue of finding the 

highest score graph into a Discriminative 

Maximum Spanning Tree. If for the sentence  

)x,...,x,x(X
n21

  )G(T
X is the spanning tree set 

of X
G , the MSTParser target is to find the 

spanning tree 
'G  with the highest weights, (2). 


 '

X
'

Gr)G(TG
)p,X(f.wmaxarg)X(ParseTree  (2) 

 

w is the weight vector, and )p,X(f is the feature 

vector for part p . 

The default sfeature set that has been used in 

MSTParser is summarized as follows, used as uni-

gram and bi-gram: 

 POS tags of the words Hi and Dj and the 

label LK 

 POS tags of words surrounding and 

between Hi and Dj 

 Number of words between Hi and Dj and 

their orientation 

 Label features 

3.2. Semantic features 

At this stage, BCA has been used to create a 

semantic feature set. This algorithm examines the 

words semantically, and believes that similar 

words appear in the same contexts [24]. In other 

words, similar words have the same distribution in 

relation to their previous and next words. Koo et at. 

[25] have also used BCA to create semantic 

features. They believed that finding the suitable 

number of bits had a huge effect on parsing.  

Therefore, the main purpose of this stage is to find 

the number of bits that can show the semantic 

dependency of the Persian words.  

The input of the algorithm is a large corpus of 

words, and its output is a partition of words in the 

hierarchical clusters. The algorithm, at first, puts 

each one of the words into separate clusters, and 

then combines the two clusters that have the 

maximum mutual information, (3). The output of 

the algorithm is a binary tree whose leaves show 

the words, and the root-to-leaf path represents the 

bit-string of words. The words that are 

semantically similar will have the same left bits 

[24]. 
 

 







)w(entropy
)c(P)c(P

)c,c(P
log)c,c(P)C(Quality
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(3

) 

 

Based upon the experiments conducted with 

multiple settings, the number of bits is considered 

to be 5-11. 

 

3.3. Syntactic features 

The information contained in the phrase-structure 

parser represents the structural information of the 

sentences, so this information can be injected as a 

structural feature to the dependency parser. We 

have constructed a feature vector for each word to 

extract the syntactic features using the phrase-

structure trees, and we have convert the extracted 

features into a bit-string for injection into 

dependency parser. To create a bit-string of words, 

words are required to be clustered, so in the second 

step, the clustering of the words has been done. Our 
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proposed method consists of three steps whose 

details are as follow: 

Generating syntactic feature vector: The word 

parse tree path contains its structural information. 

In order to construct a syntactic word feature 

vector, we have used the modified method 

presented in [26]. In their proposed method, the 

path of the parse tree for verbs was used to 

semantic role labeling. In this work, the parsing 

tree path for all words has been expanded with 

some changes. To construct the syntactic feature 

vector of the word “w”, all sentences containing the 

“w” are identified, and their parse tree is created by 

[16]. Then all paths that start with the “w” and end 

up with words that are associated with “w” (head 

and dependent of “w”) are stored. This reduces the 

feature vector dimensions of the “w”. The syntactic 

feature vector dimension of the “w” is equal to the 

number of word’s unique paths, and the amount of 

each dimension is obtained by dividing the number 

of unique path repetition into the total number of 

sentences. For example, the paths for the “Zahra” 

in figure 1-a can be saved as follows:  

<NP, VP, V> <NP, P> <NP, VP, PP, P> 

 

Clustering: At this point, the words are clustered 

using the K-means algorithm. The similarity of 

words is structurally calculated using the cosine 

similarity between pairs of words.  

Word bits representation: To use the created 

syntactic feature, we display them in bits. The 

presented algorithm in [27] is used for this purpose. 

This algorithm has received clusters and creates a 

binary tree of words, and to each branch of the left 

and right is assigned a zero bit or one. Moving from 

the root to the leave shows the word bits of words. 

In this algorithm, the words that are structurally 

similar are placed in close places. 

