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ON «o-SEMI-SHORT MODULES
M. DAVOUDIAN*

ABSTRACT. We introduce and study the concept of a-semi short
modules. Using this concept we extend some of the basic results
of a-short modules to a-semi short modules. We observe that if
M is an a-semi short module then the dual perfect dimension of
M is o or o + 1.

1. INTRODUCTION

Lemonnier [20] has introduced the concept of deviation (resp., code-
viation) of an arbitrary poset, which in particular, when applied to the
lattice of all submodules of a module My give the concept of Krull

dimension, see [17], [10] and [28] (resp., the concept of dual Krull di-
mension of M. The dual Krull dimension in [11], [13], [15], [19], [20],
(21, [22], [8], [L1],[9], [10], and [24] is called Noetherian dimension and

in [7] is called N-dimension. This dimension is called Krull dimension
in [29]. The name of dual Krull dimension is also used by some authors,
see [2], [1] and [I]). The Noetherian dimension of an R-module M is
denoted by n-dim M and by kdim M we denote the Krull dimension
of M. We recall that if an R-module M has Noetherian dimension and
« is an ordinal number, then M is called a-atomic if n-dim M = «
and n-dim N < «, for all proper submodule N of M. An R-module
M is called atomic if it is a-atomic for some ordinal « (note, atomic
modules are also called conotable, dual critical and N-critical in some
other articles; see for example [27], [2], and [7]). The author introduced
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and extensively investigated perfect dimension and dual perfect dimen-
sion of an R-module M, see [13]. The dual perfect dimension (resp.,
perfect dimension), which is denoted dp-dim M (resp., p-dim M) is de-
fined to be the codeviation (resp., deviation) of the poset of the finitely
generated submodules of M. It is convenient, when we are dealing
with the latter dimensions, to begin our list of ordinals with —1. We
recall that an R-module M is called a-perfect atomic, where « is an
ordinal, if dp-dim M = «a and dp-dim N < « for any proper finitely
generated submodule N of M. M is said to be perfect-atomic if it is
a-perfect atomic for some a. Bilhan and Smith have introduced and
extensively investigated short modules and almost Noetherian mod-
ules, see [0]. Later Davoudian, Karamzadeh and Shirali undertook a
systematic study of the concepts of a-short modules and a-almost Noe-
therian modules, see [11]. We recall that an R-module M is called an
a-short module, if for each submodule N of M, either n-dim N < « or
n-dim % < « and « is the least ordinal number with this property. We
shall call an R-module M to be a-semi short, if for each finitely gener-
ated submodule N of M, either dp-dim N < « or dp-dim % <« and «
is the least ordinal number with this property. Using this concept, we
show that each a-semi short module M has dual perfect dimension and
a < dp-dim M < a+ 1. We observe that an Artinian serial module M
is a-short if and only if it is S-semi short, where o and 3 are ordinal
numbers and f < a < 4+ 1. We also recall that an R-module M
is called a-almost Noetherian, if for each proper submodule N of M,
n-dim N < « and « is the least ordinal number with this property, see
[14]. We shall call an R-module M to be a-semi Noetherian if for each
proper finitely generated submodule N of M, dp-dim N < « and « is
the least ordinal number with this property. In section 2 of this paper
we investigate some basic properties of a-semi Noetherian and a-semi
short modules. We show that if M is an a-semi short module (resp.,
a-semi Noetherian module), then dp-dim M = « or dp-dim M = a + 1
(resp., dp-dim M < «). In the last section we also investigate some
properties of a-semi Noetherian and a-semi short modules. Finally, we
should emphasize here that the results in sections 2 and 3 are new and
are similar to the corresponding results in [14].

2. a-SEMI SHORT MODULES AND a-ALMOST SEMI NOETHRIAN
MODULES

We recall that an R-module M is called a-almost Noetherian, if for
each proper submodule N of M, n-dim N < « and « is the least ordinal
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number with this property. In the following definition we consider a
related concept.

Definition 2.1. An R-module M is called a-semi Noetherian if for
each proper finitely generated submodule N of M, dp-dim N < « and
« is the least ordinal number with this property.

