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Abstract 

Often in modeling the engineering optimization design problems, the value of objective function(s) is not 

clearly defined in terms of design variables. Instead it is obtained by some numerical analysis such as finite 

element structural analysis, fluid mechanics analysis, and thermodynamic analyses. Yet, the numerical 

analyses are considerably time consuming to obtain the final value of objective function(s). For the reason of 

reducing the number of analyses as few as possible, our methodology works as a supporting tool to the meta-

models. The research in meta-modeling for multi-objective optimization are relatively young and there is still 

much research capacity to further explore. Here is shown that visualizing the problem on the basis of the 

randomly sampled geometrical big-data of computer aided design (CAD) and computer aided engineering 

(CAE) simulation results, combined with utilizing classification tool of data mining could be effective as a 

supporting system to the available meta-modeling approaches.  

To evaluate the effectiveness of the proposed method, a case study in 3D wing optimal design is proposed. 

Discussion focusing on how effective the proposed methodology could be in further practical engineering 

design problems is presented. 

Keywords: Data Mining, classification, Multi-objective Optimization, Engineering Optimization, Meta-

Modeling. 

1. Introduction 

The research field of considering decision 

problems with multiple conflicting objectives is 

known as multiple criteria decision making 

(MCDM) [1]. Solving a multi-objective 

optimization problem has been characterized as 

supporting the decision maker (DM) in finding the 

best solution for the DM’s problem. DM and 

optimization typically create an interactive 

procedure for finding the most preferred solutions. 

Yet, despite the increasing level of complexity, it 

has been often tried to pay attention to improving 

all the defined objective functions instead of 

reducing or ignoring some of them. Although due 

to the increased complexity, this would apply 

complications where objective functions are 

visualized by trade-off analysis methods as well 

studied in [9, 10, 25, 26, 35, 37].  

According to [1], the general form of the multi-

objective optimization problems can be stated as; 

Minimize 𝐟(𝒙) = {𝑓𝟏(𝒙), … , 𝑓𝒎(𝒙)}, Subjected to 

𝒙 ∈ Ω, where 𝐱 ∈ ℝn is a vector of 𝑛 decision 

variables; 𝐱 ⊂ ℝn is the feasible region and is 

specified as a set of constraints on the decision 

variables; 𝐟 ∶ Ω → ℝm is made of  objective 

functions subjected to be minimization. Objective 

vectors are images of decision vectors written as 

𝐳 = 𝐟(𝒙) = {𝑓𝟏(𝒙), … , 𝑓𝒎(𝒙)}. Yet an objective 

vector is considered optimal if none of its 

components can be improved without worsening at 

least one of the others. An objective vector 𝐳 is said 

to dominate 𝐳′, denoted as 𝐳 ≺ 𝐳′, if 𝑧𝑘 ≤  𝑧𝑘
′   for 

all 𝑘 and there exists at least one ℎ that 𝑧ℎ ≤  𝑧ℎ
′ . A 

point �̂� is Pareto optimal if there is no other 𝒙 ∈ Ω 

such that 𝐟(𝒙) dominates .𝐟(�̂�).  The set of Pareto 

optimal points is called Pareto set (PS). And the 

corresponding set of Pareto optimal objective 

vectors is called Pareto front (PF).   
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Solving a multi-objective optimization problem 

would be done by providing the DM with the 

optimal solution according to some certain utility 

criteria allowing to choose among competing PF. 

Such utility criteria are often inconsistent, difficult 

to formalize and subjected to revision. 
The complete process of MCDM has two parts (1) 

multi-objective optimization process which tries to 

find the PF solutions (2) decision making process 

which tries to make the best decision out of the 

possible choices. In dealing with increased 

complexity, this paper focuses on the first part 

which mostly deals with variables, constraints and 

objective functions.  

1.1. Computational intelligence and multi-

objective optimization  
Developing the methods for multi-objective 

optimization using computational intelligence 

along with real applications appeared to be quite 

young. However it has been observed that 

techniques of computational intelligence are 

indeed effective [3, 7, 15, 27]. On the other hand, 

the techniques of multi-objective optimization by 

themselves can also be applied to develop and to 

improve the effective methods in computational 

intelligence [2].  

Currently there are many computational 

intelligence-based algorithms available to generate 

PF [1, 16, 17, 30]. However, it is still difficult to 

generate and visualize the PF in the cases with 

more than three objectives. In this situation, 

methods of sequential approximate optimization of 

computational intelligence with meta-modeling are 

recognized to be very effective in a series of 

practical problems [1, 4]. 