Our semantic and syntactic feature templates are 

represented in table 1. In the second dependency 

tree in figure 1-b, some features for (saw and 

Zahra) are as: 

H-word: saw 

D-word: Zahra 

H-sem, H-syn, D-sem, D-syn: bit sting 

H-sem+1, H-syn+1: bit sting to the right of head 

H-sem-1, H-syn-1: bit sting to the left of head 

D-sem+1, D-syn+1: bit sting to the right of 

dependent 

D-sem-1, D-syn-1: bit sting to the left of dependent 

Wk-word: with 

Wk -sem, Wk -syn: bit sting  

B-sem, B-syn: bit sting of word between H and D 

 

 

4. Experiments and results 

4.1. Corpus 

For the experiments, the Persian Dependency 

Treebank (PerDT) [28] and the Uppsala Persian 

Dependency Treebank (UPDT) [29] have been 

used. PerDT is the first Persian dependency 

Treebank [30],  and includes about 30,000 

sentences annotated with syntactic roles and 

morpho-syntactic features and the corresponding 

dependency tree. There are 44 dependency 

relations, 17 types of coarse-grained, and 32 types 

of fine-grained POS tags. 

In UPDT, the syntactic relation of words is 

determined by the dependency grammar. This 

corpus contains 6000 sentences from the Uppsala 

Persian Corpus (UPC-a modified version of the 

BijanKhan corpus [31]) with a corresponding 

dependency tree. In this corpus, there are 48 types 

of dependency relations, 15 types of coarse-

grained, and 32 types of fine-grained POS tags. 

Both corpora are prepared based on the CoNll 

template and the Stanford Typed. More 

information about the corpora used is given in table 

2. 

Table 1. List of semantic and syntactic features for head 

word (H) and its dependent (D), words between H and D 

(B) and sibling words of D between H and D (wk). 

Syntactic Feature Semantic Feature # 

H-word, H-syn H-word, H-sem 1 

D-word, D-syn D-word, D-sem 2 

H-syn H-sem 3 

D-syn D-sem 4 

H-word, H-syn, D-word, D-

syn 

H-word, H-sem, D-word, 

D-sem 

5 

H-syn, D-word, D-syn H-sem, D-word, D-sem 6 

H-word, D-word, D-syn H-word, D-word, D-sem 7 

H-word, H-syn, D-syn H-word, H-sem, D-sem 8 

H-word, H-syn, D-word H-word, H-sem, D-word 9 

H-word, D-word H-word, D-word 10 

H-syn, D-syn H-sem, D-sem 11 

H-syn, B-syn, D-syn H-sem, B-sem, D-sem 12 

H-syn, H-syn+1, D-syn-1, 

D-syn 

H-sem, H-sem+1, D-sem-1, 

D-sem 

13 

H-syn-1, H-syn, D-syn-1, D-
syn 

H-sem-1, H-sem, D-sem-1, 
D-sem 

14 

H-syn, H-syn +1, D-syn, D-

syn+1  

H-sem, H-sem+1, D-sem, 

D-sem+1  

15 

H-syn-1, H-syn, D-syn, D-

syn+1  

H-sem-1, H-sem, D-sem, 

D-sem+1  

16 

H-syn, Wk-syn, D-syn H-sem, Wk-sem, D-sem 17 

Wk-syn, D-syn Wk-sem, D-sem 18 

Wk-word, D-word Wk-word, D-word 19 

Wk-syn, D-word Wk-sem, D-word 20 

Wk-word, D-syn Wk-word, D-sem 21 
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4.2. Evaluation metrics and results 

For evaluation, the Unlabeled Attachment Score 

and the Labeled Attachment Score are used and 

defined as (4) and (5). 

The corpora are split into standard train and test 

sets, 90% of the corpora are used for training and 

10% are used for testing. In the stage of creating 

syntactic features, we are facing with the sparsity 

problem, so to reduce the problem, the sentences 

that contain full-frequent words of corpora are 

selected. 

edges  tree twoofnumber  Total

label  theof regardless  treesin two edges identical ofNumber 
UAS 

 (4) 

 

edges  tree twoofnumber  Total

label  with the treesin two edges identical ofNumber 
LAS 

 (5) 

MSTParser is used with four settings: projective-

first-order, projective-second-order, non-

projective-first-order, and non-projective-second-

order. MIRA is used to estimate the weight vector. 

In order to determine the optimal number of 

clusters and bits, the number of clusters has been 

changed from 100 to 1000 by step 100, and the 

number of bits has been changed from 5 to 14 by 

step 3, and finally, for the first corpus in the 

semantic phase, 400 clusters and 11 bits, in the 

syntactic phase, 500 clusters and 8 bits, and for the 

second corpus in the semantic phase, 300 clusters 

and 11 bits, and in the syntactic phase, 400 clusters 

and 5 bits have been selected. 
 

