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IDEALS WITH (d;,...,d,)-LINEAR QUOTIENTS
L. SHARIFAN*

ABSTRACT. In this paper, we introduce the class of ideals with
(di,...,dmn)-linear quotients generalizing the class of ideals with
linear quotients. Under suitable conditions, we control the numeri-
cal invariants of a minimal free resolution of ideals with (d1, ..., d)-
linear quotients. In particular, we show that their first module of
syzygies is a componentwise linear module.

1. INTRODUCTION

Let k be a field, and R = k[z1, ..., x,] be the polynomial ring in n
variables. In this paper, we introduce and study a class of ideals in R
which can be considered as a generalization of the class of ideals with

linear quotients (see, [3, 10]).
Let I be a graded ideal, {f1,..., fin} be a homogeneous system of
generators of [ and (di,...,d,) be an m-tuple of positive integers

supposing d; = 1. We say that I has (dy, ..., d,,)-linear quotients with
respect to the elements fi,..., f,, if the ideal (f1,..., f;—1) : f; has

d;-linear resolution for all j = 2,...,m. Notice that, this property
depends on the order of the generators. If dy = --- = d,, = d, we
simply say that [ has d-linear quotients with respect to the elements
fi,..., fm and if d = 1, we get the usual class of ideals with linear
quotients.

Monomial ideals with linear quotients were introduced in [%] and
have strong combinatorial implication (see for example, [11]). A very
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important property of ideals with linear quotients is that they are com-
ponentwise linear (see, [10, Corollary 2.4]).

Recall that componentwise linear modules over a polynomial ring
has been introduced by Herzog and Hibi, enlarging the class of the
graded modules with a d-linear resolution (see [0]). Interesting results
concerning their graded Betti numbers has been proved by Aramova,
Conca, Herzog and Hibi (see [I, 2, 3, 6, 7]). Later, Romer (see [12])
studied more homological properties of componentwise linear modules
in the general setting of finitely generated modules over Koszul algebras
(instead of polynomial rings).

In this paper, we assume that I = (fy,..., fn,) has (di,...,dy)-
linear quotients with respect to fi,..., f, and deg(f1) +dy < --- <
deg(fm) + dm. In Theorem 4.2, we study the case of ideals with 2-
linear quotients and we prove a property of these ideals which is close
to the componentwise linear property. In Theorem 4.7, we study the
minimal free resolution of R/I by iterated mapping cone and precisely
we compute the regularity of R/I. Finally, in Theorem 4.9, we show
that Syz; (/) is a componentwise linear module.

We organize the paper as it follows: In Section 2, we review some
basic definitions, notations and results that we need in subsequent sec-
tions. In Section 3, we give a sufficient condition for minimality of
a resolution obtained by the mapping cone (see Theorem 3.1). Next,
we give some easy and technical lemmas that we need for studying
Syz1(I). Section 4 is devoted to the main results about ideals with
(dy,...,dy)-linear quotients.

Furthermore, the paper includes several examples to illustrate and
delimite the results. Definitely, via these examples, we examine some
ideals with (di, ..., d,,)-linear quotients to see if they have nice prop-
erties of ideals with linear quotients or not (see [10, 11]).

2. PRELIMINARIES

The Castelnuovo-Mumford reqularity (or briefly regularity) of a graded
finitely generated R-module M, is defined as

reg(M) = max{j —i; 5;;(M) # 0}
and the projective dimension of M is defined as
pd(M) = max{i; B;;(M) # 0 for some j},

where 3; ;(M) is the (i, j)th graded Betti number of M.
Let
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be the graded minimal free resolution of M. Then, the p—th syzygy
module of M, denoted by Syz,(M), is defined as Syz,(M) = ker(d,—1) =
Im(6,). Recall that for each j, the differential d, is given by a matrix
M (which depends on the chosen basis of F}s). So Syz,(M) is gener-
ated by the columns of M,,.

Let M be a graded R-module. The initial degree of M is defined as
indeg(M) = min{d € Z; M, # 0}.

For d € Z, we write M_4~ for the submodule of M which is generated
by all homogeneous elements of M with degree d. Moreover, we write
M, for the module generated by all homogeneous elements in M whose
degrees are less than or equal to d.

