

Journal of AI and Data Mining

Vol 7, No 3, 2019, 467-474 DOI: 10.22044/JADM.2018.6066.1720

 Feature Engineering in Persian Dependency Parser

S. Lazemi and H. Ebrahimpour-Komleh*

Department of Computer Eng., University of Kashan, Kashan, Iran.

Received 16 October 2017; Revised 30 January 2018; Accepted 10 March 2018

*Corresponding author: ebrahimpour@kashanu.ac.ir (H. Ebrahimpour-Komleh).

Abstract

Dependency parser is one of the most important fundamental tools in the natural language processing, which

extracts the structure of sentences and determines the relations between words based on the grammar

dependency. The dependency parser is proper for free-order languages such as Persian. In this work, data-

driven dependency parser is developed with the help of phrase-structure parser for Persian. The defined feature

space in each parser is one of the important factors involved in its success. Our goal is to generate and extract

appropriate features to dependency parsing of Persian sentences. In order to achieve this goal, new semantic

and syntactic features are defined and added to the MSTParser by the stacking method. Semantic features are

obtained using word clustering algorithms based on syntagmatic analysis, and the syntactic features are

obtained using the Persian phrase-structure parser, and are used as bit-string. Experiments are conducted on

the Persian Dependency Treebank (PerDT) and the Uppsala Persian Dependency Treebank (UPDT). The

results obtained indicate that the definition of new features improves the performance of the dependency parser

for Persian. The achieved unlabeled attachment scores for PerDT and UPDT are 89.17% and 88.96%,

respectively.

Keywords: Dependency Parser, Phrase-structure parser, MSTParser, Stacking, Persian.

1. Introduction

Parsing forms the syntactic layer of NLP layers.

The purpose of this processing layer is to consider

a sentence as a linguistic unit. In other words, the

sentence grammatical analysis is done in this layer.

Breaking a sentence into its components is done by

the parser. The aim of this analysis is to determine

the grammatical role of words in the sentence. In

order to determine the syntax structures, we need

the grammar and parsing techniques (sentence

analysis method for specifying its syntax structure

based on linguistic grammar) [1].

In general, parsers are divided into two categories:

“phrase-structure parsers and dependency parsers”

[2].

Phrase-Structure parsers: Phrase-structure

parsers do the sentence structure extraction due to

structural grammar (phrasal structure grammar)

[3]. Structural grammars are used to describe

formal languages.

The phrase-structure parsers are divided into two

categories [4]:

1- Rule-based parser: Sentences are broken

down on the basis of the pre-defined rules.

Procurement of rules manually is difficult

and time-consuming; it is impossible to

provide comprehensive rules that have a

high coverage power. This type of analysis

is not efficient due to the complexity of a

natural language, and will be failed in the

face of statements outside the defined

rules.

2- Statistical-based parser: It tries to extract

grammar automatically using statistical

techniques and linguistic corpora. The

problem of this method is the requirement

for annotated treebank.

Dependency parsers: Dependency parser

extracts the sentence structure due to

dependency grammar. Dependency grammar

is based upon the syntactic and conceptual

relationships between words [5]. Dependency

parsing analyzes the relationships between

words, and therefore, can be useful in resolving

http://dx.doi.org/10.22044/jadm.2018.6311.1746
mailto:ebrahimpour@kashanu.ac.ir

Lazemi & Ebrahimpour-Komleh/ Journal of AI and Data Mining, Vol 7, No 3, 2019.

468

structural ambiguity. For example, the sentence “I

saw Zahra with Fatima.” has a phrase-structure

tree (Figure 1-a) and two dependency trees

(Figure 1-b); depending on the dependency

parsing, the main meaning of the sentence can be

obtained.

 a-Phrase-structure tree.

b- Dependency trees.

Figure 1. An example of parse tree.

Dependency parsers are divided into two

categories:

1- Data-Driven: The machine learning

method is used in the data-driven methods,

and it is assumed that the input data has a

correct syntax structure. The data-driven

method is divided into two categories:

transition-based and graph-based. In the

transition-based approach, the automata

are defined, and next, predicate is

predicted due to a predicate history [6]. In

a graph-based approach, a space of

dependency graph is created, and the

scoring to them is done and the graph with

the highest score will be selected [7].

2- Grammar-Driven: In the grammar-driven

approach, a number of grammars are

defined, and the structures that are out-of-

grammar are assumed grammatically

incorrect. The grammar-driven method is

divided into two categories as well:

“context-free and constraint-based” [7].

