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SIGNED GENERALIZED PETERSEN GRAPH AND ITS
CHARACTERISTIC POLYNOMIAL

E. GHASEMIAN AND G. H. FATH-TABAR∗

Abstract. Let Gσ be a signed graph, where G = (V,E) is the
underlying simple graph and σ : E(G) → {±1} is the sign function
on E(G). In this paper, we obtain k-th signed spectral moments
and k-th signed Laplacian spectral moments of a signed graph Gσ,
together with coefficients of their signed characteristic polynomial
and signed Laplacian characteristic polynomial are calculated.

1. Introduction

Let G = (V,E) be a simple graph and σ : E(G) → {±1} a mapping
on the edge set of G. The graph G together with the sign function σ is
called a signed graph and is denoted by Gσ. If σ(e) = +1, then the edge
e is called positive, and if σ(e) = −1, then the edge e is called negative.
A walk of length k in a graph G is a sequence v1e1 . . . vkekvk+1 with
vertices v1, . . . , vk+1 and edges e1, . . . , ek such that, we have vi ̸= vi+1,
1 ≤ i ≤ k and ei is an edge from vi to vi+1. In a signed graph Gσ, a walk
is called positive (resp., negative) if the number of its negative edges
is even (resp., odd). The number of positive (resp., negative) walks of
length k from vertex vi to vertex vj is denoted by w+

ij(k) (resp., w
−
ij(k)).

A cycle with n ≥ 3 vertices is a simple graph whose vertices can be
sorted as a sequence such that two vertices are adjacent if and only if
they are subsequent members of the sequence. In a signed graph Gσ,
a cycle is called balanced or positive (resp., unbalanced or negative) if
the number of its negative edges is even (resp., odd). A signed graph
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is called balanced if all its cycles are balanced; otherwise, it is called
unbalanced [1].

The adjacency matrix of a graph G, denoted by A(G) = [aij], is
an n × n matrix where aij = 1 if vivj is an edge of the graph and
aij = 0 otherwise. The adjacency matrix of a signed graph, denoted by
A(Gσ) = [aσij], is an n×n matrix where aσij = σ(ij)aij if vivj is an edge
of the graph, and aσij = 0 otherwise. Thus, if e = ij is an edge and
σ(ij) = +1, then aσij = 1 and if e = ij is an edge and σ(ij) = −1, then
aσij = −1, and if e = ij is not an edge, then aσij = 0. The adjacency
matrix of a signed graph is symmetric (see [6] for some basic results
on the adjacency spectrum of signed graphs). The signed Laplacian
matrix of Gσ is the matrix L(Gσ) = D(G)−A(Gσ), where D(G) is the
diagonal matrix of vertex degrees. Let G be a graph with adjacency
matrix A(G). We say that λ(G) is an eigenvalue of G if there exists a
non-zero vector X such that A(G)X = λ(G)X.

Throughout, t is the number of triangles, t+ (resp., t−) is the number
of balanced (resp., unbalanced) triangles, q is the number of quadran-
gles, q+ (resp., q−) is the number of balanced (resp., unbalanced) quad-
rangles, t+i (resp., t−i ) is the number of balanced (resp., unbalanced)
triangles that are contain the ith vertex, q+i (resp., q−i ) is the number
of balanced (resp., unbalanced) quadrangles that are contain the ith

vertex, t+ij (resp., t−ij) is the number of balanced (resp., unbalanced)
triangles at edge ij, U+

n (resp., U−
n ) is a balanced graph obtained from

C+
n−1 (resp., C

−
n−1) by attaching a leaf to one of its vertices, and B5, B4

are two graphs obtained from two cycles C3, C
′
3 of length 3 by identify-

ing one vertex of C3 with one vertex of C ′
3 and identifying one edge of

C3 with one edge of C ′
3, respectively. |Sn| is the number of star graphs

of order n and |Pn| is the number of paths of order n.

2. Main results

In this section, we would like to obtain k-th spectral moments and
k-th Laplacian spectral moments of the signed generalized Petersen
graphs. Taghvaee and Ashrafi in [3] and [4] determined the spectral mo-
ments and Laplacian spectral moments of generalized Petersen graph.