If N is a graded submodule of M, then

(M/N)<cos> = (Moy~ + N)/N.

For a module M minimally generated in degrees i; < --- < 1y, we
define My = M and for every j =2,...,/,

Mgy o= Mgy /(M) <indegg; 1> = M1y /(Myj-1y)<i; 1>
Lemma 2.1. If M is a module minimally generated in degrees i; <
coe <y, then for each 2 <r </,

(M{T‘}><ir> = (M<z’1> +oeee At M<ir>)/M<i1> ot M<ir,1>).
Proof. Note that

(Mgy)<ins = (Mp_1y/(Mp—1y)<ip_1>)<in>
= ((My—1y)<ip> + (Mp_1y) <ip_y>) /[ (Mp—1y) <iyp_1>

and if we continue in this way, we get the desired result. U

Let d € Z. We say that M has a d-linear resolution if 3; ;(M) = 0
for j # d + i, and we say M is componentwise linear if for all integers
d the module M_4- has a d-linear resolution.

For more information concerning the componentwise linear modules,
see [2, 3, 0, 12]. We select here some good properties of their graded
minimal free resolutions.

Lemma 2.2. If M is a graded R-module and it has an i-linear resolu-
tion, then mM has an i + 1—linear resolution, where m = (1, ..., 2,)
s the homogeneous maximal ideal of R.

Lemma 2.3. (see [12, Lemma 3.2.2]) Let M be a graded R—module.
Then the following statements are equivalent:
(1): M is componentwise linear;
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(ii): M/M_ingegnry> is componentwise linear and M ipgeqrr)> has
an indeg(M)- linear resolution.

The following corollary is an immediate consequence of the above
lemma.

Corollary 2.4. Let M be a graded module minimally generated in de-
grees iy < --- < iy. Then M is a componentwise linear module if and
only if for each 1 < j <L, (M{jy)<i;> has an i;-linear resolution.

Following Romer, we define a special subcomplex of the minimal
graded free resolution of a module.

Definition 2.5. Let M be a graded R—module and (G.,d.) be the

minimal graded free resolution of M. We define the subcomplex (G., d.)
of (G.,d.) to be

Gi = R(—(i + indeg(M)))Puiniestns C Gy and d. = d.|g .

Lemma 2.6. (see [12, Lemma 3.2.4]) Let M be a graded R—module
such that Mcindeg(rry> has a linear resolution, and let (G.,d.) be the
manimal graded free resolution of M. Then:

(i): G. is the minimal graded free resolution of M ipgeq(rr)>-
(ii): G./G. is the minimal graded free resolution of M /M ipgeq(rr)>-

Proposition 2.7. (see [13, Proposition 2.2]) Let M be a componen-
twise linear R-module minimally generated in degrees iy < --- < 1.
Then for each 1 < i < pd(M), we have

/817J(M> :OfOT.]?él‘i‘Zl,,Zg—f—l

Next, we review spme basic properties of ideals with linear quotients.

Let I be a graded ideal and {fi,..., f,n} be a homogeneous system
of generators of I and I; = (f1,..., f;) for j =1,...,m. We say that
I has linear quotients with respect to the elements fi,..., f,,, if the
ideal I;_; : f; is generated by linear forms for all j = 2,..., m. Notice
that this property depends on the order of the generators. Any order
of the generators for which we have linear quotients will be called an
admissible order. If I has linear quotients with respect to an admissible
order of a homogeneous system of generators, we simply say I has linear
quotients. Ideals with linear quotients have the following properties:

Proposition 2.8. (see [10, Corollary 2.4]) If the graded ideal I has
linear quotients with respect to the elements fi,..., fm, then I is com-
ponentwise linear provided that {fi1,..., fm} is a minimal system of
generators.
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For a monomial ideal I, we denote by G(/) the unique minimal
system of monomial generators of I. In this case, when we say I has
linear quotients, we mean I has linear quotients with respect to an

admissible order of G([)

Proposition 2.9. (see [I1, Lemma 2.1)) If a monomial ideal I has
linear quotients, then there exists a degree increasing admissible order

of G(I).
3. MAPPING CONE TECHNIQUE

One of the fundamental tools for computing free resolutions is map-
ping cone technique. Many well-known free resolutions arise as iterated
mapping cones. For example, the Taylor resolution of monomial ideals.