1.2 Meta-modeling and multi-objective 

optimization in shape optimization  
Meta-modeling is a method for building simple and 

computationally inexpensive models, which 

replicate the complex relationships. However the 

research in meta-modeling for multi-objective 

optimization is relatively young and there is still 

much to do. So far there existed only a few 

standards for comparisons of methods, and little is 

yet known about the relative performance and 

effectiveness of different approaches [4, 15].  

The most famous methods of Meta-modeling are 

known as response surface methods (RSM) and 

design of experiments (DOE). Although it is 

concluded in previous studies [16, 18, 19, 20], in 

the future research, scalability of MCDM models 

in terms of variables’ dimension and objective 

space’s dimension will become more demanding. 

This is because the models have to be capable of 

dealing with higher computation cost, noise and 

uncertainties.  

According to [18], the application of meta-

modeling optimization methods in industrial 

optimization problems is discussed. Some of the 

major difficulties in real-life engineering design 

problems counted: (1) there are numerous objective 

functions to be involved, (2) the function form of 

criteria is a black box, which cannot be explicitly 

given in terms of design variables, and (3) there are 

a huge number of unranked and non-organized 

input variables to be considered. Additionally in 

engineering design problems, often the value of 

objective functions is not clearly defined in terms 

of design variables. Instead it is obtained by some 

numerical analyses, such as FE structural analysis 

[34, 37], fluid mechanics analysis [7, 16, 17, 32], 

thermodynamic analysis [30], chemical reactions 

[3]. These analyses for obtaining a single value for 

an objective function are often time consuming. 

Considering the high computation costs, the 

number of CAE evaluations/calculations are 

subjected to minimization with the aid of meta-

models [18]. In order to make the number of 

analyses as few as possible, sequential approximate 

optimization is one of the possible methods, 

utilizing machine learning techniques for 

identifying the form of objective functions and 

optimizing the predicted objective function. 

Machine learning techniques have been applied for 

approximating the black-box of CAE function in 

many practical projects [1, 9, 10 ,25 ,37]. Although 

the major problems in these realms would be (1) 

how to approach an ideal approximation of the 

objective function based on as few sample data as 

possible (2) how to choose additional data 

effectively. The objective functions are modeled by 

fitting a function through the evaluated points. This 

model is then used to help the prediction value of 

future search points. Therefore, those high 

performance regions of design space can be 

identified more rapidly. Moreover the aspects of 

dimensionality, noise and expensiveness of 

evaluations are related to method selection [32]. 

However, according to Bruyneel et al. [18] for the 

multi-objective capable version of meta-modeling 

algorithms further aspects such as the improvement 

in a Pareto approximation set and modeling the 

objective function must be considered.  

Today, numerical methods make it possible to 

obtain models or simulations of quite complex and 

large scale systems [7, 8, 20, 22]. But there are still 

difficulties when the system is being modeled 

numerically. In this situation, modeling the 
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simplified models is an effective method, 

generating a simple model that captures only the 

relevant input and output variables instead of 

modeling the whole design space [3, 20, 22].  

The increasing desire to apply optimization 

methods in expensive CAE domains is driving 

forward the research in meta-modeling. The RSM 

is probably the most widely applied to meta-

modeling. The process of a meta-model from big 

data is related to classical regression methods and 

also to machine learning [4, 37]. When the model 

is updated using new samples, classical DOE 

principles are not effective. In meta-modeling, the 

training data sets are often highly correlated, which 

can affect the estimation of goodness of fit and 

generalization performance. Yet Meta-modeling 

brings together a number of different fields to 

tackle the problem on optimizing the expensive 

functions. On the other hand the classical DOE 

methods with employing evolutionary algorithms 

have delivered more advantages in this realm. 

Figure 1 describes the common arrangement of 

meta-modeling tools in multi-objective 

optimization processes of engineering design. It is 

worth mentioning that the other well-known CAD-

Optimization integrations for shape optimization 

e.g. [24, 29, 31] would also follow the described 

scheme.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Meta-modeling tools in multi-objective 

optimization process. 