For the sake of completeness we mention below three important lem-
mas which are crucial in our main results in this paper (see, [1, 5]).

Lemma 2.1. Let Gσ be a signed graph with signed adjacency ma-
trix A(Gσ). Then the (i, j)-entry of the matrix Ak(Gσ) is equal to
w+

ij(k)− w−
ij(k).

Suppose that Gσ is a signed graph with adjacency matrix A(Gσ)
and λ1(G

σ), λ2(G
σ), . . . , λn(G

σ) are eigenvalues of Gσ in non-increasing



SIGNED GRAPHS AND SPECTRAL MOMENTS 15

order. Then, Sk(G
σ) =

n∑
i=1

λki (G
σ), k > 0 is the k-th signed spectral

moment of Gσ.

Lemma 2.2. The k-th signed spectral moments of Gσ is equal to the
number of closed walks of length k.

Lemma 2.3. Let Gσ be a signed graph with n vertices and m edges.
Then,

S2(G
σ) = 2m and S3(G

σ) = 6(t+ − t−).

It is also clear that S0(G
σ) = n and S1(G

σ) = 0.

Theorem 2.4. Let Gσ be a signed graph with n vertices and m edges.
Then, we have:

S4(G
σ) = −2m+ 2

n∑
i=1

d2i + 8(q+ − q−),

S5(G
σ) = 30(t+ − t−) + 10(U+

4 − U−
4 ) + 10(C+

5 − C−
5 ),

S6(G
σ) = −10m+ 6

n∑
i=1

d2i + 6|P4|+ 12|S4|+ 12(U+
5 − U−

5 )

+ 36(B+
4 −B−

4 ) + 24(B+
5 −B−

5 ) + 24t(G) + 48(q+ − q−)

+ 12(C+
6 − C−

6 ).

Proof. Vertices that belong to a closed walk of length 4 induce subgraph
in Gσ are isomorphic to P2, P3 and q. Now, in the signed graph Gσ, the
number of closed walks of length 4 which span these subgraphs is equal
to 2|P2|, 4|P3|, 8(q+−q−), respectively. Vertices that belong to a closed
walk of length 5 induce subgraph in Gσ are isomorphic to t, U4 and C5.
In the signed graph Gσ, the number of closed walks of length 5 which
span these subgraphs is equal to 30(t+−t−), 10(U+

4 −U−
4 ) and 10(C+

5 −
C−

5 ), respectively. Now, we compute S6(G
σ). Vertices that belong to

a closed walk of length 6 induce subgraph in Gσ are isomorphic to P2,
P3, P4, S4, U5, B4, B5, t, q, C6. In the signed graph Gσ the number of
closed walks of length 6 which span these subgraphs is equal to 2|P2|,
12|P3|, 6|P4|, 12|S4|, 12(U+

5 − U−
5 ), 36(B

+
4 − B−

4 ), 24(B
+
5 − B−

5 ), 24t,
48(q+ − q−) and 12(C+

6 − C−
6 ), respectively. Note that the number of

3-path in connected graph G are equal to −m+
1

2

n∑
i=1

d2i . �
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Let Tk(G
σ) =

n∑
i=1

µk
i (G

σ), k > 0, be the k-th spectral moment for the

Laplacian spectrum of a signed graphGσ, where µ1(G
σ), µ2(G

σ), . . . , µn(G
σ)

are the Laplacian eigenvalues. Belardo [1] proved that:

Theorem 2.5. [1] Let Gσ be a signed graph with n vertices, m edges
and degree sequence (d1, . . . , dn). Then we have:

T0(G
σ) = n,

T1(G
σ) =

n∑
i=1

di = 2m,

T2(G
σ) = 2m+

n∑
i=1

d2i ,

T3(G
σ) = 6(t− − t+) + 3

n∑
i=1

d2i +
n∑

i=1

d3i .