The idea of the iterated mapping cone construction is the following:
Let {fi1,...,fm} be a homogeneous system of generators for I, and
I; = (f1,...,f;). Then, for j =2,...,m, there are exact sequences

0— R/(Ij,1 : fj) — R/Ij,1 — R/Ij — 0

assuming that a free R—resolution (F.,d.) of R/I;_; and a free R-
resolution (G.,d.) of R/(I;_y : f;) are known, we can obtain a resolu-
tion (M(¢),v.) of R/1; as a mapping cone of a complex homomorphism
¢+ G. = F., which is a lifting of the map R/(I;—1 : f;) = R/I;_1.
The mapping cone M(v)) is the complex such that

(M) = Fi © Gi,
with the differential maps

%(‘Tv y) = (%—1(9) + 5,(%‘), _di—l(y))>
where x € F; and y € G;_1. This complex is exact (see [, Page 650
and Proposition A3.19.]), so, it is a free resolution for R/I;.

It is clear that in this way, we get a free resolution of R/I. Of
course, in general, such a resolution may be non-minimal. For exam-
ple if I = (fi, f2, f3) where f; = 23, fo = a3, f3 = 2129, the result of
the iterated mapping cone is not a minimal free resolution. But, there
are some important classes of ideals for which the minimal free reso-
lution obtained by iterated mapping cone. For example, the Eliahou-
Kervaire resolution of stable monomial ideals (as noted by Evans and
Charalambous|[5]). More in general, if I has linear quotients with re-
spect to a minimal homogeneous system of generators, then its minimal
free resolution can be obtained by iterated mapping cone. This is an
immediate consequence of [10, Corollary 2.7].

Here, we give a sufficient condition to check the minimality of a
resolution obtained by the mapping cone technique.
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Theorem 3.1. Let I be a graded ideal of R and f be a homogeneous
form of degree d which does not belong to I. Then, we have the following
graded short exact sequence:

0= R/(I: f)(—d) — R/T — R/I+(f) — 0.

Assuming that the minimal free resolution of the modules R/ (I : f) and
R/I are already known. Then, the minimal free resolution of R/I +
(f) is obtained by the mapping cone provided that for each 1 < i <

pd(R/(I : f)),

{7 Big(R/IL - f))#0yn{j—d; Biy(R/I) #0} =0,  (3.1)
and n this case

(a):

Big(R/T +(f)) = Big(R/T) + Bim1j—a(R/(L : [)),

(b):

reg(R/(I 4 (f)) = max{reg(R/I),reg(R/(I : f)) +d — 1}

(c):

pd(R/(I + (f)) = max{pd(R/I),pd(R/(I : f)) + 1}.

Proof. Let (F.,d.) be the minimal free resolution of R/I, (G.,d.) be
the minimal free resolution of R/(I : f) shifted by d and ¢ : G. — F.
be the complex graded homomorphism which is a lifting of the map
R/(I : f)(—d) — R/I. It is enough to show that the mapping cone
complex is the minimal free resolution of R/(I + (f)).

Let for each r, M, (resp., N,) be the matrix of §, (resp., d,) with
respect to the canonical basis of F, and F,_; (resp., G, and G,_1).
Also, assume that for each r, O, be the matrix of v, : G, — F,. Then,
by the mapping cone construction, the matrix of ,, with respect to

the canonical basis of F,. & G,_; and F,_; ® G,_s, is denoted by M.,
has the following shape;

I MT ‘ Or—l
M= ()

So, the result of the mapping cone is the minimal free resolution if
and only if Im(y) C mF..