The tree that is obtained from dependency parsing

can be projective (that has disjunct edges), non-

projective (that has cross edges), and well-made

(that has root, unique labels, acyclic, connected,

and projective). In a projective tree, a word along

with its dependents are seen as a substring of the

sentence [8]. In Persian, the projective trees cover

more sentences due to the free word-ordering

property [9]. Also phrase-based approaches are not

efficient in this language (due to the free word-

ordering property), and research works in this area

have been conducted to dependency-based parsing.

The research works are very limited, and the

proposed methods are limited to grammar-based

approaches. In addition, some studies have focused

on adapting the existing tools with the Persian

language. The focus of this research work was to

develop a graph-based dependency parser for the

Persian.

One of the simplest ways to improve systems is to

combine different systems. The improvement of

data-driven dependency parsers is also possible by

combining other parsers with the voting and

stacking methods [10]. The voting method for

dependency parsers was presented by Zeman and

Zabokrtsky [11] for the first time. In this method,

the input sentence is decomposed by independent

parsers (at least three parsers), and then for the final

analysis, the output of the parsers is combined

based on the majority vote. In the stacking method,

the output of one or more parsers is used as the

input of the parser in question [10]. In other words,

the output of other parsers is used to generate new

features in the desired parser. In languages such as

English and Czech, the voting and stacking

methods have been used to improve the

performance of parsers such as [12-14] but there

are no research works in this regard in the Persian.

In this work, we focused on improving the

MSTParser [15] for Persian with the stacking

method. Given the specific properties of the

Persian, MSTParser is suitable for this language

because in Persian:

1- Due to the SOV property, the head and the

S

SS VP NP

N

 من

NP PP V

P P N N

 فاطمه با
 دیدم

 را زهرا

.

I

Zahra with Fatima

saw

زه

 را

با را

ف

اط

 مه

من . دیدم

I Zahra with Fatima saw

زه

 را

با را

ف

اط

 مه

من . دیدم

I Zahra with Fatima saw

Lazemi & Ebrahimpour-Komleh/ Journal of AI and Data Mining, Vol 7, No 3, 2019.

469

dependent are usually spaced far from each

other, and MSTParser is appropriate to

determine long-distance relationships due

to the creation of a sentence graph.

2- Due to the free word-order property, most

Persian sentences produce non-projective

trees, and MSTParser is able to produce

non-projective trees.

In order to achieve our goal, firstly, the semantic

features were defined by the Brown Clustering

Algorithm (BCA), and then using the stacking

method, we defined the syntactic features from the

designed phrase-structure parser output for

Persian.

The rest of the paper is organized as what follows.

In the second part, the conducted research works in

the field of Persian parsers are discussed. In the

third section, after a brief summary of MSTParser,

our semantic and syntactic features are presented.

The fourth section includes experiments and

results. Finally, in the fifth section, a summary of

the paper is presented with some future works.

2. Related works

2.1. Phrase-structure parser

The parser presented by Estiri et al. [16] is the first

Persian phrase-structure parser, and has six stages.

In the first step, the required tags are defined with

accurate signs and a hierarchical order. the tag

collection is started from groups that form

sentences; and includes five groups: nominal,

verbal, adverbial, adjectival, and preposition; and

according to the type of group and the tags of each

word that forms the group, the tags that belong to

the same group are developed with more details.

The number of tags contains 24 labels. The second

stage involves pre-processing (unification, remove

the short space), sentence segmentation (using

punctuation, Persian language grammar, and the

sentence initial word) and identifying words (using

space and punctuation). In the third stage, the

words initial tag is identified by searching in the

prepared database and defined rules. The fourth

step identifies the features of its verbs. For this

purpose, the verb is identified by the probability of

presence in a specific situation, and then the word

probability to be a verb is done with regular

expressions; if it matches, the verb group is

constructed, and the head is considered as a verb.

By considering the structure of the verb in Persian

and using a dictionary, the features including tense,

person, mood (imperative, indicative, subjunctive),

and voice (active or passive) are extracted for

verbs. In the fifth step, the noun features such as

common or proper, definite or indefinite, and

singular or plural are extracted. To do so, first, the

stem of nouns in found, and then the features are

extracted using a dictionary and considering the

added affixes. In the last step, a generic label is

assigned to multiple words or same label by

combining tags and forming groups. Finally, the

sentence parse tree is obtained by assigning labels

to groups and words. Due to the lack of similar

parser to Persian, the comparison and evaluation

has not been done. One of the disadvantage of the

parser can be the inability to deal with unstructured

sentences and non-grammatical.

