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ON MAXIMAL IDEALS OF R, L
A.A. ESTAJI* AND A. MAHMOUDI DARGHADAM

ABSTRACT. Let L be a completely regular frame and RL be the
ring of real-valued continuous functions on L. We consider the set

-1 1

—, —) is a compact frame for any n € N}.

n’'n

Suppose that Coo(X) is the family of all functions f € C(X) for
1

which the set {z € X : |f(z)| > —} is compact, for every n € N.
n

RoocL ={p € RL 1 (

Kohls has shown that C(X) is precisely the intersection of all
the free maximal ideals of C*(X). The aim of this paper is to
extend this result to the real continuous functions on a frame and
hence we show that R, L is precisely the intersection of all the
free maximal ideals of R* L. This result is used to characterize the
maximal ideals in Roo L.

1. INTRODUCTION

We denote by C(X) (C*(X)) the ring of all (bounded) real-valued
continuous functions on a space X which is a nonempty completely
regular Hausdorff space. C(X), the subring of all functions C(X)
which vanish at infinity, was introduced by Kohls in [16] (also, see
(2, 1, 3, 18, 20] for more details). He shows that:

Proposition 1.1. [16, Lemma 3.2] The ring Coo(X) is the intersection
of the free maximal ideals of C*(X).

Azarpanah and Soundararajan in [1], show that C.(X) is an ideal
in C*(X) but not in C'(X), see also [16] and 7D in [11]. In fact, Coo(X)
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is the subring of C'(X) and topological spaces X for which Cy (X) is
the ideal of C'(X) are characterized in [1].
-1 1

R L, the family of all functions f € RL for which 1 ¢o(—,—) is
n'n

compact for each n € N, was introduced by Dube in [0].

In this paper, we are trying to show that R, L is a subring of RL
and an ideal of R*L (see Propositions 3.4 and 3.5) and it is not an
ideal of RL (see Example 3.6). Also, we prove that if for every a € L,
1 a is a locally compact frame implies R*(] a) = R({ a), then R, L
is an ideal of RL (see Proposition 3.9). In Section 4, we prove that
for every completely regular frame L, it is a compact frame if and only
if RL = R*L = RoL (see Proposition 4.4). In Section 5, we show
that the ring R L is the intersection of all the free maximal ideals
in R*L (see Proposition 5.7). In the last section, we study maximal
ideals in the ring R, L and we show that if L is a completely regular
frame, then every maximal ideal of R, L is strongly fixed ideal (see
Proposition 6.6). In fact, M is a maximal ideal of R, L if and only if
there exists p € pt(L) such that

(1) M = M;NReL, and

1
(2) petp( ), for some ¢ € R L and n € N.

— =
n n
2. PRELIMINARIES

Regarding the frame of reals £(R) and the f-ring RL of continuous
real-valued functions on frame L, we use the notations of [5]. The
bounded part, in the f-ring sense, of RL is denoted by R*L and is
characterized by:

p € R'L < p(p,q) =1 for some p,q € Q.

An element a of a frame L is said to be rather below an element b,
written a < b, provided that a* Vb = T. Also, a is completely below
b, written a << b, if there are elements (¢,) indexed by the rational
numbers Q N [0, 1] such that ¢o = a, ¢; = b, and ¢, < ¢, for p < q. A
frame L is said to be reqularif a = \/{x € L : x < a} for each a € L,
and completely regularif a = \/{x € L : v << a} for each a € L.

An element p of L is point (or prime) whenever p < T and a Ab <p
implies that a < p or b < p. We denote the set of all points of L by
pt(L) or XL.

An ideal J of L is completely regular, if for each x € J there exists
y € J such that 2 << y. The Stone-Cech compactification of L is the
frame [ L consisting of completely regular ideals of L together with the
dense onto frame homomorphism j;, : L — L given by join. We denote
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the right adjoint of j; by 7, and recall that r1(a) = {x € L : * << a},
for all @ € L.