Let e1,..., e, (r/(1-f)) be the basis of G. in the homological degree 1,
and 7y, ..., Mg, (r/r) be the basis of F. in the homological degree 7. Then,
by the hypothesis ¢; : G; — F; is given by v;(e;) = f;(lR/I) M,
where for each 1 <t < f5;(R/I) if a;; # 0 then deg(e;) > deg(n:) . So,
deg(a;) > 0 for each i and ¢ when a; # 0. So, the conclusion follows.
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The parts (a), (b), (c) are directly followed by the minimality of the
obtained resolution. U

Remark 3.2. If I = (f1,..., fm) and I + (f) is minimally generated
by {fi,-.-, fm, [}, then Im(y;) € mF; and we just need to check
Equation 3.1 for 2 < j < pd(R/(I : f)).

Next, we give an example in which the minimal free resolution is
computed by iterated mapping cone by successive using Theorem 3.1.
We first recall the definition of lex-segment ideals.

A monomial ideal I C R is called a lex-segment ideal if for all mono-
mials v € [ and all monomials v € R with deg(u) = deg(v) and
VU > U, one has v € 1.

Example 3.3. Let

2 m ,.m—1 m—1
I'= (z],m129,...,01%,, 25,25 X3,...,X5 T
m—1,_.3 m—1,.2 m—1,_2 C R
Ty XY, Ty X Ty, ., Ty Ty Ty, TaTy) C

where m > 1. Then the minimal free resolution of R/I is given by the
iterated mapping cone. It is easy to see that in each step, Equation 3.1
holds. Let us just check the final step. Notice that

2 m ,m—1 m—1 m—1,.3
J = (], 01@0, ..., BTy, XY, XY L3, ., Ty Xy, Ty Ty,
m—1,.2 m—1,2
Ty T Tigs - Ty Ty Tpo1)

is a Lex-segment ideal. So, J has linear quotients with respect to

2 m .m—1 m—1 m—1,.3
L1, L1X2y ..., X1Tn, Ly , Ty T3y...,To Liy Ty Tiiq,
m—1,.2 m—1,.2

Therefore, J is a componentwise linear ideal and by Proposition 2.7,

{i—2; Bij(R/J)#0} C{i+m—3,i+m—1,i—1}.

. _ m—1 m—2 m—2 m—2_.3
Jiwoxn, = (wr, a0y, w8 s, B, X,
m—2,.2 m—2,.2

Ty T T, o Ty X Tpo1)

is again a lex-segment ideal and it has linear quotients with respect to

m—1 , m—2 m—2 m—2,.3 m—2,.2 m—2,.2
T, Xy 5Ty X3-. Ty Xis Ty Tips Ty T Tig2, - Ty Tip Tt

Thus, J : xox, is componentwise linear and by Proposition 2.7, we
have

{j; Bij(R/(J : waxy,)) # 0} C {i+m —2,i+m}.
So, the result follows by Theorem 3.1 and Remark 3.2.
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In the following easy and technical lemma, I is a graded ideal gen-
erated by homogeneous forms fi,..., f,,. For each 1 < j < m, let
I; = (f1,..., f;) and suppose that the ideal L; = (f1,..., fj—1) : f; has
initial degree d;.

Lemma 3.4. If the minimal free resolution of R/I is computed by
iterated mapping cone and j, = max{i ; deg(f;) +d; < £}, then for each
p=1,
(Syzp(1))<trp-1> = (SYzp(L,)) <tap-1>-

Proof. Let (F.,4.) be the minimal free resolution of R/I;,, (G.,d.) be
the minimal free resolution of R/(I;, : fj,+1) shifted by deg(fj,+1) and
¥ : G. — F. be the graded complex homomorphism which is a lifting
of the map R/([j, : fj,+1)(—deg(fj+1)) — R/I;,. Also, assume that

M1, N, and Oy, similar to the proof of Theorem 3.1, are the matrices
of 0pt1, dp and 1, respectively. Then, the matrix of v,;; has the

following shape:
p (M | Oy
p+1 0 ‘ _ j\/;) .

