ON EQUALITY OF ABSOLUTE CENTRAL AND CLASS PRESERVING AUTOMORPHISMS OF FINITE p-GROUPS | ||
Journal of Algebraic Systems | ||
مقاله 6، دوره 6، شماره 2، فروردین 2019، صفحه 147-155 اصل مقاله (337.16 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2018.6849.1335 | ||
نویسنده | ||
Rasoul Soleimani* | ||
Department of Mathematics, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran. | ||
چکیده | ||
Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $\Aut^{L}(G)$ and $\Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $\Aut_c(G)=\Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^n (n\leq 5)$, for which every absolute central automorphism is class preserving. | ||
کلیدواژهها | ||
Automorphism group؛ Absolute centre؛ Finite p-group | ||
آمار تعداد مشاهده مقاله: 538 تعداد دریافت فایل اصل مقاله: 700 |