Let L be a frame, a € L and o € RL. The sets {r € Q : a(—,7) <
a} and {s € Q : a(s,—) < a}, are denoted by L(a,a) and Ul(a, )
respectively. For a # T, it is obvious that r < s, for each r € L(a, «)
and s € U(a,a). In fact, we have:

Proposition 2.1. [8] Let L be a frame and p be a prime element of L.
There exists a unique map p : RL — R such that r < p(«a) < s, for
each a« € RL, r € L(p,«a) and s € U(p, a).

Proposition 2.2. [3] If p is a prime element of a frame L, then p :
RL — R is an onto f-ring homomorphism.

Let o« € RL. We define a[p] = p(«) for all p € XL, and define
Z(a) ={p € XL : afp| = 0}.

This set is said to be a zero-set in L (see [I1]). For A C RL, we
write Z[A] to designate the family of zero-sets {Z(«) : @ € A}. The
family Z[RL] of all zero-sets in L will also be denoted, for simplicity,
by Z[L] (also, see [10, 12, 15] for more details on the zero-sets and their
application in RL). For undefined terms and notations, the readers are
referred to [9, 17].

3. ToPICS IN R L IS AN IDEAL OF RL AND AN IDEAL OF R*L

The following lemma is proved in [0]. It will be used in this paper.

Lemma 3.1. For every a,b € L, if T a and T b are compact, then
1 (a Ab) is compact.

Remark 3.2. For every a,b € L, if T a is compact and a < b, then 1 b
is compact.
Remark 3.3. Consider ¢ € RL and 0 < £ € Q. Then, there exists
1 -1 1
n € N such that — < e. Since p(—, =) < p(—¢,¢), we can conclude
n'n

n
from the Remark 3.2 that 1 ¢(—¢,¢) is compact. Therefore, for every
¢ € RL, p € RooL if and only if for every 0 < ¢ € Q, 1 ¢(—¢,¢) is
compact.

For every p,q,u,v € Q, we put

<pg>={reQ:p<r<gq}
and
<p,g><u,v>={rs:p<r<gq u<s<uv}.
In this paper, a subring of a commutative ring with identity does not
imply the identity must belong to the subring.
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Proposition 3.4. R L is a subring of RL.

-1 1
Proof. Consider ¢,9 € R, L and n € N. Since 1 ¢(—

o2n’ 2n
—1
T 1/1(2—, 2—) are compact frames, we can conclude from the Lemma
n'2n

-1 1 -1 1
3.1 that 1 (ap(%, %) A(=—,=)) is a compact frame. The fact that

2n’ 2n
-1 1 -1 1 -1 1

5.5, NG ) S (et 9)(— )
1

) and

o(

3

) is a compact

S|

enables us to conclude at once that 1 (¢ + ¥)(
frame, by Remark 3.2. Therefore, ¢ + 1 € R L.

1 1 -1 1 -1 1
Let m € N such that — < —. Since 1 ¢o(—, —) and T ¢¥(—, —
m ~ \/n m’m m’m

9

)

are compact and

-1 1 -1 1 -1 1
VAP (—=. Y < - =
(AU ) < (U)o,
we can conclude from the Lemma 3.1 and the Remark 3.2 that 1
-1 1
(p)(—, —) is compact. Hence, ptp € R L. O
n'n

Proposition 3.5. R, L is an ideal of R*L.
Proof. Consider ¢ € RoL and n € N. Since for all m € N

-1 1
p (=m,m) €1 p(—, )
and
T= \/ @(_m7m>v
meN
we conclude that there are my, mq, ..., m; € N such that
T = \/ o(—m;, m;).

1<i<k
If m = Maxz{my,ma,...,my} then o(—m,m) = T, that is ¢ € R*L.
Therefore, Roo L € R*L.