Theorem 2.6. Let Gσ be a signed graph with n vertices, m edges and
degree sequence (d1, . . . , dn). Then we have:

T4(G
σ) = S4(G

σ) + 4
n∑

i=1

d3i +
n∑

i=1

d4i + 4
m∑

vi∼vj

didj − 8
n∑

i=1

di(t
+
i − t−i ),

T5(G
σ) = −S5(G

σ)− 5
n∑

i=1

d2i + 5
n∑

i=1

d3i + 5
n∑

i=1

d4i +
n∑

i=1

d5i

+ 10
( m∑

vi∼vj

didj +
1

2

n∑
i=1

n∑
i̸=j

d2i dja
σ
ij −

n∑
i=1

d2i (t
+
i − t−i )

+
n∑

i=1

di(q
+
i − q−i )−

m∑
vi∼vj

didj(t
+
ij − t−ij)

)
,

where di is the degree of i-th vertex.

Proof. Let L(Gσ) = D(G)−A(Gσ) be the Laplacian matrix of a signed
graph Gσ and A(Gσ) = Aσ. First, we obtain T4(G

σ). We have

T4(G
σ) =

n∑
i=1

µ4
i (G

σ) = tr(D − Aσ)4

= tr((D − Aσ)2(D − Aσ)2)

= tr(D4)− 4tr(D3Aσ)− 4tr(D(Aσ)3) + 4tr((Aσ)2D2)

+ 2tr(DAσDAσ) + tr((Aσ)4).
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By Theorem 2.4, we have tr((Aσ)4) = S4(G
σ), where S4(G

σ) is 4-th

spectral moments of Gσ. We have, tr(D3Aσ) = 0, tr(D4) =
n∑

i=1

d4i ,

tr((Aσ)2D2) =
n∑

i=1

d3i , tr(D(Aσ)3) = 2
n∑

i=1

di(t
+
i − t−i ). By direct com-

putation, we can see that tr(DAσDAσ) = 2
m∑

vi∼vj

didj, where vi ∼ vj is

an edge of Gσ. This shows that,

T4(G
σ) =

n∑
i=1

d4i − 8
n∑

i=1

di(t
+
i − t−i ) + 4

n∑
i=1

d3i + 4
m∑

vi∼vj

didj + S4(G
σ).

In a similar way, we can compute T5(G
σ). We have,

T5(G
σ) =

n∑
i=1

µ5
i (G

σ) = tr(D − Aσ)5

= tr(D5) + 5tr(D3(Aσ)2)− 5tr(D2(Aσ)3) + 5tr(D2AσDAσ)

− 5tr(D(Aσ)2DAσ) + 5tr(D(Aσ)4)− tr((Aσ)5).

By Theorem 2.4, we get tr((Aσ)5) = S5(G
σ), where S5(G

σ) is 5-th spec-

tral moments of Gσ. We have, tr(D5) =
n∑

i=1

d5i , tr(D
3(Aσ)2) =

n∑
i=1

d4i ,

tr(D2(Aσ)3) = 2
n∑

i=1

d2i (t
+
i − t−i ), tr(D(Aσ)4) =

n∑
i=1

d3i + 2
m∑

vi∼vj

didj −

n∑
i=1

d2i+2
n∑

i=1

di(q
+
i −q−i ), where vi ∼ vj is an edge ofGσ, tr(D(Aσ)2DAσ) =

2
m∑

vi∼vj

didj(t
+
ij − t−ij) and tr(D

2AσDAσ) =
n∑

i=1

n∑
i ̸=j

d2i dja
σ
ij, where a

σ
ij is an

element of the signed adjacency matrix. This implies that,

T5(G
σ) =

n∑
i=1

d5i + 5
n∑

i=1

d4i − 10
n∑

i=1

d2i (t
+
i − t−i ) + 5

n∑
i=1

n∑
i ̸=j

d2i dja
σ
ij

− 10
m∑

vi∼vj

didj(t
+
ij − t−ij) + 5

n∑
i=1

d3i + 10
m∑

vi∼vj

didj − 5
n∑

i=1

d2i

+ 10
n∑

i=1

di(q
+
i − q−i )− S5(G

σ).
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This completes the proof. �

Corollary 2.7. Suppose that Tk(G
σ) and Tk(G) are the k-th Laplacian

spectral moment of a signed graph Gσ and a simple graph G, respec-
tively. Then we have:

T3(G
σ) ≤ T3(G),

T4(G
σ) ≤ T4(G),

T5(G
σ) ≤ T5(G),

with equality if and only if Gσ is balanced signed graph.