Table 2. Statistical Properties of PerDT and UPDT. 
Uppsala Persian 

Dependency 

Treebank 

Persian 

Dependency 

Treebank 

 

6000 29982 Number of sentences 

151671 498081 Number of words 

15692 37618 Number of distinct 
words 

25.28 16.61 Average sentence 

length 
is  freely available 

in CoNLL format 

is  freely 

available in 

CoNLL format 

 

 

To evaluate the quality of the defined features, we 

have tested the effects of each one separately. 

Tables 3, 4, 5, and 6 show the accuracy obtained 

for both corpora. As it is evident, non-projective 

settings for both corpora had good results; also by 

increasing the order, the performance of the parser 

has been improved. Based on the results obtained, 

the syntactic and semantic features have improved 

the performance of the parser. The syntactic 

features often perform better in comparison with 

the semantic features, and in some cases, are 

similar to basic settings. In all settings, the linear 

combination of all features shows better results.  

The feature vector dimensions are reported in table 

7. According to tables 6 and 7, although the 

addition of defined features does not increase the 

parser accuracy for non-projective first-order 

setting very much, it has fewer feature dimensions.  

The combination of features has increased the 

dimension of feature vector very much. To reduce 

the feature vector dimensions, the features that 

have acquired the weight less than threshold, α, in 

the training stage after the implementation of the 

MIRA algorithm are removed. Figure 2-a shows 

the feature removing effect on UAS for PerDT. 

Figure 2-b shows the feature removing effect on 

UAS for UPDT, and table 8 shows the feature 

dimensions by considering the threshold. As shown 

in figure 2, removing the features with zero-weight 

did not change the performance of the parser but it 

had fewer feature dimensions. According to figure 

2, by removing the features that had the weigh less 

than 0.04 for PerDT and 0.02 for UPDT, the 

precision was not reduced significantly; however, 

as shown in table 8, the dimensions of the feature 

vector were reduced. 

Table 3. Projective-First-Order. 

     PerDT UPDT 

 UAS LAS UAS LAS 

Baseline-Features 80.40 78.53 78.20 71.67 

Semantic-Features 75.92 73.15 78.50 71.95 
Syntactic-Features 80.54 77. 26 76.35 70.55 

All-Features 81.36 80.89 80.00 72.57 

Table 4. Non-Projective-First-Order. 

     PerDT UPDT 

 UAS LAS UAS LAS 

Baseline-Features 82.34 80.68 84.2 77.86 

Semantic-Features 83.90 82.67 83.11 80.16 

Syntactic-Features 82.95 81.20 82.21 77.98 
All-Features 85.83 81.39 84.20 77.89 

Table 5. Projective-Second-Order. 

     PerDT UPDT 

 UAS LAS UAS LAS 

Baseline-Features 82.34 80.68 84.2 77.86 
Semantic-Features 83.90 82.67 83.11 80.16 

Syntactic-Features 82.95 81.20 82.21 77.98 

All-Features 85.83 81.39 84.20 77.89 

Table 6. Non-Projective-Second-Order. 

     PerDT UPDT 

 UAS LAS UAS LAS 

Baseline-Features 85.16 82.99 85.31 83.80 

Semantic-Features 85.94 81.12 85.99 84.68 
Syntactic-Features 87.147 82.52 83.70 79.89 

All-Features 89.17 85.83 88.96 86.25 

Table 7. Feature Space Dimension. 

UPDT PerDT  

938649 4368125 Baseline-1st order 
1697835 6014935 Baseline-2nd order 

789641 4092103 Our features-1st order 

1236874 5869415 Our features-2nd order 
4896238 12578161 All features-1st order 

5694502 17025128 All features-2nd order 
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5. Conclusion 