Now, suppose that ¢ € R L and v € R*L. It suffices to show
that ¢ € RooL. There exists m € N such that ¢(—m,m) = T, by
hypothesis. Consider n € N. Since

1 1 11
< — >< —m,m >C< ——, = >,
mn’ mn n'n

we have

90<__’ _> = 90(__’ L) A 2/J(_Tan) < (@19)(—%’ %)
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1 1

Since T p(———,——) is a compact frame, we can conclude from the
mn’ mn
Remark 3.2 that 1 (p)( ) is a compact frame, hence p1) € R L.

O

“w'n
The following example shows that R, L is not an ideal of RL in
general.

Example 3.6. We consider the function v : LR — P(N) defined by

1
a(p,q):{n€Nrp<H<q},

for every p,q € Q. We claim that « is a frame map. To prove this, we
check the relations (R1)-(R4) to identities in P(N) (see [5]).
(R1). For every p,q,r,s € Q, we have

1 1
alp,g) Na(r,s) = {neN:p<=—<gnN{neN:r<=-<s}
n n

= {nGN:p\/r<%<q/\s}
= a(pVr,gNs)
a((p,q) A (r,s))-

(R2). For every p,q,r,s € Q with p <r < g <'s, we have

alp,q) Va(r,s) = {nEN:p<%<q}U{nEN:r<%<s}
= {nEN:p/\r<%<q\/s}
= {nGN:p<%<s}
= a(p,s).

(R3). For every p,q € Q, we have

Vpercseqa(r,s) = Up<r<s<q{”€N1T<%<5}
= {nEN:p<%<q}
= a(p.q).
(R4). It is clear that
N=Tpp =0a(0,2) < | alp.q <N,

P,q€Q

then \/, o a(p,q) = Tpu). Therefore, a € R(P(N)).
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Since, for any n € N,

-11
a(n n) {meN:n<m}={n+1,n+2,n+3, ..}

we infer that 1 (=%, 1) is a finite frame and hence it is a compact
frame. Hence, o € R (P(N)). Since

1150 =1 L= P(V)

is not a compact frame, we conclude that 1 € R (P(N)). Since
coz(a) = a(—,0) Va(0,—) = N = Tpu,
we conclude that
(1) v is unit and o € Ro(P(N)).

(2) Reo(P(N)) & R(P(N)).
(3) Reo(P(N)) is not an ideal of R(P(N)).

Let L be a frame. We say that a is way below b (or relatively compact
with respect to b) and write a < b if for any S C L with b <\/ S, there
exists a finite set F' C S such that a <\/ F.

A frame L is called continuous (or locally compact) whenever, for
eachae L, a=\ z.

z<a
Lemma 3.7. For every completely reqular frame L and ¢ € Ry L,
1 coz(yp) is a locally compact frame.

Proof. Consider a €] coz(p). Let < a A p((—,—1)

\/(%,—))
and S C L with a A o((—, =)V (£,-)) <V S. Then
11

SD(_H’ E)

ININ
IS
*
<
—~
©
0
|
|—

Il
—
IS
>
AS)
—~
—~
|
|
3=
N~—
<
—~
3=
|
~—
SN—
SN—

IA
H*

Using ¢ € R L, we conclude from Remark 3.2 that 1 x* is a compact
frame.
Since
T=a"V(ane((—, —l) \/(l,—))) Sx*\/\/S,
n

n

we infer that there are s1,...s; € S such that T = \/%_ (2" V s;),

which implies that o < \/\_, s;. Hence, if z < a A e((—= =)V (,-)),

n’
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then z < a A p((—, —%) V (£, -)), for every x € L. Therefore, the

n n’

complete regularity of L insures that
a = aAcoz(p)
Vier (@A e((= =) v (5, -)))
VienVize Lz <ane((——1) V(5 -)}

< VoenVizeL:z<ane((— - v, -)}
S \/zeL,:I;
r<a
< a,
and this completes the proof. O

Lemma 3.8. Let o« € RL and p3 : L(R) — L(R) by ps(p,q) = (P, ¢*).
Then the following statements hold:

2)

3) .

4) coz(a o p3) = coz(a).

5) If a € RoL, then o ps € RuoL.

