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SIGNED GENERALIZED PETERSEN GRAPH AND ITS
CHARACTERISTIC POLYNOMIAL

E. GHASEMIAN AND G. H. FATH-TABAR*

ABSTRACT. Let G? be a signed graph, where G = (V| E) is the
underlying simple graph and o : E(G) — {£1} is the sign function
on E(G). In this paper, we obtain k-th signed spectral moments
and k-th signed Laplacian spectral moments of a signed graph G?,
together with coefficients of their signed characteristic polynomial
and signed Laplacian characteristic polynomial are calculated.

1. INTRODUCTION

Let G = (V, E) be a simple graph and o : F(G) — {£1} a mapping
on the edge set of G. The graph G together with the sign function o is
called a signed graph and is denoted by G°. If o(e) = +1, then the edge
e is called positive, and if o(e) = —1, then the edge e is called negative.
A walk of length k in a graph G is a sequence vie; ... vgexUk11 With
vertices vy, ..., vps1 and edges eq, ..., e, such that, we have v; # v; 1,
1 <i < kande; is an edge from v; to v; 1. In a signed graph G?, a walk
is called positive (resp., negative) if the number of its negative edges
is even (resp., odd). The number of positive (resp., negative) walks of
length k from vertex v; to vertex v; is denoted by wif; (k) (resp., wj;(k)).
A cycle with n > 3 vertices is a simple graph whose vertices can be
sorted as a sequence such that two vertices are adjacent if and only if
they are subsequent members of the sequence. In a signed graph G,
a cycle is called balanced or positive (resp., unbalanced or negative) if
the number of its negative edges is even (resp., odd). A signed graph

MSC(2010): Primary: 05C50; Secondary: 15A18.
Keywords: Signed graph, signed generalized Petersen graph, adjacency matrix.
Received: 04 March 2017, Accepted: 01 December 2017.
*Corresponding author.
13
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is called balanced if all its cycles are balanced; otherwise, it is called
unbalanced [1].

The adjacency matriz of a graph G, denoted by A(G) = [a;], is
an n X n matrix where a;; = 1 if v;v; is an edge of the graph and
a;j = 0 otherwise. The adjacency matriz of a signed graph, denoted by
A(G?) = [af], is an n X n matrix where af; = o(ij)a,; if v;v; is an edge
of the graph, and af; = 0 otherwise. Thus, if e = ij is an edge and
o(ij) = +1, then af; = 1 and if e = ij is an edge and o(ij) = —1, then
aj; = —1, and if e = ¢j is not an edge, then af; = 0. The adjacency
matrix of a signed graph is symmetric (see [0] for some basic results
on the adjacency spectrum of signed graphs). The signed Laplacian
matrix of G7 is the matrix L(G?) = D(G) — A(G7), where D(G) is the
diagonal matrix of vertex degrees. Let G be a graph with adjacency
matrix A(G). We say that A(G) is an eigenvalue of G if there exists a
non-zero vector X such that A(G)X = AG)X.

Throughout, ¢ is the number of triangles, t* (resp., t~) is the number
of balanced (resp., unbalanced) triangles, ¢ is the number of quadran-
gles, ¢ (resp., ¢7) is the number of balanced (resp., unbalanced) quad-
rangles, ¢ (resp., t; ) is the number of balanced (resp., unbalanced)
triangles that are contain the i*" vertex, ¢/ (resp., ¢;’) is the number
of balanced (resp., unbalanced) quadrangles that are contain the ‘"
vertex, t;rj (resp., t;;) is the number of balanced (resp., unbalanced)
triangles at edge ij, U," (resp., U, ) is a balanced graph obtained from
C.I, (resp., C,_) by attaching a leaf to one of its vertices, and Bs, B,
are two graphs obtained from two cycles Cs, C of length 3 by identify-
ing one vertex of C3 with one vertex of C} and identifying one edge of
C'5; with one edge of Cf, respectively. |S,| is the number of star graphs
of order n and |P,| is the number of paths of order n.

2. MAIN RESULTS

In this section, we would like to obtain k-th spectral moments and
k-th Laplacian spectral moments of the signed generalized Petersen
graphs. Taghvaee and Ashrafi in [3] and [1] determined the spectral mo-
ments and Laplacian spectral moments of generalized Petersen graph.

For the sake of completeness we mention below three important lem-
mas which are crucial in our main results in this paper (see, [1, 5]).