2.2. Dependency parser

Seraji et al. [17] have proposed a parser named

“ParsPer”. At first, they found the best tag sets for

POS tagging and depency relations using

MaltParser [18], and then operated their tests with

other parsers such as MSTParser [15], MateParser

[19, 20], and TurboParser [21]; and they selected

MateParser due to its good results for Persian. To

evaluate ParsPer, first, parser was tested with

Uppsala Treebank corpus, and then for the final

results, parser was tested on the other corpus.

MaltParser have used MaltOptimizer [22] to do the

optimization processing. Based on their findings,

graph-based parsers showed a better performance

than transition-based parsers. The results obtained

for the labeled and unlabeled attachment score was

reported to be 82/58% and 86/69%.

Falavarjani and Ghassem-Sani [9] have tested two

state-of-the-art parsers, “MaltParser (transition-

based), and MSTParser (graph-based)” for Persian.

In Persian, due to the point that non-projective trees

do not cover more sentences, they tested two

parsers to find the appropriate parser for projective

and non-projective sentences. To reach this goal,

the authors divided the sentences in the corpus into

two categories: “projective sentences and non-

projective sentences”, and used POS tags that were

from the Treebank corpus as features. To apply the

MaltParser and Arc-eager algorithms, and to apply

MSTParser, the second-order and non-projective

settings were selected. The authors introduced

MSTParser appropriate for Persian during the tests.

The accuracy obtained for projective sentences by

MaltParser was 87%; by MSTParser, it was 84%;

for non-projective sentences by MaltParser, it was

73%; and by MSParser, it was 77%.

Seraji et at. [23] have tested the two state-of-the-art

parsers “MSTParser” and “MaltParser” using the

UPEDT corpus for Persian. MSTParser was

performed with four different settings: first-order

projective, second-order projective, first-order-

non-projective, and second-order-non-projective.

Lazemi & Ebrahimpour-Komleh/ Journal of AI and Data Mining, Vol 7, No 3, 2019.

470

MaltParser was performed with different

algorithms, and features such as Nivre algorithms

and Covington algorithms, gold standard POS

features, and Auto generated POS tags, and the

MaltOptimizer tool were used for optimization.

The Nivre-eager algorithm was selected with the

gold standard POS features for MaltParser due to

tests and second-order feature, and projective was

selected for MSTParser. During the experiments,

MaltParser yielded better results.

3. Features

3.1. Default model features

The graph-based dependency parsing consists of

three main stages (definition of sentence space,

learning, and parsing). In the first step, a space of

candidate dependency directed graphs is created

for the sentence. In the learning phase, a model for

scoring is determined for the dependency graph of

the sentence. The parsing stage seeks to find the

highest-score dependency graph (to resolve the

ambiguity). There are different algorithms for

graph-based parsing, and the most notable one is

the arc-factored model. In the arc-factored model,

the dependency graph is divided into several sub-

graphs, P1, P2, ..., Pn; each sub-graph is individually

scored, and the score of the graph is considered as

the total score of the sub-graphs. In this model,

each edge is represented by a feature vector. At the

learning stage, each feature is weighted. Scoring to

an edge in a weighted sum of all its features is done,

(1).

nn11 wf...wf)d,h(S (1)

w is the weight vector, which is calculated using

the machine learning algorithms from the training

samples (pairs of sentences and the corresponding

dependency trees).

The next step is to find the highest score graph.

MSTParser converts the issue of finding the

highest score graph into a Discriminative

Maximum Spanning Tree. If for the sentence

)x,...,x,x(X
n21

)G(T
X is the spanning tree set

of X
G , the MSTParser target is to find the

spanning tree
'G with the highest weights, (2).

 '

X
'

Gr)G(TG
)p,X(f.wmaxarg)X(ParseTree (2)

w is the weight vector, and)p,X(f is the feature

vector for part p .

The default sfeature set that has been used in

MSTParser is summarized as follows, used as uni-

gram and bi-gram:

 POS tags of the words Hi and Dj and the

label LK

 POS tags of words surrounding and

between Hi and Dj

 Number of words between Hi and Dj and

their orientation

 Label features

3.2. Semantic features

At this stage, BCA has been used to create a

semantic feature set. This algorithm examines the

words semantically, and believes that similar

words appear in the same contexts [24]. In other

words, similar words have the same distribution in

relation to their previous and next words. Koo et at.