Proof. By [13], to complete the proof it suffices to show that if o €
RooL, then avo p3 € R L. Consider a € Ry L. Since for every n € N,
T aopy(—2, 1) =1 a(—=5, 55) is a compact frame, we conclude that

n’n

a0 p3 € R L. O

Proposition 3.9. Let L be a completely reqular frame and for every
a € L, if | ais alocally compact frame, then R*(] a) = R(} a). Then
RooL is an ideal of RL.

Proof. Consider a« € RL and 8 € Ry L. We put B% = [fops. By
Lemma 3.8, we have o33 € RL, which implies that @ : LR —| coz(3)
given by @(u) = af3 (u) A coz(3) is an element of R({ coz(8)). Since,
by Lemma 3.7, | coz(p) is a locally compact frame, we conclude that
there exists n € N such that

0B (= =n) V (n, =) A cox(8) = (= —n) V (n, =) = L.
By
B (=, —n) V (n,—)) < coz(af) < coz(B),
we infer that )
afs((=,—n)V(n,—)) = L,
which follows that a3 € R*L. Since, by Lemma 3.8, 33 € Ry L, we

conclude from Proposition 3.5 and Lemma 3.8 that a8 = aﬂé(ﬂ %)2 €
RooL and this completes the proof. Il
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4. WHEN 1S R, L EQUAL TO RL?

In this section, we characterize frames L for which R L = RL. Let
I be an ideal in RL or R*L. If \/{coz(p) : ¢ € I} < T, wecall I a
fixed ideal; if \/{coz(¢) : ¢ € I} = T, then [ is a free ideal.

Lemma 4.1. If I is a free ideal in RL and a € Coz(L) is a compact
element of Coz(L), then there exists ¢ € I such that a = coz(p).

Proof. Evidently

a:a/\T:\/{a/\coz(go) tp eI},
it follows that there are ¢, ..., p, € I such that

a=al \/coz(gpi) =aAcoz(f+ -+ 2).
i=1
Since Coz(I) is an ideal of Coz(L) and
a < coz(pi+ -+ ¢2) € Coz(I)
we include that there exists ¢ € I such that a = coz(yp). O

Corollary 4.2. The set
{a € Coz(L) : a is a compact element of Coz(L)}

15 a subset of
ﬂ{Coz(I) : I is a free ideal in RL }.
Proof. By Lemma 4.1, it is clear. U

The following proposition is proved by Dube in [0, Lemma 4.7], but
here, in the proof of this proposition, a different approach is used.

Proposition 4.3. For every completely reqular frame L, the following
statements are equivalent:

(1) L is a compact frame;

(2) Every proper ideal I in RL is fized;

(3) Every maximal ideal I in RL is fized.

Proof. (1) = (2). Let I be a proper free ideal in RL, then by Lemma
4.1, there exists ¢ € I such that T = coz(p). It then follows that [
contents a unit element. Hence, I = RL and this is a contradiction.
(2) = (3). It is clear.
(3) = (1). Let {ax}rea € L such that T =\/,, ax. It is clear that

I={peRL:3IN CA(|N] < o0, coz(p) < \/ a))}

AEN’
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is an ideal of RL. If I # RL, then there exists a maximal ideal M
such that I C M. Since L is completely regular frame, we infer that

T= \/ a :\/C’oz(I) < \/COZ(M

ie., T =\ Coz(M), which is a contradiction. Now, we can assume
that I = RL. Then there exists A’ C A such that |A’| < oo and

= coz( \/ ax,

AeN
this completes the proof of the proposition. O

Proposition 4.4. For every completely reqular frame L, then L is a
compact frame if and only if RL = R*L = R L.