Lemma 2.1. Let G be a signed graph with signed adjacency ma-
triz. A(G°). Then the (i,j)-entry of the matriz A*(G?) is equal to
+ —
Wi (k) — wij<k>'
Suppose that G7 is a signed graph with adjacency matrix A(G?)
and A\ (G7), A\2(G7), ..., \,(G7) are eigenvalues of G7 in non-increasing
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order. Then, Si(G7) = ZA?(G”), k > 0 is the k-th signed spectral
i=1
moment of G7.

Lemma 2.2. The k-th signed spectral moments of G° is equal to the
number of closed walks of length k.

Lemma 2.3. Let G° be a signed graph with n vertices and m edges.
Then,

So(G7) =2m and S3(G7) =6(tT —17).
It is also clear that Sy(G?) = n and S1(G?) = 0.

Theorem 2.4. Let G? be a signed graph with n vertices and m edges.
Then, we have:

Sy (G%) = —2m+ Qde +8(¢" —q),
i=1

S5(G7) = 30(tT —t7)+10(US — Uy ) +10(Cs — Cy),

Se(G°) = —10m+6 d} + 6|Py| + 12|S4| + 12(U5 — Uy)
i=1
+ 36(Bf — By) +24(Bi — Bs) + 24t(G) + 48(¢T — ¢7)
+ 12(Cy = Cy).

Proof. Vertices that belong to a closed walk of length 4 induce subgraph
in G are isomorphic to P,, P3 and ¢q. Now, in the signed graph G7, the
number of closed walks of length 4 which span these subgraphs is equal
to 2|Py|, 4| Ps], 8(¢T —¢q ), respectively. Vertices that belong to a closed
walk of length 5 induce subgraph in G are isomorphic to ¢, Uy and Cs.
In the signed graph G?, the number of closed walks of length 5 which
span these subgraphs is equal to 30(tT—¢7), 10(U, — Uy ) and 10(Cy —
C5 ), respectively. Now, we compute Sg(G?). Vertices that belong to
a closed walk of length 6 induce subgraph in G are isomorphic to Ps,
Ps, Py, Sy, Us, By, Bs, t, q, Cgs. In the signed graph G the number of
closed walks of length 6 which span these subgraphs is equal to 2|P;|,
12| 3|, 6|Py|, 12|S4], 12(Us — Uy), 36(Bf — By ), 24(BS — Bs), 24t,
48(q™ — q7) and 12(C¢ — Cy ), respectively. Note that the number of

1 n
3-path in connected graph G are equal to —m + §de . O

i=1
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Let T},(G7) Zuz (G7), k > 0, be the k-th spectral moment for the

Laplacian Spectrum of a signed graph G7, where 1 (G7), pu2(G), . . ., pin(G?)
are the Laplacian eigenvalues. Belardo [1] proved that:

Theorem 2.5. [1] Let G be a signed graph with n vertices, m edges
and degree sequence (dy,...,d,). Then we have:

T()(Ga) = n,

T(G%) = Zdi:2m,
=1
L(G7) = 2m+ Y d7,
=1

T5(G7) = 6(t™ —t) +3> di+ > d.
i=1 i=1

Theorem 2.6. Let G? be a signed graph with n vertices, m edges and
degree sequence (di,...,d,). Then we have:

Ty(G?) = S4(G°) +4Zd3+2d4+42dd sidi(tj—t;),
VU =1

T5(G7) = —S5(G")—5de+52df+52df+id§
+ 10(de+ ZZM% Zd2t+ ;

Vi~V i=1 i#£j
n
+ Y dilg —a) - Z did; (£~ 1)),
i=1 Vi~

where d; is the degree of i-th vertewx.

Proof. Let L(G?) = D(G)— A(G?) be the Laplacian matrix of a signed
graph G° and A(G“) = A?. First, we obtain T)(G?). We have

T,(G%) = ZM G°) = tr(D — A%)*

= ((D — A7)*(D - A7)%)
= tr(D*) — 4tr(D?A%) — 4tr(D(A%)®) + 4tr((A°)2D?)
+ 2tr(DA°DA%) + tr((A%)Y).
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By Theorem 2.4, we have tr((A%)%) = S4(G7), where S4(G) is 4—th
spectral moments of G°. We have, tr(D3A%) = 0, tr(D?) Zd