Definition 2.8. The signed generalized Petersen graph, denoted by
GP σ(n, k), is a graph with vertices and edges given by

V
(
GP σ(n, k)

)
= {ai, bi|1 ≤ i ≤ n},

and

E
(
GP σ(n, k)

)
= {aibi, aiai+1, bibi+k|1 ≤ i ≤ n},

respectively. Here, i + k are integers modulo n, where n > 6. Since
GP (n, k) ∼= GP (n, n − k), suppose that k 6 ⌊n−1

2
⌋. Let A(n, k) and

B(n, k) be the induced subgraphs of GP (n, k) with the set of vertices
{a1, . . . , an} and {b1, . . . , bn}, respectively. The subgraphs A(n, k) and
B(n, k) are the outer and inner subgraphs of GP (n, k), respectively.

Theorem 2.9. If Si(GP
σ(n, k)), 2 ≤ i ≤ 6, is a signed spectral mo-

ment of GP σ(n, k), then the following holds:

S2(GP
σ(n, k)) = 6n,

S3(GP
σ(n, k)) =

 6(t+ − t−) if 3|n, k = n
3

0 otherwise,

S4(GP
σ(n, k)) =


30n+ 8(q+ − q−) if (4|n, k = n

4
)

or (k = 1)

30n otherwise,

S5(GP
σ(n, k)) =



10(C+
5 − C−

5 ) if (5|n, k = n
5
)

or (k = 2n
5
, n ̸= 10)

or (k = 2)

60(t+ − t−) if 3|n, k = n
3

0 otherwise,
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S6(GP σ(n, k)) =



174n+ 12(C+
6 − C−

6 ) if (6|n, k = n
6 , n ̸= 18) or

(2|n, k = n
2 − 1, n ̸= 8) or

(k = 3, n ̸= {8, 9, 10, 12, 18})

174n+ 96(q+ − q−) if 4|n, k = n
4 , n ̸= 12

174n+ 96(q+ − q−) if k = 1
+12(C+

6 − C−
6 )

176n if 3|n, k = n
3

174n otherwise.

Proof. By Theorem 2.3, we get S2(GP
σ(n, k)) = 6n. Suppose that

3|n and k =
n

3
. Then, bibi+n

3
bi+ 2n

3
bi is a triangle of GP σ(n, k). By

Theorem 2.3, we have S3(GP
σ(n,

n

3
)) = 6(t+ − t−). Otherwise, there

are no triangle in GP σ(n, k) and also S3(GP
σ(n, k)) = 0. Assume that

4|n and k =
n

4
, then bibi+n

4
bi+ 2n

4
bi+ 3n

4
is a quadrangle in GP σ(n, k) and

if k = 1, then aibibi+1ai+1ai is a quadrangle in GP σ(n, k). Then, by
Theorem 2.4, we have

S4(GP
σ(n,

n

4
)) = −6n+ 36n+ 8(q+ − q−)

= 30n+ 8(q+ − q−).

Otherwise, q+ − q− = 0. So, S4(GP
σ(n, k)) = 30n. Assume that 5|n,

k =
n

5
or k =

2n

5
and n ̸= 10. If k =

n

5
, then bibi+n

5
bi+ 2n

5
bi+ 3n

5
bi+ 4n

5
bi is

a pentagon in GP σ(n, k), if k = 2n
5
, then bibi+n

5
bi+ 2n

5
bi+ 4n

5
bi+ 6n

5
bi+ 8n

5
bi

is another pentagon of GP σ(n, k) and if k = 2 and n ̸= 10, then
aibibi+2ai+2ai+1ai is a pentagon in GP σ(n, k). On the other hand, U+

4 −
U−
4 = 0 = t+ − t−. Thus,

S5(GP
σ(n,

n

5
)) = S5(GP

σ(n,
2n

5
)) = S5(GP

σ(n, 2)) = 10(C+
5 − C−

5 ).