Proof. Necessity.
11
Consider ¢ € RL, n € N and a = ¢(——,—). Since L =1 L is a
n'n

compact frame and | < a, we can conclude from the Remark 3.2 that
T a is a compact frame, i.e., p € R L.
Sufficiency. Since 1 € R, L, we infer that

L=t1=11(-1,1)

is a compact frame. O

5. INTERSECTION OF FREE MAXIMAL IDEALS

In [16, Lemma 3.2], the intersection of the free maximal ideals in
C*(X) was characterized as the set of all functions that vanish at in-
finity (that is all functions f € C(X) such that {z : [f(z)] > L} is
compact for all n € N). In this section, we show that this is also true
for R*(L).

Proposition 5.1. If I is a proper free ideal in RL, then
11
p(=——) & Coz(I),

for every ¢ € RooL and n € N.
Proof. Consider ¢ € RL and n € N. Then

T= \/I—\/{coz \/cp—l %) acl}

and since T cp(—ﬁ, %) is compact, we conclude that there are aq, ..., €
I such that
k k

= (Veos(a) V(=) = o2( 3o0) Vel )

=1 =1
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and Y8 a2 € I. If (=L L) € Coz(I), then T € Coz(I), i.e., I =

n’n

RL, which is a contradiction. Hence, o(—2<,1) & Coz(I). O

It is well known that t; : R(SL) — R*L given by t;(a) = jra is the
ring isomorphism. Also, we will denote ¢? = t;*(¢), for every p € R*L

(see [7]).
For each T, # I € BL, the ideal M of RL defined by

M"={p € RL:ri(coz(¢)) C I}
and M* = M'NR*L. Also,
M ={p e R'L: coz(p?) C I}
We need the following propositions which are proved in [7].

Proposition 5.2. [7, Proposition 3.8] Mazimal ideals of R*L are pre-
cisely the ideals M*!, for I € pt(BL). They are distinct for distinct
1.

Proposition 5.3. [7, Proposition 3.9] For every I € pt(BL), M*! is
fixzed mazimal ideal in R*L if and only if \/ I < T.

The following lemma plays an important role in this note.
Lemma 5.4. [10, Lemma 4.2] For every p € pt(L) and ¢ € RL,
©[p] = 0 if and only if coz(p) < p.
Remark 5.5. For every frame L, we put
L*={Iept(BL):\/I =T}
Also, for every A C pt(L) and ¢ € RL, ¢[A] = {¢[p] : p € A}.

Proposition 5.6. For every ¢ € R*L, the following statements are
equivalent:

(1) ¢ € Nrep- M5

(2) ¢?[L*] ={0};

(3) For every 0 <e € Q and I € L*, |¢P[1]] < ¢;
(4) For everyn € N,

{1 € pt(BD)|1$°11] > =} = (T € pH(SL) — L*16°11]] > -}
Proof. (1) < (2). By Lemma 5.4, we have
¢ € Nrep- M & VI € L*(coz(¢?) C 1)
& VI e LI =0)
& (L] = {0}.
The rest is straightforward. Il
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Theorem 5.7. The ring Ry L is the intersection of all the free mazi-
mal ideals in R*L.

Proof. Let ¢ € RooL and I € L* such that ¢ & M*!. Then

V(=) V =) = o) Z 1.

n
neN
So, there exists ng € N such that

1 1
Al(=, —— — = I
PV (N LT,
which implies that

(= =)V (o VI =T

and there exists a € I and

such that x Va = T. Since
2 <\ @ ((m— )V (=) = (= =) V (—,—))
J— ) nO nO? ) no nO? b

we conclude that

which implies
1 1 1 1
. )< I V(= ) <a
Pl 2 < (el =)V (o)) <

It is clear that

1 1
A= Va:xel} C - —
(zVaioel}Cpl-— o)
and \/ A = T. Since Tgo(—n—lo, nio) is compact frame, we conclude that
there exist x1,..., 2, € I such that

m

T=\(va) el
i=1

which is a contradiction.
Conversely, let ¢ € ;e M*, n € N and

11

{ax}area C T@(—Ey ﬁ)
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such that \/,_, ax = T. Suppose that for every A’ C A, if A’ is finite set,
then \/,.,, ax # T. Hence, there exists I € L* such that {ay }rea C 1.
By the statement (4) of Proposition 5.6, we have ¢’[I] = 0, so that
coz(¢?) C I, by Lemma 5.4. Since