((A9)2D?) ZdS tr(D(A%)3) = 2§:di(tl7L — t7). By direct com-
=1

m
putation, we can see that tr(DADA%) = 2 Z d;d;, where v; ~ v; is
’UiN’U]‘

an edge of G?. This shows that,

Ty(G%) = zn:d;* — 8zn:di(tj —t7) + 4zn:d§ + 4 zm: did; + S4(G7).

i=1 i=1 i=1 Virov;

In a similar way, we can compute T5(G?). We have,

T5(G7) = Zuz (G7) = tr(D — A”)°

= tr(D5) + 5tr(D?*(A%)?) — 5tr(D*(A%)?) + 5tr(D*A° DA?)
5tr(D(A%)*DA”) + 5tr(D(A%)*) — tr((A)?).
By Theorem 2.4, we get tr((A%)5) = S5(G") where S5(G?) is 5-th spec-
tral moments of G°. We have, tr(D?) Zd5 tr(D3(A”)? Zd

tr(D2(A%)3 QZCF (5 —t; Zd3 + 2de

ZdQ—I—QZd q; ), where v; ~ v; is an edge of G7, tr(D(A?)*DA") =
2 Z did;( ) and tr(D*A°DA%) = Z Zdzd ag;, where af; is an

Vi~U; i=1 i#j
element of the signed adjacency matrix. This implies that,

T5(G%) = zn:df + 5zn:d§ — 1ozn:d3(tj —t7) + 5zn:2n:d§djagj
i=1 i=1 =1

i=1 i#j

- 10§:didj(t;. ts; +5Zd3+102dd —5Zd2

Vi~ Vi~

+ 10261 a —q) — S5(G).
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This completes the proof. O

Corollary 2.7. Suppose that T.(G?) and Ty(G) are the k-th Laplacian
spectral moment of a signed graph G° and a simple graph G, respec-
tively. Then we have:

T3(G7) < T3(G),
TH(G7) < Ty(G),
T5(G7) < T5(G),

with equality if and only if G7 is balanced signed graph.

Definition 2.8. The signed generalized Petersen graph, denoted by
GP?(n, k), is a graph with vertices and edges given by

V(GP”(n, k)) ={a;, bi|1 <i < n},
and
E(GPG(TL, k‘)) = {aibi,aiaiﬂ, bzthk’l < 1 < n},

respectively. Here, i + k are integers modulo n, where n > 6. Since
GP(n,k) = GP(n,n — k), suppose that k < [25*]. Let A(n, k) and
B(n, k) be the induced subgraphs of GP(n, k) with the set of vertices
{a1,...,a,} and {by,...,b,}, respectively. The subgraphs A(n, k) and
B(n, k) are the outer and inner subgraphs of GP(n, k), respectively.

Theorem 2.9. [f S;(GP?(n,k)), 2 < i <6, is a signed spectral mo-
ment of GP?(n, k), then the following holds:
So(GP?(n,k)) = 6n,

6(t* —t7)  if3ln, k=12
S3(GP?(n,k)) =

0 otherwise,
(30n+8(¢"—q7)  if (4ln, k=1%)
S:(GP?(n k) = or (k=1)
[ 30n otherwise,

(10(C5 = Cy) if Bln, k= %)
or (k=2 n+#10)
or (k=2)
S5(GP?(n,k)) =
60(t+ — ) if 3n, k=12

L 0 otherwise,
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174n+12(C§ — Cy)  if (6|n, k=2, n#18) or
(2n, k=% -1, n#8) or
(k=3, n#{8,9,10,12,18})

174n 4+ 96(qt — q7) ifdn, k="79,n#12
Se(GP7(m k) = 4 1740 4 96(q* — q7) ifk=1

+12(C¢ — Cy)

176n if 3In, k=%

174n otherwise.

Proof. By Theorem 2.3, we get Sa(GP?(n,k)) = 6n. Suppose that
3|n and k = g Then, bbiyzb; 2nb; is a triangle of GP?(n,k). By
Theorem 2.3, we have S5(GP?(n, g)) = 6(tT —t7). Otherwise, there
are no triangle in GP7(n, k) and also S3(GP°(n,k)) = 0. Assume that
4|n and k = g, then b;bit2b;, 20, 30 is a quadrangle in GP?(n, k) and
if £ = 1, then a;b;b;11a,11a; is a quadrangle in GP?(n, k). Then, by

Theorem 2.4, we have
S4(GP?(n, g)) = —6n+36n+8(q"—q")
= 30n+8(¢gt —q).