Note that Syz,(lj,+1) is generated by the columns of M}, and
Syzp(1;,) is generated by the columns of M, ;. Also, note that each

columns of
Op
N,

as elements of Syz,(1;,11) has degree at least deg(f;,+1)+d;,-1+p—1>
¢+ p. So, it is clear that

(Syzp(Lipt1))<erp—1 = (Syzp(1,)) <erp-1-

Therefore, (Syz,(L,+1))<e4+p-1> = (Sy2p(L},))<t+p—1>. Continuing in
this way, we conclude that

(Syzp<—sz))<€+p71> = (Syzp(l))<é+p*1>-
O

For a graded ideal I, assume that Syz; (/) is minimally generated in
the degrees i; < --- <igpand foreach 1 <7 < £, let N, = (Syz1(1)) (-

Lemma 3.5. If the minimal free resolution of R/I is computed by
iterated mapping cone, then for each 1 < r < ¢, we have:

(NT,I)<z'r> = (NT'7IjiT )<ir>'
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Proof. Note that by Lemma 2.1, for each » > 2, we have

(N’I‘,I)<7;r> =
((N,)<ips + -+ (Nin)<is)/(Nug) <ips + - 4+ (N <ioo> ),

and (N1, )<i,> is isomorphic to
ir

((Nujir J<ip> oo+ (NLIJ-Z.T )<ir>>/((N1,1jir )<ips +e (N1,1jir )<iro1>)-
Now, by Lemma 3.4 it is clear that for each s < r, we have

(N1,1)<ip> = (Syz1(1)) <>
= (Syz1(15,))<io> = (Syz1(L,, ) <io>
= (Nl,ljir)<is>-
So, the result follows. O

4. IDEALS WITH (dy,...,d,;)-LINEAR QUOTIENTS

Definition 4.1. Let I be a graded ideal, {fi,..., fi} be a homo-
geneous system of generators of [ and (di,...,d,) be an m-tuple
of positive integers with d; = 1. We say that I has (di,...,dy)-
linear quotients with respect to the elements fi,..., f,, if the ideal
(fi,-.-,fj=1) : f; has d;-linear resolution for all j = 2,...,m. If
dy = --- =d,, = d, then we simply say that [ has d-linear quotients
with respect to the elements fi,..., fi.

Notice that this property depends on the order of the generators.
Any order of the generators for which we have (dy, ..., d,,)-linear quo-
tients will be called an admissible order of generators.

An admissible order of generators, say fi,..., fm, is called degree
increasing if deg(f1) +dy < --- < deg(fm) + dm.

In this section, we study the class of ideals with (dy,...,d,,)-linear
quotients and the particular case of ideals with 2-linear quotients. In
the following, we assume that {fi,..., fi,,} is a homogeneous system
of generators for the graded ideal I and I; = (f1,..., f;) for all j =
1,...,m.

Theorem 4.2. If I has 2-linear quotients with respect to the elements
fi,-- s fm and deg(fr) < --- < deg(fm), then for each i > deg(f1), we
have

)|

Proof. We prove the assertion by induction on m. For m = 1, it is
obvious that the result is true. Assume that the result is true for
m > 1, [ is a graded ideal which has 2-linear quotients with respect

i+ 1 dfie{deg(fi); 1 <i<m} andm >1;
1 otherwise.



38 SHARIFAN

to fi,..., fme1 and deg(f1) < -+ < deg(fy1). Let J = (f1,.--, fm)
and j = deg(fms1). Then, I = J + (fme1). For each i < j, since
I~ = Joi~, by induction hypothesis the result is true.

Note that I;> = Jjs + (fm+1). By hypothesis, J : f,11 is an ideal
with 2-linear resolution. So, it is generated by elements of degree 2.
We will show that

Jejs i fmir = J ¢ fmga
To see it, we prove that each homogeneous generator of degree 2 of
J : fm41 belongs to Jojs ¢ f41. Let g be such a generator. So,
9fm+1 € J<o> where £ = deg(g) + deg(fim+1) > 7. Since J is generated
by elements of degrees at most j, J.p~ = mz’jJ<j>. S0, gfmt1 € J<j>
and the conclusion follows.

Now, consider the following short exact sequence

0= R/(J: fmi1)(=3) = R/ J<j> = R/I<j> — 0.
By hypothesis, reg(R/(J : fm+1)(—Jj)) =7+ 1 and

7, deg(fn) =7 and m > 1;
reg(R/J<j>) = reg(Jejs) =1 = { j—1, othérwi)se.

By applying the reg formula (see [9, Corollary 18.7]) to the above short
exact sequence, we have

reg(l<js) =reg(R/I.j>)+1=j+1.