 

2. Data mining classification in engineering 

design applications   

The particular advantage of evolutionary 

algorithms (EAs) [11] in the multi-objective 

optimization (EMO) applications [19] is that they 

work with a population of solutions. Therefore, 

they can search for several Pareto optimal solutions 

providing the DM with a set of alternatives to 

choose from [14]. EMO-based techniques have an 

application where mathematical-based methods 

have difficulties with. EMO are also helpful in 

knowledge discovery related tasks in particular for 

mining the data samples achieved from CAE and 

CAD systems [29, 31]. Useful mined information 

from the obtained EMO trade-off solutions have 

been considered in many real-life engineering 

design problems.   

2.1. Classifications    

Finding useful information in large volumes of data 

drives the development of data mining procedure 

forward. Data mining classification process refers 

to the induction of rules that discriminate between 

organized data in several classes so as to gain 

predictive power [5]. There are some example 

applications of data mining classification in 

evolutionary multi-objective optimization 

available in the literature of [1, 6, 12, 19] where the 

goal of the classification algorithms is to discover 

rules by accessing the training sets. Then the 

discovered rules are evaluated using the test sets, 

which could not be seen during the training tasks 

[5].  

In the classification procedures, the main goal is to 

use observed data to build a model, which is able 

to predict the categorical or nominal class of a 

dependent variable given the value of the 

independent variables [5]. Obayashi [12] for the 

reason of mining the engineering multi-objective 

optimization and visualization data applied self-

organizing maps (SOM) along with a data 

clustering method. Moreover Witkowski et al. [13] 

and Mosavi [7, 20, 22] used classification tools of 

data mining for decision making supporting 

process to multi-objective optimization. 

2.2. Modeling the problem 
According to [1], before any optimization takes 

place, the problem must first be accurately 

modeled. In this case, identifying all the 

dimensions of the problem, such as formulation of 

the optimization problem with specifying decision 

variables, objectives, constraints, and variable 

bounds is an important task. Here the methodology 

proposes that mining the available sample data 

before actual modeling will indeed help to better 

model the problem as it delivers more information 

about the importance of input variables and could 

in fact rank the input variables. The proposed 

method of classification, also earlier utilized in [7, 

20, 22], presented in Figure 2, is set to mine the 

input variables which are in fact associated with the 

final CAE data. 
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Figure 2. Supporting the meta-modeling process by 

mining the data 
 

3. Study case; three-objective and 42-variale 

optimization problem  

The applications in engineering optimal design 

have numerous disciplines to bring into the 

consideration. In mechanical engineering, the 

structural simulation is tightly integrated more 

than one discipline [18, 21, 22, 23, 24, 36]. 

Meanwhile, the trend nowadays is to utilize 

independent computational codes for each 

discipline [32]. In this situation, the aim of 

MCDM tools is to develop methods in order to 

guarantee that all physical variables are involved 

in the model.  Bo et al. [28] in aerodynamic 

optimization of a 3D wing has tried to utilize the 

multi-objective optimization techniques in a 

multidisciplinary environment.   

In the similar cases [20, 24, 29, 32] in order to 

approach the optimal shape in an aerospace 

engineering optimization problem, the multi-

objective optimization techniques are necessary to 

deal with all important objectives and variables 

efficiently. Here the optimization challenge is to 

identify as many optimal designs as possible to 

provide a choice of better decision. However with 

an increased number of design variables the 

modeling task, in a multidisciplinary 

environment, is getting even ever complicated. 

Therefore the multi-objective optimization tasks 

become more difficult with the increasing number 

of variables [20, 35]. Although the recent 

advances in parametric CAD/CAE integrations 

[24, 29, 31] have reduced the complexity of the 

approach in some levels.   

 

 

 
a) b) 

Figure 3. Airfoil geometry, modeled by S-plines [12, 14, 

33, 34] 

 

 

The airfoil of Figure 3 part (a) is subjected for 

shape improvement. The shape needs to be 

optimized in order to deliver minimum 

displacement distribution in terms of applied 

pressure on the surface. Figure 3, part (b) shows the 

basic curves of the surface modeled by S-plines. 

Here the proposed S-pline geometrical modeling 

methodology of Albers et al. [36] is successfully 

adapted and utilized. In the study case for modeling 

the 3D wing surface, four curve profiles have been 

with 42 points utilized. The coordinates of all 

points are supplied by a digitizer in which each 

point includes three dimensions of X, Y, and Z. 

Consequently the case, by adding the variable 

constraints, would include 126 columns plus three 

objectives which are going to highly increase the 

complexity. In fact, an optimal configuration of 42 

variables supposed to satisfy the following three 

described objectives. 