Otherwise, g7 — ¢~ = 0. So, Sy(GP?
k:gork:%andn#m. Itk =
a pentagon in GP?(n, k), if k = 2, then bibisnb; 2nb; anb; | onb; | snb;
is another pentagon of GP?(n,k) and if & = 2 and n # 10, then

a;bbiyoa; 1 0a;11a; is a pentagon in GP?(n, k). On the other hand, U4+ —
U =0=t"—t". Thus,

—~

n,k)) = 30n. Assume that 5/n,

ol 3

s then bzbz-‘,-%bz-l,-%”bz—&-%bl—k%bz 1s

n 2n

S5 (GP? (1, ) = S5(GP(n, 2)) = S5(GP?(n,2) = 10(CF — C5).

In other cases, S5(GP?(n,k)) = 0. If 3|n, k = g, then we have
Uf —U; =3(t" —t7) and C5” — C5 = 0. Hence,

Ss(GP (n, g)) = 60(t — 7).
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Now, we obtain Sg(GP?(n,k)). By Theorem 2.4, we have

Ss(G7) = —10m+6  d? +6|Py| + 12|Sy| + 12(U5 — Uy)
i=1
+ 36(Bf — By)+24(Bs — By ) +24t(G) + 48(q* —q")
+ 12(C§ — Cy).
Moreover, |S;| = 2n and B — By = B — B; = 0. Now, assume that
6ln, k = < andn # 18. Then, bibiy sbissbisgh, b, 5 is a hexagon in
GPU<TL, ]{3) If 2|n and k = E - 1, then aibibi+%_1bi+n_2ai+n_2ai+n_1ai

is a hexagon of GP?(n, k) and if kK = 3 and n # {8,9, 10, 12,18}, then
a;b;ibi130;130;12a;11a; is a hexagon in GP?(n, k). Therefore, |Py| = 12n
and ¢t — ¢~ =0=U; — U . Thus,

n n
SG(GPU(n, g)) = SG(GPU(n, 3)) = S6(GPJ(TZ, 5 — 1))
= —30n+ 108n+ 72n + 24n + 12(C{ — Cy)

174n + 12(CF — C5).
If 3|n and k = g, then |P;| = 11n and Cf” — Cy = 0. Hence,

Ss(GP? (n, g)) —  —30n + 108n + 66n + 24n + 8n
= 176n.
Suppose that 4|n, k = g and n # 12. So U — U; = 4(q" — q7).
Therefore,

So(GP?(n. 7)) = —30n+ 1080 + 720 +24n +96(¢* —¢)

= 174n+96(¢" —¢").

Finally if k = 1, then U —Us = 4(q*—q™). Since a;a;11a;42b;12b;14bia;
is a hexagon in GP?(n, k), we get

Se(GP?(n,1)) = —30n+ 108n + 72n + 24n +96(¢" — ¢ ) + 12(Cq — Cy)
= 174n +96(q" —¢7) + 12(Cf — Cy).
Otherwise, Cg — Cy = 0 and |P4| = 12n. Thus,
Se(GP?(n,k)) = —30n + 108n + 72n + 24n = 174n.
This completes the proof. O

Theorem 2.10. If T;(GP?(n,k)), 0 < i < 5, is a signed Laplacian
spectral moments of GP?(n, k), then

To(GP?(n,k)) =2n, Ti(GP°(n,k)) =6n, TH(GP%(n,k))=24n,
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108n — 6(tt —t7)  if3n, k=1
T5(GP? (n, k) =

108n otherwise,

516n — 72(t7 —t7)  if 3ln k=12
516n + 8(q" — ¢~ if (4n, k=12
TGP (n. k) = o) f(()7"|(k; _ 1)4)
516n otherwise,
2556n — 10(C5" — C5)  if (5|n, k=12 ork=22)
or (k=2)
2556 + 120(¢T — ¢7) ifdn, k=1
Ts(GP? (n, k) = 2556n — 600(t+ —t7) if 3In, k=%
2n
2556n + 30 (¢7 —q") ifk=1
i=1
2556n otherwise.

Proof. Since |V(GP?(n,k))| = 2n and |E(GP?(n,k))| = 3n, we get
To(GP?(n,k)) = 2n and T1(GP?(n,k)) = 6n. By Theorem 2.5, we
have T5(GP?(n,k)) = 6n + 18n = 24n. Now, consider T3(GP(n,k)).