So, the assertion follows for i = 7.
If i = j + 1, consider the following short exact sequence

0—=Tojpis = Iojs — [<j>/]<j+1> — 0.

I<j>/I<j+1> = @k(_J)
So, reg(I<j>/I<j4+1>) = j. Again, by applying the reg formula we have
reg(I<jii>) = j+ 1.
Assume that i > j41. Since [ is generated by elements of degrees at
most j, Io;s» =m 7T, and by Lemma 2.2, we have reg(I.;~) =
1. Ul

Next, we present some examples of ideals which satisfies Theorem
4.2.

Example 4.3. Let
I = (2%x 2 sr7) C K|
— 1 2,1:2133,1:11)3554,.'[21:4 L1, T2, T3, T4].

Then I has 2-linear quotients with respect to xf@? xgxg, T1X324, w%xi
and satisfies Theorem 4.2.
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Example 4.4. Let
I = (212975, XoX3Tg, T1X3X7, T1T4T6, ToTaT7, T3TaTs) C Klxy, ..., x7].
Then I has 2-linear quotients with respect to
T1X2T5, 2L 3XLG, L1X3L7, L1X4L6, LoL4L7, L3L4T5
and satisfies Theorem 4.2.

In the next two examples, we have ideals with 2-linear quotients but
the given admissible order of the generators is not degree increasing.

Example 4.5. Let
I = (x1@9w526, T12273, T3y, Toxsxy) C KTy, ..., 27].
Then I has 2-linear quotients with respect to
T1X2T5Tg, T1X2T3, L3Ty, L2T5T7.

But this ordering of generators is not degree increasing. If we reorder
the generators as x3xy, T12223, Lox5x7, T1T2T52¢ then we have a degree
increasing admissible order for (1,1, 2, 1)-linear quotients property.

Example 4.6. Let
I = (x1x9m327, T1227576, T4T526) C Klx1,. .., 7).
Then I has 2-linear quotients with respect to
T1ToX3T7, T1XoT5L6, TyTsLs.

This ordering of generators is not degree increasing and there is no de-
gree increasing admissible order of generators for having some (1, dy, da)-
linear quotients property.

The above example shows that if a monomial ideal I has (dy, ..., dy)-
linear quotients, then in general we can not conclude that G(I) has a
degree increasing admissible order. This is an important difference with
the case of monomial ideals with linear quotients.

Theorem 4.7. If I has (d,...,dy)-linear quotients with respect to

fis---s fm and deg(f1) +di < -+ < deg(fm) + dyn, then the minimal

free resolution of R/I is given by the iterated mapping cone.
Moreover,

o Vi > 2 andVj ¢ {deg(fo)+de+i—2; 1 < € <m}, B;;(R/I) = 0.
e reg(R/I) = deg(fm) + dm — 2.
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Proof. Let t > 1 and assume that the minimal free resolution of R/, is
already known by the iterated mapping cone (for the case t = 1 we just
consider the obvious minimal free resolution of R/I;). We can easily
see that [, is minimally generated by fi,..., f; and for each ¢ > 2 and
J ¢ {deg(fe) +de+i—2; 1 <<t} Bij(R/I;) = 0. Since, by the
assumption, deg(fi) + dy < --- < deg(fm) + dpm, for each i > 1,

max{j; 527](R/It> 7é O} < deg(ft) + dt 41— 2.

On the other hand, since Lyy1 = (f1,...,fi) : fix1 has dyq-linear
resolution, for each 1 < i < pd(R/L:1), we have

min{j; §;;(R/Liy1) # 0} = dpsa +i — 1.

It is clear that dyyq + ¢ — 1 > deg(fy) + di + i — 2 — deg(fi+1). So,
Equation (3.1) holds and by Theorem 3.1, the mapping cone arising
from the short exact sequence

0— R/Lt+1(— deg(ftﬂ)) — R/It — R/It+1 — 0,
is the minimal free resolution of R/l and the conclusion follows. [

Example 4.8. Let [ = (z129, Tox3, T425, T123%4) C K[z, 29, 23, 24].
Then I has (1, 1,2, 1)-linear quotients and [ satisfies in Theorem 4.7.