The objectives are listed as follow: 

      Objective 1: Minimizing the displacement 

distribution in the airfoil for constant pressure 

value of α. 

      Objective 2: Minimizing the displacement 

distribution in the airfoil for constant pressure 

value of 2α. 

       Objective 3: Minimizing the displacement 

distribution in the airfoil in constant pressure value 

of 4α. 

In the described multi-objective optimization 

problem the number of variables is subjected to 

minimization before the multi-objective 

optimization modeling process takes place in order 

to evolve a large scale design space to the smaller 

and much more handy design space. Here the 

proposed and utilized model reduction 

methodology differs from the previous study 

Filomeno et al. [35] in terms of applicability and 

ease of use in general multi-objective optimization 

design applications.  
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Table 1. Training dataset including five CAE calculations' 

results 
 Variables CAD Model Displacement Objective 

 

 Configuration :  Distribution Results 
 

 V1-V42    
 

 0,1,1.2,1,0.8,0.4,0.2,0,-          O1=c  

     

 0.4,-0.48, 0.6,-0.8,-          O2=c  

 

0.72,    

          O3=c  

 0,0.84,0.99,0.84,0.62,0.    

1     

26,0,-0.20,-0.40,-0.36,-     

     

 0.70,-0.58,    
 

 0,0.59,0.78,0.56,0.30,0,    
 

 -0.21,-0.24,-0.38,-0.38    
 

 0,0.26,0.50,0.39,-0.03,-    
 

 0.10,-0.12,    
 

 0,1.1,1.21,.9,0.82,0.42,          O1=b  

     

 0.18,.1,-0.41,-0.46,-          O2=c  

 

0.62,-0.81,-0.70,    

          O3=d  

 0,0.86,0.1,0.82,0.60,0.2    

     

2 
5,0.01,-0.20,-0.39,-    

 

0.39,-0.70,-0.58,    
 

 0,0.58,0.76,0.57,0.32,0,    
 

 -0.21,-0.23,-0.37,-0.39    
 

 0,0.26,0.54,0.40,-0.03,-    
 

 0.1,-0.1,    
 

      

           O1=b 
 

 0,1,1.2,1,0.8,0.4,0.2,0,-          O2=c  

 

0.4,-0.48,-0.6,-0.8,-    

          O3=b  

 0.72,    

3     

0,.88,0.99,0.84,0.62,0.2    
 

 6,0,-0.23,-0.35,-0.37,-    
 

 0.70,-0.54,    
 

 0,0.58,0.76,0.58,0.31,0,    
 

 -0.23,-0.23,-0.37,-0.37    
 

 0,0.24,0.50,0.40,-0.03,-    
 

 0.13,-0.10,    
 

 0,1.3,1.23,1.06,0.83,0.4          O1=d  

     

 1,0.28,0.07,-0.41,-          O2=c  

 

0.48,-0.6,-0.8,-    

          O3=b  

 0.78,0,0.84,.92,0.84,0.6    

     

4 
2,0.26,0,-0.23,-0.39,-    

 

0.37,-0.70,-    
 

 0.54,0,0.58,0.76,0.58,0.    
 

 31,0,-0.24,-0.22,-0.36,-    
 

 0.38, 0,0.24,0.52,0.38,-    
 

 0.02,-0.12,-0.12,    
 

 0,1.01,1.21,1,0.8,0.4,         O1=c  

     

 0.21,0-0.41,-0.47,-         O2=d  

 

0.59,-0.79,-0.69,    

         O3=e  

 0,0.80,1.01,0.86,0.64,0.    

     

5 
26,-0.01,-0.20,-0.40,-    

 

0.40,-0.72,-0.56,    
 

 0,0.58,0.76,0.58,0.31,0,    
 

 -0.23,-0.23,-0.37,-0.37    
 

 0,0.24,0.52,0.38,-0.06,-    
 

 0.10,-0.10,    
 

      

 
The dataset of big data for data mining is supplied 

from the Table I. The table has gathered a 

collection of initial dataset including shapes' 

geometries and simulation results from five CAE 

calculations, based on random initial values of 

variables, which in the proposed method will be 

mined. In the next section, the discussion of how 

the dataset of five random CAE calculations are 

being utilized for creating the smaller design space 

for a multi-objective optimization model is made. 