In this work, we have stacked the Persian phrase-

structure parser for the dependency parser. The 

phrase-structure parser contains the syntactic 

information of the sentences that we have shown, 

in this paper; this information is useful in Persian 

dependency parser. The parse tree path in the 

phrase-structure parser was extracted as a syntactic 

feature, and after clustering, was used as a bit string 

in MSTParser. To extract the semantic features, the 

number of proper bits for the string of words 

derived from the BCA was set for the Persian. The 

syntactic and semantic features were used as first 

and second order in the MSTParser parser and their 

effects were investigated. Experiments showed that 

the injection of new features improved the 

performance of MSTParser for the Persian but this 

led to make an enormous increase in the feature 

dimensions. As future research works, the 

extraction and addition of other features such as the 

morphological features of word and the provision 

of methods to reduce the feature vector 

dimensions, the use of other methods of word 

clustering based on syntagmatic analysis is 

proposed.  

 
a. Features removing effect on UAS for PerDT. 

 
b. Features removing effect on UAS for UPDT. 

Figure 2. Results of features removing.  

 

Table 8. Effect of feature removing on feature Space Dimension. 

UPDT (Baseline,Our, 

All) 

PerDT (Baseline, Our, All)  

1085647,647510,4458106 5817596,5348967,15459702 0.00 

1024861,506840,3845687 5236894,5187946, 
14126307 

0.01 

947513,464712,3358419 4678902,4780345, 

12945182 

0.02 

921312,312509,3114251 4387956,4187469,12079466 0.03 

913556,289985,2895167 3697581, 3845610, 

10844878 

0.04 

693955,259415,2441963 3284615, 3710769, 9584600 0.05 

502574,234169,2094658 3058458, 3187946, 7648521 0.06 

328694,198635,1749284 2679428, 2879451, 6487010 0.07 
328125,175602,1710208 2567948, 2536473, 5864318 0.08 

278130,143692,1364776 1487518, 2140317, 5032875 0.09 

236115,96152,864822 978415, 1125749, 4326151 0.10 

 

In the stage of creating syntactic features, we are 

facing with the sparsity problem, which by 

providing a solution to solve, it can have a 

significant effect on reducing the parsing time. 

Also in this research work, the number of clusters 

and the number of bits were empirically obtained 

so the optimal determination of these parameters 

with suitable algorithms could lead us to better 

results. 
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 گر وابستگی فارسیویژگی در تجزیه طراحی و ساخت

 

  *پور کوملهحسین ابراهیم و صغری لازمی

 .دانشگاه کاشان، کاشان، ایران، هوش مصنوعی -گروه مهندسی کامپیوتر

 61/10/7162 پذیرش؛ 01/16/7162 بازنگری؛ 61/61/7162 ارسال

 چکیده:

وابستگی یکی از ابزارهای پایه مهم در پردازش زبان طبیعی است که براساس دستور وابستگی به استخراج ساختار جملات و تعیین روابط بین گر تجزیه

اده با کمک گر وابستگی مبتنی بر دمقاله، تجزیهدر این است. مناسب مانند زبان فارسی، های بدون ترتیب، گر وابستگی، برای زبانپردازد. تجزیهکلمات می

رای آن ب تعریف شده ویژگیفضای ، گریتجزیههر  فاکتورهای مهم موفقیت یکی از گر مبتنی بر سازه برای زبان فارسی توسعه داده شده است. تجزیه

تاری های معنایی و ساخفارسی است. برای نیل به این هدف، ویژگیوابستگی جملات ی های مناسب برای تجزیهباشد. هدف ما، تولید و استخراج ویژگیمی

بندی های خوشههای معنایی بااستفاده از الگوریتمافزوده شده است. ویژگی MSTParserوابستگی  گرسازی به تجزیهشده و با روش پشتهجدیدی تعریف 

و بصورت رشته بیت مورد استفاده قرار  گر ساختاری زبان فارسی بدست آمدهتجزیههای ساختاری بااستفاده از و ویژگیتحلیل زنجیری مبتنی بر -کلمات

ای هاند. آزمایشات برروی پیکره وابستگی دادگان و پیکره وابستگی اوپسالا انجام شده است. نتایج بدست آمده حاکی از آنست که تعریف ویژگیگرفته

ترتیب  های مورد استفاده بهبدست آمده برای پیکره . معیار یال بدون برچسبان فارسی شده استگر وابستگی برای زبجدید باعث بهبود عملکرد تجزیه

 باشد. می  %81/22و  62/28%

 زبان فارسی.، سازیپشته، MSTParserگر مبتنی بر سازه، گر وابستگی، تجزیهتجزیه :کلمات کلیدی

 