If 3|n and k = g then bbi. 3 by, 2.0; is a triangle of GP?(n, k). So, the

number of triangles in GP?(n, k) is either equal to t* — ¢~ or equal to
zero. In the first case, we have:

T3(GP7(n,k)) = —6(tt —1t7)+ 54n + bdn
= —6(t" —t7) + 108n,

and in the second case, we have T5(GP?(n,k)) = 54n + 54n = 108n.
Now, we compute Ty(GP?(n, k)). If 3|n and k = g, then the number of

triangles containing the outer subgraph of GP?(n, k) is equal to 0 and
the number of triangles containing the inner subgraph of GP?(n, k) is
equal to ¢t —¢~. On the other hand, S;(GP?(n,k)) = 30n. Then, we
have

TW(GP?(n, g)) = 30n — T2(t" —t7) + 216n + 162n + 108n
= 516n — 72(t7 —t7).
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Suppose that 4|n and k = % Now, bib”%b”%"b”%" is a quadrangle in
GP?(n, k). Using Theorem 2.9, we have

Sy (GP?(n,k)) = 30n+8(¢" —q7).
Since t; = 0, we get
TW(GP° (n, %)) = 30n+8(¢t — ¢ + 216n + 162n + 108n
= 516n+8(q" —q7).

If £ =1, then a;b;b;11a;11a; is a quadrangle in GP?(n,k). On the
other hand, by Theorem 2.9, we get S;(GP?(n,k)) = 30n+8(¢" —q7).
Therefore,

Ty(GP?(n,1)) = 30n+8(¢" —q )+ 216n + 162n + 108n
= 516n+8(¢" —q").

Otherwise, ¢* — ¢~ = 0 . Now, by Theorem 2.9, we get

Si(GP?(n,k)) = 30n.

So,
T,(GP?(n,k)) = 30n+ 216n+ 162n + 108n
= 516n.
n 2n
Now, we compute T5(GP?(n,k)). Let 5|n, k = F or k = = So,
bibiynb;y 2nb;y snb;, anb; is a pentagon in GP’(n, k). If k = 2, then

bibiy2b;y 2n by anb;, onb;, snb; is another pentagon of GP?(n,k). Thus,

2
T5(GP? (n, g)) = Ty(GP’(n, ?”)) — —90n + 270n + 810n + 4861

10(C5 — C5) + 270n + 810n
= 2556n — 10(Cs — C%).

If £ = 2, then a;b;b;12a;12a;110; is a pentagon in GP?(n, k) and t+ —
t~ =0=¢q" — ¢ . This implies that,

Ty(GP’(n,2)) = —90n+ 270n + 810n + 486n — 10(CF — C)
+ 2700+ 810n
= 25560 — 10(C — CF).
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If 4|n and k = %, then Cf — C; =0 =t* — t~. Hence,

T5(GP (n, %)) —  —90n + 270n + 810n + 4860 + 270 + 810n
+ 120(¢" —q7)
= 2556n + 120(¢" — 7).

If3]nandk:g,then05+— ~=0=qg"—q . So,

T5(GP”(n, g)) = —90n + 270n + 810n + 486n — 600(t+ — )
+ 270n + 810n
= 2556n — 600(t+ — t°).
Finally, if £ = 1, then we get

T5(GP°(n,1)) = —90n+ 270n + 810n + 486n + 270n + 810n
2n
+ 30 (¢"—q)
i=1

2n
= 2556n+30) (¢" —q").

i=1
Otherwise, we have

T5(GP%(n,k)) = —90n + 270n + 810n + 486n + 270n + 810n
= 2556m.
This completes the proof. U
Theorem 2.11. (Newton’s identity [2]): Let A1, Aa, ..., A\, be the roots
of the polynomial
(A, x) = 2" + a1+ - 4 a1 T+ ap,

with signed spectral moment Sy. Then

1
_E(Sk + Sk-1a1 + Sp2ag + - + Siag_1).

Now, by Newton’s identity we compute coefficients of characteris-
tic polynomial of signed generalized Petersen graphs and coefficients

of Laplacian characteristic polynomial of signed generalized Petersen
graphs.