It is manifest that if M is an a-semi Noetherian module, then each
submodule and each factor module of M is -semi Noetherian for some
B < « (note, see [13, Lemmas 2.5, 2.10]).

In view of [13, Proposition 2.7], we have the next three trivial, but
useful facts.

Lemma 2.2. If M is an a-semi Noetherian module, then M has dual
perfect dimension and dp-dim M < «. In particular, dp-dim M = « if
and only if M is a-perfect atomic.

Lemma 2.3. If M is a module with dp-dim M = «, then either M 1is
a-perfect atomic, in which case it is a-semi Noetherian, or it is o+ 1-
semt Noetherian.

Lemma 2.4. If M is an a-semi Noetherian module, then either M 1is
a-perfect atomic or o = dp-dim M + 1. In particular, if M is a-sems
Noetherian module, where o is a limit ordinal, then M is «a-perfect
atomic.

Proposition 2.5. An R-module M has dual perfect dimension if and
only if M is a-semi Noetherian for some ordinal .

Next, we give our definition of a-semi short modules.

Definition 2.6. An R-module M is called a-semi short module, if for
each finitely generated submodule N of M, either dp-dim N < « or
dp-dim % < «a and « is the least ordinal number with this property.

In view of [13, Corollary 2.13], we have the following results.

Remark 2.7. If M is an R-module with dp-dim M = «, then M is
(-semi short for some 3 < a.

Remark 2.8. If M is an a-semi short module, then each submodule and
each factor module of M is #-semi short for some § < a.

We cite the following result from [13, Proposition 2.9].

Lemma 2.9. If M is an R-module and for each finitely generated sub-
module N of M, either N or % has dual perfect dimension, then so
does M.
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The previous lemma and Remark 2.7, immediately yield the next
result.

Corollary 2.10. Let M be an a-semi short module. Then M has dual
perfect dimension and o < dp-dim M .

The following is now immediate.

Proposition 2.11. An R-module M has dual perfect dimension if and
only if M is a-semi short for some ordinal .

Proposition 2.12. If M is an a-semi short R-module, then either
dp-dim M = « or dp-dim M = o + 1.

Proof. Clearly in view of Corollary 2.10, we have dp-dim M > «. If
dp-dim M # «, then dp-dim M > a+1. Now let M; C M, C ... be any

ascending chain of finitely generated submodules of M. If there exists
some k such that dp—dimMﬁk < «, then dp—dilrnM]\/[#t1 < dp—dim% =
dp-dim AAZ//AJ@Z < dp—dimMﬁk < « for each i > k, see [13, Corollary

2.13]. Otherwise dp-dim M; < a (M is a-semi short) for each 4, hence
dp—dim% < dp-dim M;,; < « for each i¢. Thus in any case there

i

exists an integer k such that for each i > k, dpdim% < «. This
shows that dp-dim M < a+1, i.e., dp-dim M = o + 1. O
Remark 2.13. An R-module M is —1-semi short if and only if it is
simple.

Proposition 2.14. Let M be an R-module, with dp-dim M = «, where
a is a limit ordinal. Then M is a-semi short.

Proof. We know that M is #-semi short for some 3 < a. If § < a, then
by Proposition 2.12, dp-dim M < +1 < . Which is a contradiction.
Thus M is a-semi short. O

Proposition 2.15. Let M be an R-module and dp-dim M = o = f+1.
Then M 1is either a-semi short or it is [3-semi short.

Proof. We know that M is v-semi short for some v < a. If v < f3,
then by Proposition 2.12, we have dp-dim M <~y +1 < 3+ 1, which is
impossible. Hence we are done. U

Proposition 2.16. Let M be an «a-perfect atomic R-module, where
a=pF+1, then M is a (3-semi short module.

Proof. Let N be a finitely generated submodule of M. Hence, we have
dp-dim N < a. This shows that for some g’ < 3, M is (#’-semi short.
If # < 8, then ' +1 < 8 < a. But dp-dimM < ' +1< 8 < a,
by Proposition 2.12, which is a contradiction. Thus ' = 3 and we are
done. U
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The following remark, which is a trivial consequence of the previous
fact, shows that the converse of Proposition 2.14, is not true in general.