[25] have also used BCA to create semantic

features. They believed that finding the suitable

number of bits had a huge effect on parsing.

Therefore, the main purpose of this stage is to find

the number of bits that can show the semantic

dependency of the Persian words.

The input of the algorithm is a large corpus of

words, and its output is a partition of words in the

hierarchical clusters. The algorithm, at first, puts

each one of the words into separate clusters, and

then combines the two clusters that have the

maximum mutual information, (3). The output of

the algorithm is a binary tree whose leaves show

the words, and the root-to-leaf path represents the

bit-string of words. The words that are

semantically similar will have the same left bits

[24].

)w(entropy
)c(P)c(P

)c,c(P
log)c,c(P)C(Quality

k,...,2,1ν:C

w,...,w,wν

21, c,c
21

21

21

n21

(3

)

Based upon the experiments conducted with

multiple settings, the number of bits is considered

to be 5-11.

3.3. Syntactic features

The information contained in the phrase-structure

parser represents the structural information of the

sentences, so this information can be injected as a

structural feature to the dependency parser. We

have constructed a feature vector for each word to

extract the syntactic features using the phrase-

structure trees, and we have convert the extracted

features into a bit-string for injection into

dependency parser. To create a bit-string of words,

words are required to be clustered, so in the second

step, the clustering of the words has been done. Our

Lazemi & Ebrahimpour-Komleh/ Journal of AI and Data Mining, Vol 7, No 3, 2019.

471

proposed method consists of three steps whose

details are as follow:

Generating syntactic feature vector: The word

parse tree path contains its structural information.

In order to construct a syntactic word feature

vector, we have used the modified method

presented in [26]. In their proposed method, the

path of the parse tree for verbs was used to

semantic role labeling. In this work, the parsing

tree path for all words has been expanded with

some changes. To construct the syntactic feature

vector of the word “w”, all sentences containing the

“w” are identified, and their parse tree is created by

[16]. Then all paths that start with the “w” and end

up with words that are associated with “w” (head

and dependent of “w”) are stored. This reduces the

feature vector dimensions of the “w”. The syntactic

feature vector dimension of the “w” is equal to the

number of word’s unique paths, and the amount of

each dimension is obtained by dividing the number

of unique path repetition into the total number of

sentences. For example, the paths for the “Zahra”

in figure 1-a can be saved as follows:

<NP, VP, V> <NP, P> <NP, VP, PP, P>

Clustering: At this point, the words are clustered

using the K-means algorithm. The similarity of

words is structurally calculated using the cosine

similarity between pairs of words.

Word bits representation: To use the created

syntactic feature, we display them in bits. The

presented algorithm in [27] is used for this purpose.

This algorithm has received clusters and creates a

binary tree of words, and to each branch of the left

and right is assigned a zero bit or one. Moving from

the root to the leave shows the word bits of words.

In this algorithm, the words that are structurally

similar are placed in close places.

Our semantic and syntactic feature templates are

represented in table 1. In the second dependency

tree in figure 1-b, some features for (saw and

Zahra) are as:

H-word: saw

D-word: Zahra

H-sem, H-syn, D-sem, D-syn: bit sting

H-sem+1, H-syn+1: bit sting to the right of head

H-sem-1, H-syn-1: bit sting to the left of head

D-sem+1, D-syn+1: bit sting to the right of

dependent

D-sem-1, D-syn-1: bit sting to the left of dependent

Wk-word: with

Wk -sem, Wk -syn: bit sting

B-sem, B-syn: bit sting of word between H and D

4. Experiments and results

4.1. Corpus

For the experiments, the Persian Dependency

Treebank (PerDT) [28] and the Uppsala Persian

Dependency Treebank (UPDT) [29] have been

used. PerDT is the first Persian dependency

Treebank [30], and includes about 30,000

sentences annotated with syntactic roles and

morpho-syntactic features and the corresponding

dependency tree. There are 44 dependency

relations, 17 types of coarse-grained, and 32 types

of fine-grained POS tags.

In UPDT, the syntactic relation of words is

determined by the dependency grammar. This

corpus contains 6000 sentences from the Uppsala

Persian Corpus (UPC-a modified version of the

BijanKhan corpus [31]) with a corresponding

dependency tree. In this corpus, there are 48 types

of dependency relations, 15 types of coarse-

grained, and 32 types of fine-grained POS tags.