In other cases, S5(GP
σ(n, k)) = 0. If 3|n, k =

n

3
, then we have

U+
4 − U−

4 = 3(t+ − t−) and C+
5 − C−

5 = 0. Hence,

S5(GP
σ(n,

n

3
)) = 60(t+ − t−).
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Now, we obtain S6(GP
σ(n, k)). By Theorem 2.4, we have

S6(G
σ) = −10m+ 6

n∑
i=1

d2i + 6|P4|+ 12|S4|+ 12(U+
5 − U−

5 )

+ 36(B+
4 −B−

4 ) + 24(B+
5 −B−

5 ) + 24t(G) + 48(q+ − q−)

+ 12(C+
6 − C−

6 ).

Moreover, |S4| = 2n and B+
4 −B−

4 = B+
5 −B−

5 = 0. Now, assume that

6|n, k =
n

6
and n ̸= 18. Then, bibi+n

6
bi+n

3
bi+n

2
bi+ 4n

6
bi+ 5n

6
is a hexagon in

GP σ(n, k). If 2|n and k =
n

2
− 1, then aibibi+n

2
−1bi+n−2ai+n−2ai+n−1ai

is a hexagon of GP σ(n, k) and if k = 3 and n ̸= {8, 9, 10, 12, 18}, then
aibibi+3ai+3ai+2ai+1ai is a hexagon in GP σ(n, k). Therefore, |P4| = 12n
and q+ − q− = 0 = U+

5 − U−
5 . Thus,

S6(GP
σ(n,

n

6
)) = S6(GP

σ(n, 3)) = S6(GP
σ(n,

n

2
− 1))

= −30n+ 108n+ 72n+ 24n+ 12(C+
6 − C−

6 )

= 174n+ 12(C+
6 − C−

6 ).

If 3|n and k =
n

3
, then |P4| = 11n and C+

6 − C−
6 = 0. Hence,

S6(GP
σ(n,

n

3
)) = −30n+ 108n+ 66n+ 24n+ 8n

= 176n.

Suppose that 4|n, k =
n

4
and n ̸= 12. So U+

5 − U−
5 = 4(q+ − q−).

Therefore,

S6(GP
σ(n,

n

4
)) = −30n+ 108n+ 72n+ 24n+ 96(q+ − q−)

= 174n+ 96(q+ − q−).

Finally if k = 1, then U+
5 −U−

5 = 4(q+−q−). Since aiai+1ai+2bi+2bi+4biai
is a hexagon in GP σ(n, k), we get

S6(GP σ(n, 1)) = −30n+ 108n+ 72n+ 24n+ 96(q+ − q−) + 12(C+
6 − C−

6 )

= 174n+ 96(q+ − q−) + 12(C+
6 − C−

6 ).

Otherwise, C+
6 − C−

6 = 0 and |P4| = 12n. Thus,

S6(GP σ(n, k)) = −30n+ 108n+ 72n+ 24n = 174n.

This completes the proof. �

Theorem 2.10. If Ti(GP
σ(n, k)), 0 ≤ i ≤ 5, is a signed Laplacian

spectral moments of GP σ(n, k), then

T0(GP
σ(n, k)) = 2n, T1(GP

σ(n, k)) = 6n, T2(GP
σ(n, k)) = 24n,
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T3(GP σ(n, k)) =

 108n− 6(t+ − t−) if 3|n, k = n
3

108n otherwise,

T4(GP σ(n, k)) =



516n− 72(t+ − t−) if 3|n, k = n
3

516n+ 8(q+ − q−) if (4|n, k = n
4 )

or (k = 1)

516n otherwise,

T5(GP σ(n, k)) =



2556n− 10(C+
5 − C−

5 ) if (5|n, k = n
5 or k = 2n

5 )
or (k = 2)

2556 + 120(q+ − q−) if 4|n, k = n
4

2556n− 600(t+ − t−) if 3|n, k = n
3

2556n+ 30

2n∑
i=1

(q+ − q−) if k = 1

2556n otherwise.