4. Methodology and experimental results 
The effectiveness of data mining tools in multi-

objective optimization problems presented by 

Coello et al. [2] and earlier in [5] the classification 

rules for evolutionary multi-objective algorithms 

were well implemented, in which along with the 

research work of Witkowski et al. [13] forms the 

proposed methodology working via a novel 

workflow. The workflow of data mining procedure 

methodology is described in Figure 4. In this 

method, the classification task is utilized to create 

several classifiers or decision trees. In the next 

steps, the most important variables, which have 

more effects on the objectives, are detected. 

 
Figure 4. Proposed methodology workflow 

 

Regressions and model trees are constructed by a 

decision tree building an initial tree. However, 

most decision tree algorithms choose the splitting 

attribute to maximize the information gain. It is 

appropriate for numeric prediction to minimize the 

intra subset variation in the class values under each 

branch. 

The splitting criterion is used to determine which 

variable is better to split the portion T of the 

training data. Based on the treating the standard 

deviation of the objective values in T as a measure 

of the error and calculation the expected reduction 

in error as a result of testing each variable is 

calculated. Meanwhile the variables, which 

maximize the expected error reduction, are chosen 

for splitting. The splitting process terminates when 

the objective values of the instances vary very 

slightly, that is, when their standard deviation has 

only a small fraction of the standard deviation of 

the original instance set. Splitting also terminates 

when just a few instances remain. Experiments 

show that the obtained results are not very sensitive 

to the exact choice of these thresholds. Data mining 

classifier package of Weka provides 

implementations of learning algorithms and dataset 

which could be preprocessed and fed into a 

learning scheme, and analyze the resulting 

classifier and its performance. The workbench 

includes methods for all the standard data mining 

problems such as regression, classification, 

clustering, association rule mining, and attribute 

selection. Weka also includes many data 

visualization facilities and data preprocessing 

tools. Here three different data mining 

classification algorithms i.e. J48, BFTree, 

LADTree are applied and their performance is 

compared to choose attribute importance. The 

mean absolute error (MAE) and root mean squared 

error (RMSE) of the class probability is estimated 

and assigned by the algorithm output. The RMSE 

is the square root of the average quadratic loss and 

the MAE is calculated in a similar way using the 

absolute instead of the squared difference.  

The comparison between importance ranking 

results is obtained by our experiments listed in 

Table II. It is concluded that in the worst case, more 

than 55% variable reduction is achieved. As one 

can see, BFTree and J48 algorithms have classified 

the datasets with less number of variables. While in 

LADTree algorithms, at least seven variables have 
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utilized to classify dataset. The variables number 

15 and 24 play much more important role in 

effecting the first objective (O1).  

Variables number 41 and 35 also have the more 

effects on third objective (O3) as well. According 

to the experimental results, it is possible to 

optimize the model by reducing the 45% number of 

variables. In Table II, two types of classification 

error (MAE, RMSE) are shown for all algorithms 

corresponding to different class of objectives. 

 
Table 2. Variables importance ranking for three 

classification methods 

Class

ificati

on MAE RMSE 

Effecti

ve Variables 

Objective

s 

Meth

od      

BFTr

ee 0.370 0.517 15  O1 

 0.412 0.519 23  O2 

 0.418 0.555 41  O3 

J48 0.309 0.514 15,24  O1 

 0.482 0.642 13  O2 

 0.378 0.590 35,41  O3 

LAD

Tree 0.277 0.500 15,24,2,32,41,39,3 O1 

 0.604 0.769 

23,22,18,15,42,2,17

, O2 

 0.365 0.584 20  O3 

   

41,35,9,17,11,38,37

,  

   16   

 

5. Conclusions 
In order to extract more information from the 

optimization variables in a reasonable way, the 

classification task of data mining has been applied. 

Variables were ranked and organized utilizing 

three different classification algorithms. The 

results show the reduced number of variables 

speeds up and scales up the process of optimization 

within a preprocessing step. The utilized data 

mining tool has found to be effective in this regard. 

Additionally, it is evidenced that the growing 

complexity can be handled by a preprocessing step 

utilizing data mining classification tools. The 

modified methodology is demonstrated 

successfully in the framework and the author 

believes that the process is simple and fast.   

Future research should focus on the effectiveness 

of the proposed data reduction process. Also, trying 

other data mining tasks such as clustering, 

association rules, and comparison could be 

beneficial. Although in real-life applications where 

the optimal design problem has to be considered by 

inclusion of multiple criteria, a combination of the 

proposed method with the other developed MCDM 

tools [38-46] would be effective.  
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