Both corpora are prepared based on the CoNll

template and the Stanford Typed. More

information about the corpora used is given in table

2.

Table 1. List of semantic and syntactic features for head

word (H) and its dependent (D), words between H and D

(B) and sibling words of D between H and D (wk).

Syntactic Feature Semantic Feature #

H-word, H-syn H-word, H-sem 1

D-word, D-syn D-word, D-sem 2

H-syn H-sem 3

D-syn D-sem 4

H-word, H-syn, D-word, D-

syn

H-word, H-sem, D-word,

D-sem

5

H-syn, D-word, D-syn H-sem, D-word, D-sem 6

H-word, D-word, D-syn H-word, D-word, D-sem 7

H-word, H-syn, D-syn H-word, H-sem, D-sem 8

H-word, H-syn, D-word H-word, H-sem, D-word 9

H-word, D-word H-word, D-word 10

H-syn, D-syn H-sem, D-sem 11

H-syn, B-syn, D-syn H-sem, B-sem, D-sem 12

H-syn, H-syn+1, D-syn-1,

D-syn

H-sem, H-sem+1, D-sem-1,

D-sem

13

H-syn-1, H-syn, D-syn-1, D-
syn

H-sem-1, H-sem, D-sem-1,
D-sem

14

H-syn, H-syn +1, D-syn, D-

syn+1

H-sem, H-sem+1, D-sem,

D-sem+1

15

H-syn-1, H-syn, D-syn, D-

syn+1

H-sem-1, H-sem, D-sem,

D-sem+1

16

H-syn, Wk-syn, D-syn H-sem, Wk-sem, D-sem 17

Wk-syn, D-syn Wk-sem, D-sem 18

Wk-word, D-word Wk-word, D-word 19

Wk-syn, D-word Wk-sem, D-word 20

Wk-word, D-syn Wk-word, D-sem 21

Lazemi & Ebrahimpour-Komleh/ Journal of AI and Data Mining, Vol 7, No 3, 2019.

472

4.2. Evaluation metrics and results

For evaluation, the Unlabeled Attachment Score

and the Labeled Attachment Score are used and

defined as (4) and (5).

The corpora are split into standard train and test

sets, 90% of the corpora are used for training and

10% are used for testing. In the stage of creating

syntactic features, we are facing with the sparsity

problem, so to reduce the problem, the sentences

that contain full-frequent words of corpora are

selected.

edges tree twoofnumber Total

label theof regardless treesin two edges identical ofNumber
UAS

 (4)

edges tree twoofnumber Total

label with the treesin two edges identical ofNumber
LAS

 (5)

MSTParser is used with four settings: projective-

first-order, projective-second-order, non-

projective-first-order, and non-projective-second-

order. MIRA is used to estimate the weight vector.

In order to determine the optimal number of

clusters and bits, the number of clusters has been

changed from 100 to 1000 by step 100, and the

number of bits has been changed from 5 to 14 by

step 3, and finally, for the first corpus in the

semantic phase, 400 clusters and 11 bits, in the

syntactic phase, 500 clusters and 8 bits, and for the

second corpus in the semantic phase, 300 clusters

and 11 bits, and in the syntactic phase, 400 clusters

and 5 bits have been selected.

Table 2. Statistical Properties of PerDT and UPDT.
Uppsala Persian

Dependency

Treebank

Persian

Dependency

Treebank

6000 29982 Number of sentences

151671 498081 Number of words

15692 37618 Number of distinct
words

25.28 16.61 Average sentence

length
is freely available

in CoNLL format

is freely

available in

CoNLL format

To evaluate the quality of the defined features, we

have tested the effects of each one separately.

Tables 3, 4, 5, and 6 show the accuracy obtained

for both corpora. As it is evident, non-projective

settings for both corpora had good results; also by

increasing the order, the performance of the parser

has been improved. Based on the results obtained,

the syntactic and semantic features have improved

the performance of the parser. The syntactic

features often perform better in comparison with

the semantic features, and in some cases, are

similar to basic settings. In all settings, the linear

combination of all features shows better results.

The feature vector dimensions are reported in table

7. According to tables 6 and 7, although the

addition of defined features does not increase the

parser accuracy for non-projective first-order

setting very much, it has fewer feature dimensions.

The combination of features has increased the

dimension of feature vector very much. To reduce

the feature vector dimensions, the features that

have acquired the weight less than threshold, α, in

the training stage after the implementation of the

MIRA algorithm are removed. Figure 2-a shows

the feature removing effect on UAS for PerDT.