Qp —
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Lemma 2.12. Let a;(G?), 1 < i <5, be the coefficients of character-
istic polynomaial of a signed graph G°. Then, we have:

a1<GU) = 0,

az(G%) = —m,

az3(G7) = =2(t" —1t7),

ay(G7) = ;(m +m —4(q Zd2

as(G7) = (2m—6)(t" 1t )—2(UI—U4)—2(C5+—C5_)~

Proof. Using Lemma 2.3, Theorem 2.4 and Theorem 2.11, we get the
desired result. O

Lemma 2.13. Let b;(G?), for 1 < i < 4, be the coefficients of Lapla-
cian characteristic polynomial of a signed graph G°. Then, we have:

bh(G%) = —2m,
ba(G7) = —%(2m—4m2+2df),
=1
1

bs(G7) = 3(4m —6m*+3(1 —m Zd2+2d3+6 — %)),
bi(G7) = —1<—2 —2m® + 8 3—8—m4+(2—10 +4 2)zn:d2
4 - 4 m m m 3 m m 2 ;

+ 4——Zd3+2d4+42dd 8> di(tf —t;)

Vi~V =1
+ 8(qT —q )+ 16m(tT —t ——Zd2 )

Proof. Using Theorem 2.5 and Theorem 2.11, we get the desired result.
O

Corollary 2.14. Let a;(GP%(n,k)) for 1 <i <5, be the coefficients of
characteristic polynomial of a signed generalized Petersen graph. Then,
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we have:

a1 (GP?(n,k)) = 0,
az(GP°(n,k)) = —3n,

as(GP°(n, k) = {—2(t+—t) if 3|n, kzg

0 otherwise,
2| ) n
500 =150 —4(¢" —q7)) if (4ln, k=1)
ay(GP?(n,k)) = or (k=1)
1
5(9712 — 15n) otherwise,
([ —2(Cf —C5) if (5ln, k=12 ork=2)
or (k=2)
as(GP?(n,k)) = (6n —12)(t" —t7) if3n, k=5%
0 otherwise.

\

Proof. Since |E(GP?(n, k)| = 3n, then we have ay(GP?(n,k)) = —3n.
Assume that 3|n and k = 3 Then, bin%bH%bi is a triangle of

GP?(n,k). Thus,

as(GP?(n, g» = —2(t — ).

Otherwise, there is no triangle in GP?(n, k) and a3(GP?(n,k)) = 0.
Suppose that 4|n and k = % Then, bin%szTan%n is a quadrangle
in GP?(n, k). So,

ay(GP?(n, %)) = (Qn2 +3n—4(¢" —q7) — 18n>

(9n2 —4(qt —q7) - 15n>.

N =N —

Otherwise, ¢t — ¢~ = 0. Thus,

6 (GP7(n. k) = %(9n2+3n—18n)

1
= 5(9n2 — 15n).
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Now, assume that k& = 1. Then, a;b;b;11a;110; is a quadrangle in
GP?(n, k). Therefore,

as(GP°(n,1)) = %(9712 +3n—4(¢" —q7) — 18n)

1
5(9712 —4(q" —q7) — 15n).

n 2n n
Suppose that 5|n, k = g o k= - Ifk = e then bin%bH%an%an%nbi
. . o . 2n
is a pentagon in GP?(n, k) and if k = %*, then bin%bH%an%an%an%nbi

is an another pentagon of GP?(n, k). So, U —U; = 0=t —¢". This
yields that,

w(CP(n, D)) = as(GP7(n, 2)
= =2(CH -0Cy).

If k = 2, then a;b;b;y2a;,2a;41a; is a pentagon in GP?(n, k) and U} —
U,y =0 =t"—t". This implies that as(GP?(n,2)) = —2(Cf —C5 ). In
other cases, we have as(GP?(n,k)) = 0. If 3|n, k = g, then U —U,; =
3(tt —t7) =nand CF — C5 = 0. Hence,

Otherwise, a5(GP?(n,k)) = 0. This completes the proof. O

Corollary 2.15. Let b;(GP?(n,k)), for 1 < i < 4, be the coefficients
of Laplacian characteristic polynomial of a signed generalized Petersen
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graph. Then, we have:

b1(GP°(n,k)) = —6n,
by(GP?(n,k)) = 18n* —24n,
( 1
—36n3 + 72n* — ? if 3n, k=%
P2t —t7)

b3(GP?(n,k)) =

108
—36n3 + 72n? — Tn otherwise,

( 54n* —216n° 4 288n* — 1290 if (4|n, k=1%)
—2(q" —q7) or (k=1)

by(GP?(n,k)) = 54n* — 216n° +288n* — 1290 if 3|n, k=%
—(12n —18)(tT —t7)

L 54nt — 216n3 + 288n% — 129n  otherwise.

Proof. Using Lemma 2.13 and a similar method as used in the proof of
Corollary 2.14, one can see that the assertion holds. 0
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