Proof. Since |V (GP σ(n, k))| = 2n and |E(GP σ(n, k))| = 3n, we get
T0(GP

σ(n, k)) = 2n and T1(GP
σ(n, k)) = 6n. By Theorem 2.5, we

have T2(GP
σ(n, k)) = 6n + 18n = 24n. Now, consider T3(GP

σ(n, k)).

If 3|n and k =
n

3
, then bibi+n

3
bi+ 2n

3
bi is a triangle of GP σ(n, k). So, the

number of triangles in GP σ(n, k) is either equal to t+ − t− or equal to
zero. In the first case, we have:

T3(GP
σ(n, k)) = −6(t+ − t−) + 54n+ 54n

= −6(t+ − t−) + 108n,

and in the second case, we have T3(GP
σ(n, k)) = 54n + 54n = 108n.

Now, we compute T4(GP
σ(n, k)). If 3|n and k =

n

3
, then the number of

triangles containing the outer subgraph of GP σ(n, k) is equal to 0 and
the number of triangles containing the inner subgraph of GP σ(n, k) is
equal to t+ − t−. On the other hand, S4(GP

σ(n, k)) = 30n. Then, we
have

T4(GP
σ(n,

n

3
)) = 30n− 72(t+ − t−) + 216n+ 162n+ 108n

= 516n− 72(t+ − t−).
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Suppose that 4|n and k =
n

4
. Now, bibi+n

4
bi+ 2n

4
bi+ 3n

4
is a quadrangle in

GP σ(n, k). Using Theorem 2.9, we have

S4(GP
σ(n, k)) = 30n+ 8(q+ − q−).

Since ti = 0, we get

T4(GP
σ(n,

n

4
)) = 30n+ 8(q+ − q−) + 216n+ 162n+ 108n

= 516n+ 8(q+ − q−).

If k = 1, then aibibi+1ai+1ai is a quadrangle in GP σ(n, k). On the
other hand, by Theorem 2.9, we get S4(GP

σ(n, k)) = 30n+8(q+−q−).
Therefore,

T4(GP
σ(n, 1)) = 30n+ 8(q+ − q−) + 216n+ 162n+ 108n

= 516n+ 8(q+ − q−).

Otherwise, q+ − q− = 0 . Now, by Theorem 2.9, we get

S4(GP
σ(n, k)) = 30n.

So,

T4(GP
σ(n, k)) = 30n+ 216n+ 162n+ 108n

= 516n.

Now, we compute T5(GP
σ(n, k)). Let 5|n, k =

n

5
or k =

2n

5
. So,

bibi+n
5
bi+ 2n

5
bi+ 3n

5
bi+ 4n

5
bi is a pentagon in GP σ(n, k). If k = 2n

5
, then

bibi+n
5
bi+ 2n

5
bi+ 4n

5
bi+ 6n

5
bi+ 8n

5
bi is another pentagon of GP σ(n, k). Thus,

T5(GP
σ(n,

n

5
)) = T5(GP

σ(n,
2n

5
)) = −90n+ 270n+ 810n+ 486n

− 10(C+
5 − C−

5 ) + 270n+ 810n

= 2556n− 10(C+
5 − C−

5 ).

If k = 2, then aibibi+2ai+2ai+1ai is a pentagon in GP σ(n, k) and t+ −
t− = 0 = q+ − q−. This implies that,

T5(GP
σ(n, 2)) = −90n+ 270n+ 810n+ 486n− 10(C+

5 − C−
5 )

+ 270n+ 810n

= 2556n− 10(C+
5 − C−

5 ).
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If 4|n and k =
n

4
, then C+

5 − C−
5 = 0 = t+ − t−. Hence,

T5(GP
σ(n,

n

4
)) = −90n+ 270n+ 810n+ 486n+ 270n+ 810n

+ 120(q+ − q−)

= 2556n+ 120(q+ − q−).

If 3|n and k =
n

3
, then C+

5 − C−
5 = 0 = q+ − q−. So,

T5(GP
σ(n,

n

3
)) = −90n+ 270n+ 810n+ 486n− 600(t+ − t−)

+ 270n+ 810n

= 2556n− 600(t+ − t−).