Figure 2-b shows the feature removing effect on

UAS for UPDT, and table 8 shows the feature

dimensions by considering the threshold. As shown

in figure 2, removing the features with zero-weight

did not change the performance of the parser but it

had fewer feature dimensions. According to figure

2, by removing the features that had the weigh less

than 0.04 for PerDT and 0.02 for UPDT, the

precision was not reduced significantly; however,

as shown in table 8, the dimensions of the feature

vector were reduced.

Table 3. Projective-First-Order.

 PerDT UPDT

 UAS LAS UAS LAS

Baseline-Features 80.40 78.53 78.20 71.67

Semantic-Features 75.92 73.15 78.50 71.95
Syntactic-Features 80.54 77. 26 76.35 70.55

All-Features 81.36 80.89 80.00 72.57

Table 4. Non-Projective-First-Order.

 PerDT UPDT

 UAS LAS UAS LAS

Baseline-Features 82.34 80.68 84.2 77.86

Semantic-Features 83.90 82.67 83.11 80.16

Syntactic-Features 82.95 81.20 82.21 77.98
All-Features 85.83 81.39 84.20 77.89

Table 5. Projective-Second-Order.

 PerDT UPDT

 UAS LAS UAS LAS

Baseline-Features 82.34 80.68 84.2 77.86
Semantic-Features 83.90 82.67 83.11 80.16

Syntactic-Features 82.95 81.20 82.21 77.98

All-Features 85.83 81.39 84.20 77.89

Table 6. Non-Projective-Second-Order.

 PerDT UPDT

 UAS LAS UAS LAS

Baseline-Features 85.16 82.99 85.31 83.80

Semantic-Features 85.94 81.12 85.99 84.68
Syntactic-Features 87.147 82.52 83.70 79.89

All-Features 89.17 85.83 88.96 86.25

Table 7. Feature Space Dimension.

UPDT PerDT

938649 4368125 Baseline-1st order
1697835 6014935 Baseline-2nd order

789641 4092103 Our features-1st order

1236874 5869415 Our features-2nd order
4896238 12578161 All features-1st order

5694502 17025128 All features-2nd order

Lazemi & Ebrahimpour-Komleh/ Journal of AI and Data Mining, Vol 7, No 3, 2019.

473

5. Conclusion

In this work, we have stacked the Persian phrase-

structure parser for the dependency parser. The

phrase-structure parser contains the syntactic

information of the sentences that we have shown,

in this paper; this information is useful in Persian

dependency parser. The parse tree path in the

phrase-structure parser was extracted as a syntactic

feature, and after clustering, was used as a bit string

in MSTParser. To extract the semantic features, the

number of proper bits for the string of words

derived from the BCA was set for the Persian. The

syntactic and semantic features were used as first

and second order in the MSTParser parser and their

effects were investigated. Experiments showed that

the injection of new features improved the

performance of MSTParser for the Persian but this

led to make an enormous increase in the feature

dimensions. As future research works, the

extraction and addition of other features such as the

morphological features of word and the provision

of methods to reduce the feature vector

dimensions, the use of other methods of word

clustering based on syntagmatic analysis is

proposed.

a. Features removing effect on UAS for PerDT.

b. Features removing effect on UAS for UPDT.

Figure 2. Results of features removing.

Table 8. Effect of feature removing on feature Space Dimension.

UPDT (Baseline,Our,

All)

PerDT (Baseline, Our, All)

1085647,647510,4458106 5817596,5348967,15459702 0.00

1024861,506840,3845687 5236894,5187946,
14126307

0.01

947513,464712,3358419 4678902,4780345,

12945182

0.02

921312,312509,3114251 4387956,4187469,12079466 0.03

913556,289985,2895167 3697581, 3845610,

10844878

0.04

693955,259415,2441963 3284615, 3710769, 9584600 0.05

502574,234169,2094658 3058458, 3187946, 7648521 0.06

328694,198635,1749284 2679428, 2879451, 6487010 0.07
328125,175602,1710208 2567948, 2536473, 5864318 0.08

278130,143692,1364776 1487518, 2140317, 5032875 0.09

236115,96152,864822 978415, 1125749, 4326151 0.10

In the stage of creating syntactic features, we are

facing with the sparsity problem, which by

providing a solution to solve, it can have a

significant effect on reducing the parsing time.

Also in this research work, the number of clusters

and the number of bits were empirically obtained

so the optimal determination of these parameters

with suitable algorithms could lead us to better

results.