In the following, we show that if I has (di, ..., d,,)-linear quotients
with respect to fi,..., f, and deg(f1)+d; < --- < deg(fn)+d, then
Syz(I) is a componentwise linear module.

Theorem 4.9. If I has (dy,...,dy)-linear quotients with respect to
fi,-.s fm and deg(f1) +dy < -+ < deg(fim) + dpm, then Syz(I) is a
componentwise linear module.

Proof. Suppose that Syz;(I) is minimally generated in degrees i; <
<o- <1y Foreach 1 <t </, let

Jie = max{i; deg(fl’) +d; < it}’ ]jit = (f17 sy fjit)
and
Nyr = (Syz1i(1)) gy NT’Ijit = (Syzl(fjit){r}.

By induction on r, we show that for each 1 < r < ¢ the module N, ;
(resp. N, 1, for each t > r) has the following properties:
it

(1) Bi,j(NrJ) =0 V] 7é ir +i7"' aié + 1 (resp. ﬂiJ(NTv[jit) -

(2) (Ny1)<i,> has i,-linear resolution (resp. (N, )<i.> has i.-

L,
linear resolution).
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If » =1, then Ny; = Syz(I) (resp., valnt = Syz(l;,,) for each
t > 1). Since by Theorem 4.7, the minimal free resolution of R/I
(resp., /1, ) is given by the iterated mapping cone, it is clear that
Bij(N1,r) = 0 for each j # iy +4,--- ,ig + i (resp., BZ'J(NUJ'Z-,) =0 for
each j # i1+, - ,i; +1). So (1) follows for r = 1. l

By Lemma 3.5, (N1 1)<iy> = (Nl,ljil)<il> = (vafnt><i1> for each
t > 1. Moreover, the ideal I;, is generated by f1,..., fj, . By Theorem
4.7, the minimal free resolution of R/I;, is computed by the iterated
mapping cone and we have i, = deg(f1) +di = -+ = deg(f;, ) + dj, .
So, again by Theorem 4.7, Syz (I ji1> is generated in degree 7; and has
i-linear resolution. So (2) follows for r = 1.

Now, assume that (1), (2) is true for N,_y s (resp., Nr—l,ljit for each
t >r—1) where 1 <r —1 < ¢. We prove that N, (resp., ijit for
each t > r) satisfies (1), (2).

By definition,
Nir = Np—11/(Ne-1,1)<ip > (resp. Nr,ljit = r—1,1jit/(Nr—1,1jit)<z’r,1>)-

By the induction hypothesis, (N._11)<i,_,> (resp., (Ne_11, )<i_i> )
it
has 7,_q-linear resolution and 3; ;(Ny_17) =0 Vj # 4,1 +4,- -+ ,ig+1
(resp., Bi’j(NT_l’Ijii> =0 VjFipq+i,-- 0 +1i).
Since (Ny-1,1)<i, > (resp., (Ny—11, )<i,_,> ) has i,_;-linear resolu-
it
tion, by Lemma 2.6, it is clear that §; (N, ;) =0 Vj # i, +i,...,0+1
(resp., Bij(Nrg, ) =0 Vj# i, +1,...,4 +1). So (1) follows.
it
Now, by Lemma 3.5,
(NT,I><1',«> = (NT’IjiT )<ir>
= ((Nrfl,ljir )/(NT*LIJ'“ )<ir—1>)<ir>
= (NT’Ijit )<ir>7
where by the induction hypothesis, (N,-11, )<i,_,> has i, ;-linear res-
olution and f; ;(N,—1,;, ) = 0, for each j # i + i,_1,% + ¢,. So, by
Lemma 2.6, (Ny—11;, )/(Ny—11;, )<i,_,> is generated in degree i, and
has #,-linear resolution. This means that

(NT,I)<ir> = (NT’Ijit )<ir> = Nr—l,ljir/(Nr—l,]jir)<irf1>

has 4,-linear resolutio. So (2) follows for r.
Now, since (2) holds for each 1 < r < ¢, by Corollary 2.4, Syz (1) is
a componentwise linear module.

0
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