Finally, if k = 1, then we get

T5(GP
σ(n, 1)) = −90n+ 270n+ 810n+ 486n+ 270n+ 810n

+ 30
2n∑
i=1

(q+ − q−)

= 2556n+ 30
2n∑
i=1

(q+ − q−).

Otherwise, we have

T5(GP
σ(n, k)) = −90n+ 270n+ 810n+ 486n+ 270n+ 810n

= 2556n.

This completes the proof. �

Theorem 2.11. (Newton’s identity [2]): Let λ1, λ2, . . . , λn be the roots
of the polynomial

ϕ(A, x) = xn + a1x
n−1 + · · ·+ an−1x+ an,

with signed spectral moment Sk. Then

ak = −1

k
(Sk + Sk−1a1 + Sk−2a2 + · · ·+ S1ak−1).

Now, by Newton’s identity we compute coefficients of characteris-
tic polynomial of signed generalized Petersen graphs and coefficients
of Laplacian characteristic polynomial of signed generalized Petersen
graphs.
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Lemma 2.12. Let ai(G
σ), 1 ≤ i ≤ 5, be the coefficients of character-

istic polynomial of a signed graph Gσ. Then, we have:

a1(G
σ) = 0,

a2(G
σ) = −m,

a3(G
σ) = −2(t+ − t−),

a4(G
σ) =

1

2
(m2 +m− 4(q+ − q−)−

n∑
i=1

d2i ),

a5(G
σ) = (2m− 6)(t+ − t−)− 2(U+

4 − U−
4 )− 2(C+

5 − C−
5 ).

Proof. Using Lemma 2.3, Theorem 2.4 and Theorem 2.11, we get the
desired result. �

Lemma 2.13. Let bi(G
σ), for 1 ≤ i ≤ 4, be the coefficients of Lapla-

cian characteristic polynomial of a signed graph Gσ. Then, we have:

b1(G
σ) = −2m,

b2(G
σ) = −1

2
(2m− 4m2 +

n∑
i=1

d2i ),

b3(G
σ) = −1

3
(4m3 − 6m2 + 3(1−m)

n∑
i=1

d2i +
n∑

i=1

d3i + 6(t− − t+)),

b4(G
σ) = −1

4

(
− 2m− 2m2 + 8m3 − 8m4

3
+ (2− 10m+ 4m2)

n∑
i=1

d2i

+ (4− 8m

3
)

n∑
i=1

d3i +
n∑

i=1

d4i + 4
m∑

vi∼vj

didj − 8
n∑

i=1

di(t
+
i − t−i )

+ 8(q+ − q−) + 16m(t+ − t−)− 1

2
(

n∑
i=1

d2i )
2
)
.

Proof. Using Theorem 2.5 and Theorem 2.11, we get the desired result.
�

Corollary 2.14. Let ai(GP
σ(n, k)) for 1 ≤ i ≤ 5, be the coefficients of

characteristic polynomial of a signed generalized Petersen graph. Then,
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we have:

a1(GP
σ(n, k)) = 0,

a2(GP
σ(n, k)) = −3n,

a3(GP
σ(n, k)) =

{
−2(t+ − t−) if 3|n, k =

n

3
0 otherwise,

a4(GP
σ(n, k)) =


1

2
(9n2 − 15n− 4(q+ − q−)) if (4|n, k = n

4
)

or (k = 1)
1

2
(9n2 − 15n) otherwise,

a5(GP
σ(n, k)) =


−2(C+

5 − C−
5 ) if (5|n, k = n

5
or k = 2n

5
)

or (k = 2)
(6n− 12)(t+ − t−) if 3|n, k = n

3

0 otherwise.

Proof. Since |E(GP σ(n, k)| = 3n, then we have a2(GP
σ(n, k)) = −3n.

Assume that 3|n and k =
n

3
. Then, bibi+n

3
bi+ 2n

3
bi is a triangle of

GP σ(n, k). Thus,

a3(GP
σ(n,

n

3
)) = −2(t+ − t−).

Otherwise, there is no triangle in GP σ(n, k) and a3(GP
σ(n, k)) = 0.