References
[1] Cambria, E. & White, B. (2014). Jumping NLP

curves: A review of natural language processing

research. IEEE Computational intelligence magazine,

vol. 9, pp. 48-57.

[2] Jurafsky, D. & Martin, J. H. (2000). Speech and

language processing an introduction to natural language

processing, computational linguistics, and speech.

[3] Seraji, M. Ginter, F. & Nivre, J. (2016). Universal

Dependencies for Persian. Proceedings of Language

Resources and Evaluation Conference, pp. 2361-2365.

[4] Ridge, T. (2011). Simple, functional, sound and

complete parsing for all context-free grammars.

International Conference on Certified Programs and

Proofs, pp. 103-118.

[5] Nivre, J. (2005). Dependency grammar and

dependency parsing. MSI report, vol. 5133, pp. 1-32.

[6] de Kok, D. & Hinrichs, E. (2016). Transition-based

dependency parsing with topological fields. Proceedings

of the 54th Annual Meeting of the Association for

Computational Linguistics, pp. 1-7.

[7] Kübler, S. McDonald, R. & Nivre, J. (2009).

Dependency parsing. Synthesis Lectures on Human

Language Technologies, vol. 1, pp. 1-127.

[8] Grella, M. (2015). Notes About a More Aware

Dependency Parser. arXiv preprint arXiv:1507.05630.

[9] Falavarjani, S. A. M. & Ghassem-Sani, G. (2015).

Advantages of Dependency Parsing for Free Word

Order Natural Languages. International Conference on

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Weight Threshold

U
A

S

All-features

Baseline-features

Semantic-features

Syntactic-features

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

Weight Threshold

U
A

S

All-features

Baseline-features

Syntactic-features

Semantic-features

Lazemi & Ebrahimpour-Komleh/ Journal of AI and Data Mining, Vol 7, No 3, 2019.

474

Current Trends in Theory and Practice of Informatics,

pp. 511-518.

[10] Fishel, M. & Nivre, J. (2009) .Voting and stacking

in data-driven dependency parsing.

[11] Zeman, D. & Žabokrtský, Z. (2005). Improving

parsing accuracy by combining diverse dependency

parsers. Proceedings of the Ninth International

Workshop on Parsing Technology, pp. 171-178.

[12] Sagae, K. & Lavie, A. (2006). Parser combination

by reparsing. Proceedings of the Human Language

Technology Conference of the NAACL, Companion

Volume: Short Papers, pp. 129-132.

[13] Nivre, J. & McDonald, R. T. (2008). Integrating

Graph-Based and Transition-Based Dependency

Parsers. Annual Meeting of the Association for

Computational Linguistics, pp. 950-958.

[14] Samuelsson, Y. Täckström, O. Velupillai, S.

Eklund, J. Fišel, M. & Saers,M. (2008). Mixing and

blending syntactic and semantic dependencies.

Proceedings of the Twelfth Conference on

Computational Natural Language Learning, pp. 248-

252.

[15] McDonald, R. Pereira, F. Ribarov, K. & Hajič, J.

(2005). Non-projective dependency parsing using

spanning tree algorithms. Proceedings of the conference

on Human Language Technology and Empirical

Methods in Natural Language Processing, pp. 523-530.

[16] Estiri, A. Kahani, M. Hoseini, M. & Asgarian, E.

(2012). Designing Persian language parser tool.

International Conference on Asian Language

Processing.

[17] Seraji, M. Bernd, B. & Nivre,J. (2015). ParsPer: A

Dependency Parser for Persian. International

Conference on Dependency Linguistics (DepLing

2015), August 24-26, 2015, Uppsala, Sweden, pp. 300-

309.

[18] Nivre, J. Hall, J. & Nilsson, J. (2006). Maltparser:

A data-driven parser-generator for dependency parsing.

Proceedings of Language Resources and Evaluation

Conference, pp. 2216-2219.

[19] Bohnet, B. & Kuhn, J. (2012). The best of both

worlds: a graph-based completion model for transition-

based parsers. Proceedings of the 13th Conference of the

European Chapter of the Association for Computational

Linguistics, pp. 77-87.

[20] Bohnet, B. & Nivre, J. (2012). A transition-based

system for joint part-of-speech tagging and labeled non-

projective dependency parsing. Proceedings of the 2012

Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural

Language Learning, pp. 1455-1465.

[21] Martins, A. F. Smith, N. A. Xing, E. P. Aguiar, P.