11

90(__7_) S ax EI?
n n

we conclude that

n'n n'n
which follows that
11
Bl—=.2YCT
P ) C
Therefore,
11
L=y’ (—= =)V fycr
P ) Veor(p?) C T,
i.e., L =1 € L*, which is a contradiction. O

6. MAXIMAL IDEALS OF R L
We turn our attention now to the fixed maximal ideals in the rings
RooL.
-1
Lemma 6.1. Let ¢ € RL, p € pt(L) and n € N, then p(—,—) < p
n'n

if and only if |¢lp]| >
Proof. Necessity.
Let 9‘7(_71’ %) < pand [p[p]| < % If t = ¢[p|, then, by Proposition
2.1,
\/{90(—,7"> Vo(s,—):rseQr<t<s}<p,
it follows that

T= so— = v\/{so—T}VsO( —)ins€Qr<t<sp<p,

which is a contradlctlon.
Sufficiency. Let |p[p]| > —. Then, by Proposition 2.1,
n

o) < \{ol=) Vels, -l s € @ < plp] < 5} < p.

This completes the proof of the lemma. U
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Proposition 6.2. For every A C pt(L), then p|A] = 0 for every
© € RooL, if and only if for every p € RooL andn € N, if p € A, then

p &t o(—, -).
n’'n

Proof. Necessity. Let ¢ € RooL, p € A and n € N. Suppose that
p €T go(%l, %) Then, by Lemma 6.1, |p[p]| > % Hence, ¢[p] # 0,
which is a contradiction. )

Sufficiency. Let ¢ € RooL and p € A. By Lemma 6.1, |p[p]| < =
for every n € N. Hence ¢[p] = 0. O

For each a € L with a < T, define the subset M, of RL by

M, ={¢p € RL : coz(p) < a}

and M} = M,NR*L. Clearly, M, is an ideal, and, in fact, M, = Mre(a),

Corollary 6.3. Ifp € pt(L) then, RooL C My if and only if for every

© € RooL and n € N, p &7 go(%l, %)

Proof. By Proposition 6.2, it is clear. ]
For a proof of the following proposition, see [19, Corollary 3.6].

Proposition 6.4. Let A be a commutative algebra over the rational
numbers with unity. Let I be an ideal of A. Then an ideal D of I is a
mazximal ideal of I if and only if D = M NI for some mazimal ideal
M in A, with I £ M.

An ideal I in a subalgebra A of RL is called strongly fixed ideal if
Neer Z(¢) # 0, otherwise, [ is said to be strongly free ideal.

For a proof of the following proposition, see |7, Proposition 3.3 or
[10, Proposition 4.8, Corollary 4.9].

Proposition 6.5. The fized mazimal ideals of RL (R*L) are precisely
the ideals M, (M) for p € Pt(L). They are distinct for distinct points.

Proposition 6.6. If L is a completely reqular frame, then every maxi-
mal ideal of Roo L is strongly fixed ideal. In fact, M is a maximal ideal
of Roo L if and only if there exists p € pt(L) such that

(1) M = M;NRL, and
2 -
(2) petp(—,

Proof. Let M be a maximal ideal of R L, then by Propositions 5.2
and 6.4, there exists I € pt(SL) such that M = M* N R, L, with
RooL € M*!. By Theorem 5.7, M*! is a fixed maximal ideal of R*L.

1
=), for some ¢ € RooL and n € N.
n
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Then, there exists p € pt(L) such that M* = M, by Proposition 6.5.
Therefore, we have

(1) M = M;NRL, and
-1 1

(2) p €1 o(—,—), for some ¢ € RoL and n € N, by Corollary
n’'n

6.3.
Conversely, by Corollary 6.3 and Propositions 6.4 and 6.5, it is clear
that M is a maximal ideal of R L. O
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