Suppose that 4|n and k =
n

4
. Then, bibi+n

4
bi+ 2n

4
bi+ 3n

4
is a quadrangle

in GP σ(n, k). So,

a4(GP
σ(n,

n

4
)) =

1

2

(
9n2 + 3n− 4(q+ − q−)− 18n

)
=

1

2

(
9n2 − 4(q+ − q−)− 15n

)
.

Otherwise, q+ − q− = 0. Thus,

a4(GP
σ(n, k)) =

1

2
(9n2 + 3n− 18n)

=
1

2
(9n2 − 15n).
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Now, assume that k = 1. Then, aibibi+1ai+1ai is a quadrangle in
GP σ(n, k). Therefore,

a4(GP
σ(n, 1)) =

1

2
(9n2 + 3n− 4(q+ − q−)− 18n)

=
1

2
(9n2 − 4(q+ − q−)− 15n).

Suppose that 5|n, k =
n

5
or k =

2n

5
. If k =

n

5
, then bibi+n

5
bi+ 2n

5
bi+ 3n

5
bi+ 4n

5
bi

is a pentagon inGP σ(n, k) and if k = 2n
5
, then bibi+n

5
bi+ 2n

5
bi+ 4n

5
bi+ 6n

5
bi+ 8n

5
bi

is an another pentagon of GP σ(n, k). So, U+
4 −U−

4 = 0 = t+− t−. This
yields that,

a5(GP
σ(n,

n

5
)) = a5(GP

σ(n,
2n

5
))

= −2(C+
5 − C−

5 ).

If k = 2, then aibibi+2ai+2ai+1ai is a pentagon in GP σ(n, k) and U+
4 −

U−
4 = 0 = t+−t−. This implies that a5(GP

σ(n, 2)) = −2(C+
5 −C−

5 ). In

other cases, we have a5(GP
σ(n, k)) = 0. If 3|n, k =

n

3
, then U+

4 −U−
4 =

3(t+ − t−) = n and C+
5 − C−

5 = 0. Hence,

a5(GP
σ(n,

n

3
)) = (2(3n)− 2(3)− 6)(t+ − t−)

= (6n− 12)(t+ − t−).

Otherwise, a5(GP
σ(n, k)) = 0. This completes the proof. �

Corollary 2.15. Let bi(GP
σ(n, k)), for 1 ≤ i ≤ 4, be the coefficients

of Laplacian characteristic polynomial of a signed generalized Petersen
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graph. Then, we have:

b1(GP
σ(n, k)) = −6n,

b2(GP
σ(n, k)) = 18n2 − 24n,

b3(GP
σ(n, k)) =


−36n3 + 72n2 − 108n

3
if 3|n, k = n

3

+2(t+ − t−)

−36n3 + 72n2 − 108n

3
otherwise,

b4(GP
σ(n, k)) =



54n4 − 216n3 + 288n2 − 129n if (4|n, k = n
4
)

−2(q+ − q−) or (k = 1)

54n4 − 216n3 + 288n2 − 129n if 3|n, k = n
3

−(12n− 18)(t+ − t−)

54n4 − 216n3 + 288n2 − 129n otherwise.

Proof. Using Lemma 2.13 and a similar method as used in the proof of
Corollary 2.14, one can see that the assertion holds. �
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آن مشخصه ی چندجمله ای ضریب و علامت دار تعمیم یافته پترسن گراف

فتح تبار غلام حسین و قاسمیان الهام
کاشان ایران، کاشان، دانشگاه ریاضی علوم دانشکده

σ : E(G) −→ {±} و ساده Gگراف = (V,E) آن در که است علامت دار Gσگراف کنید فرض
گشتاور k-امین و طیفی گشتاور k-امین مقاله این در است. E(G) یال های مجموعه روی علامت تابع
مشخصه چندجمله ای ضرایب و مشخصه چندجمله ای ضرایب همراه به را علامت دار گراف لاپلاسی طیفی

آوریم. به دست علامت دار گراف های لاپلاسی

مجاورت. ماتریس علامت دار، تعمیم یافته پترسن گراف علامت دار، گراف کلیدی: کلمات

٢