M. & Figueiredo, M. A. (2010). Turbo parsers:

Dependency parsing by approximate variational

inference. Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing, pp.

34-44.

[22] Ballesteros, M. & Nivre, J. (2012). MaltOptimizer:

A System for MaltParser Optimization. Proceedings of

Language Resources and Evaluation Conference, pp.

2757-2763.

[23] Seraji, M. Megyesi, B. & Nivre, J. (2012).

Dependency parsers for Persian. 24th International

Conference on Computational Linguistics, 8-15

December, 2012, Mumbai, India.

[24] Popat, K. (2013). Word Clustering for Data

Sparsity: A Literature Survey.

[25] Koo, T. Carreras Pérez, X. & Collins, M. (2008).

Simple semi-supervised dependency parsing. 46th

Annual Meeting of the Association for Computational

Linguistics, pp. 595-603.

[26] Gordon, A. S. & Swanson, R. (2007). Generalizing

semantic role annotations across syntactically similar

verbs. university of southern california marina del rey ca

inst for creative technologies.

[27] Ushioda, A. (1996). Hierarchical clustering of

words. Proceedings of the 16th conference on

Computational linguistics-Volume 2, pp. 1159-1162.

[28] Rasooli, M. S. Kouhestani, M. & Moloodi, A.

(2013). Development of a Persian syntactic dependency

treebank. Proceedings of the 2013 Conference of the

North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, pp. 306-314.

[29] Seraji, M. Jahani, C. Megyesi, B. & Nivre, J.

(2014). A Persian treebank with Stanford typed

dependencies. Proceedings of Language Resources and

Evaluation Conference, 2014, 26-31 May, Reykjavik,

Iceland, pp. 796-801.

[30] Pakzad, A. & Mianei Bidgo;i, B. (2016). An

improved joint model: POS tagging and dependency

parsing, Journal of AI and Data Mining, vol. 4, no. 1, pp.

1-8.

[31] Bijankhan, M. (2004). The role of the corpus in

writing a grammar: An introduction to a software.

Iranian Journal of Linguistics, vol. 19.

 نشریه هوش مصنوعی و داده کاوی

 گر وابستگی فارسیویژگی در تجزیه طراحی و ساخت

 *پور کوملهحسین ابراهیم و صغری لازمی

 .دانشگاه کاشان، کاشان، ایران، هوش مصنوعی -گروه مهندسی کامپیوتر

 61/10/7162 پذیرش؛ 01/16/7162 بازنگری؛ 61/61/7162 ارسال

 چکیده:

وابستگی یکی از ابزارهای پایه مهم در پردازش زبان طبیعی است که براساس دستور وابستگی به استخراج ساختار جملات و تعیین روابط بین گر تجزیه

اده با کمک گر وابستگی مبتنی بر دمقاله، تجزیهدر این است. مناسب مانند زبان فارسی، های بدون ترتیب، گر وابستگی، برای زبانپردازد. تجزیهکلمات می

رای آن ب تعریف شده ویژگیفضای ، گریتجزیههر فاکتورهای مهم موفقیت یکی از گر مبتنی بر سازه برای زبان فارسی توسعه داده شده است. تجزیه

تاری های معنایی و ساخفارسی است. برای نیل به این هدف، ویژگیوابستگی جملات ی های مناسب برای تجزیهباشد. هدف ما، تولید و استخراج ویژگیمی

بندی های خوشههای معنایی بااستفاده از الگوریتمافزوده شده است. ویژگی MSTParserوابستگی گرسازی به تجزیهشده و با روش پشتهجدیدی تعریف

و بصورت رشته بیت مورد استفاده قرار گر ساختاری زبان فارسی بدست آمدهتجزیههای ساختاری بااستفاده از و ویژگیتحلیل زنجیری مبتنی بر -کلمات

ای هاند. آزمایشات برروی پیکره وابستگی دادگان و پیکره وابستگی اوپسالا انجام شده است. نتایج بدست آمده حاکی از آنست که تعریف ویژگیگرفته

ترتیب های مورد استفاده بهبدست آمده برای پیکره . معیار یال بدون برچسبان فارسی شده استگر وابستگی برای زبجدید باعث بهبود عملکرد تجزیه

 باشد. می %81/22و 62/28%

 زبان فارسی.، سازیپشته، MSTParserگر مبتنی بر سازه، گر وابستگی، تجزیهتجزیه :کلمات کلیدی