Remark 2.17. Let M be an o+ 1-perfect atomic R-module, where « is
a limit ordinal. Then M is an a-semi short module but dp-dim M # «.

Proposition 2.18. Let M be an R-module such that dp-dim M = o +
1. Then M is either a-semi short R-module or there exists a finitely
generated submodule N of M such that dp-dim N = dp-dim % =a+1.

Proof. We know that M is a-semi short or an o + 1-semi short R-
module, by Proposition 2.15. Let us assume that M is not a-semi
short R-module, hence there exists a finitely generated submodule N
of M such that dp-dim N > o+ 1 and dp-dim % > « + 1. This shows
that dp-dim N = a+ 1 and dp-dim % = a+ 1 and we are through. [J

Proposition 2.19. Let M be a non-zero a-semi short R-module. Then
either M is (3-semi Noetherian for some ordinal 3 < « + 1 or there
exists a finitely generated submodule N of M with dp-dim% < a.

Proof. Suppose that M is not (3-semi Noetherian for any g < « + 1.
This means that there must exist a finitely generated submodule N of
M such that dp-dim N £ «. Inasmuch as M is a-semi short, we infer
that dp-dim % < « and we are done. O

Finally we conclude this section by providing some examples of a-
semi Noetherian (resp., a-semi short) modules, where « is any ordinal.
Recall that a left R-module M, (note, R is not necessarily commu-
tative) is called uniserial if its submodules are linearly orderded by
inclusion. A serial module is a module that is a direct sum of unise-
rial modules. First, we recall that given any ordinal « there exists an
Artinian serial module M such that n-dim M = «, see [22, Example
1] and [15, Lemma 2.4]. Thus dp-dim M = «, see [13, Corollary 4.4].
Consequently, we may take M to be an Artinian serial module with
dp-dim M = «. Hence dp-dim M = « and for any ordinal § < «, we
take N to be its f-perfect atomic submodule, see [13, Corollary 3.10],
then by Lemma 2.3, N is #-semi Noetherian. We recall that the only
a-semi Noetherian modules, where « is a limit ordinal, are a-perfect
atomic modules, see Lemma 2.4. Therefore to see an example of a-
semi Noetherian module which is not a-perfect atomic, the ordinal «
must be a non-limit ordinal. Thus we may take M to be a non-perfect
atomic module with dp-dim M = (3, where a = 3+ 1, hence its follows
trivially that M is an a-semi Noetherian. As for examples of a-semi
short modules, one can similarly use the facts that there are Artinian
serial modules M with Noetherian dimension equal to «a, see [22, 15].
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In view of [13, Corollary 4.4], we infer that dp-dim M = «. By [13,
Corollary 3.10], for each 5 < « there are [-perfect atomic submod-
ules of M and then apply Propositions 2.14, 2.15, 2.16, to give various
examples of a-semi short modules (for example, by Proposition 2.16,
every « + l-perfect atomic module is a-semi short).

3. PROPERTIES OF -SEMI SHORT MODULES AND -SEMI
NOETHERIAN MODULES

In this section some properties of a-semi short modules over an ar-
bitrary ring R are investigated.

In the following two propositions we investigate the connection be-
tween a-short modules and a-semi short modules, where M is an Ar-
tinian serial module.

Proposition 3.1. Let M be an Artinian serial R-module. If M is a
(B-semi short module, then M is a-short for some a < 3+ 1.

Proof. In view of Proposition 2.12; we get dp-dim M < 3+ 1. Thus by
[13, Corollary 4.4], we have n-dim M < §+ 1. This shows that M is
an a-short module for some o < #+ 1, see [141, Remark 1.2]. O

Proposition 3.2. If M is an a-short R-module, then it is 3-semi short
for some < a.

Proof. Let N be a finitely generated submodule of M, then n-dim N <

o or n-dim & < « (note, M is a-short). In view of [13, Lemma 2.3],
we infer that dp-dim N < « or dp-dim % < a. This implies that M is
(-semi shore for some (3 < a. O

In view of Propositions 3.1 and 3.2, we have the following corollary.

Corollary 3.3. Let M be an Artinian serial R-module and o and 3 are
ordinal numbers. Then M 1is (3-semi short if and only if it is a-short,
where f < a < [+ 1.

The next example shows that in the previous corollary all the cases
for a can occur.

Example 3.4. Let Z be the ring of integers. Then the Z-module Z,
is both O-short and 0O-semi short. And the Z-module Zj~ @ Z, is
1-short but it is 0-semi short.

In view of Corollary 3.3, we have the following result.

Corollary 3.5. If M is an «-short module, where « is a limit ordinal
number, then M 1is a-semi short.
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Proposition 3.6. Let R be a ring and M be a nonzero a-semi short
module, which is not a perfect atomic module, then M contains a
finitely generated submodule L such that dp-dim % < a.

Proof. Since M is not perfect atomic, we infer that there exists a finitely
generated submodule L C M, such that dp-dim L = dp-dim M. We
know that dp-dim M = « or dp-dim M = a+ 1, by Proposition 2.12. If
dp-dim M = « it is clear that dp-dim % < a. Hence we may suppose
that dp-dim L = dp-dim M = « + 1. Consequently, dp-dim % < a and
we are done. O

Theorem 3.7. Let o be an ordinal number and M be an R-module.
If every proper finitely generated submodule of M is ~y-semi short for
some ordinal number v < a. Then dp-dim M < « + 2, in particular,
M is p-semi short for some ordinal p < o+ 1.

Proof. Let N C M be any finitely generated submodule of M. Since
N is vy-semi short for some ordinal number v < «, we infer that
dp-dim N < v+ 1 < a + 1, by Proposition 2.12. This immediately
implies that dp-dim M < « + 2, see [13, Proposition 2.7]. The final
part is now evident. U

The next result is the dual of Theorem 3.7.

Theorem 3.8. Let M be a nonzero R-module and « be an ordinal
number. Let for every non-zero finitely generated submodule N of M,
% be v-semi short for some ordinal number v < a. Then dp-dim M <
a+ 1, in particular, M is p-semi short for some ordinal p < o + 1.

Proof. Let N be any non-zero finitely generated submodule of M, then
M is y-semi short for some ordinal number v < «. In view of Propo-

N

sition 2.12, we infer that dpdim% < v+4+1 < a+ 1. Therefore
dp-dim M < sup{dp—dim% :0# N C M,Nis fg} < a+1, see
[13, Proposition 2.6]. The final part is now evident. O

The next immediate result is the counterparts of Theorems 3.7, 3.8,
for a-semi Noetherian modules.

Proposition 3.9. Let M be an R-module and o be an ordinal number.
If each proper finitely generated submodule N of M (resp., for each non-
zero finitely generated submodule N of M, %) s y-semi Noetherian
with v < «, then M is a p-semi Noetherian module with p < a+1 and
dp-dim M < a+ 1 (resp., with p < o+ 1 and dp-dim M < «).

Proposition 3.10. Let R be a semiprime right Goldie ring. Then the
right R-module R is a-semi short if and only if dp-dim R = «.
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Proof. Let R be a-semi short as an R-module. We are to show that
dp-dim R = «. If for each essential right ideal £ of R, dp-dim % <«
then dp-dim R = sup{dp—dim% : E C. R} < a, see [13, Proposition
2.15]. Since R is a-semi short we have dp-dim R = «, by Proposition
2.12. Now suppose that there exists an essential right ideal E’ of R
such that dp—dim% & . But R is a right Goldie ring, hence there
exists a regular element ¢ in E’, which implies that dp-dim % ﬁ a, see
[13, Lemma 2.10]. Thus dp-dim R = dp-dimcR < «, see [13, Lemma
2.5]. Consequently, we must have dp-dim R = «, by Proposition 2.12.
Conversely, by Remark 2.7, R is (-semi short for some g < «. But,
by the first part of the proof, we must have dp-dim R = 3, i.e., 0 = «,
and we are through. O
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