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ON GRADED INJECTIVE DIMENSION

A. MAHMOODI∗ AND A. ESMAEELNEZHAD

Abstract. There are remarkable relations between the graded
homological dimensions and the ordinary homological dimensions.
In this paper, we study the injective dimension of a complex of
graded modules and derive its some properties. In particular, we
define the ∗dualizing complex for a graded ring and investigate its
consequences.

1. Introduction

Let R be a Noetherian Z-graded ring. In [5] and [6], Fossum and
Fossum-Foxby have studied the graded homological dimension of graded
modules and compare them with classical homological dimensions. They
showed that for a graded R-module M , one has

∗ idRM ≤ idRM ≤ ∗ idRM + 1,

where idRM (resp., ∗ idRM) denotes the injective dimension of M in
the category of R-modules (resp., category of graded R-modules). It is
natural to ask how these inequalities hold for the injective dimension
of a complex of graded modules and homogeneous homomorphisms.
Section 2 of this paper is devoted to review some hyper-homological
algebra for the derived category of the graded ring R. In Section
3, we define the ∗injective dimension of complexes of graded mod-
ules and homogeneous homomorphisms, and derive its some properties.
Among other results, we prove the generalization of the dual version
of Auslander-Buchbaum equality, which implies the known inequality
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∗ idRX ≤ idRX ≤ ∗ idRX + 1 for a complex of graded modules and
homogeneous homomorphisms X. Throughout this paper, R is com-
mutative and all complexes are chain complexes, that is their indexes
increase to left. For more details on graded rings and modules, see [2]
and [6].

2. Derived category of complexes of graded modules

Let X be a complex of R-modules and R-homomorphisms. The
supremum and the infimum of a complex X, denoted by sup(X) and
inf(X), are defined by the supremum and the infimum of the set {i ∈
Z|Hi(X) 6= 0}. For an integer m, ΣmX denotes the complex X shifted
m degrees to the left; it is given by

(ΣmX)` = X`−m and ∂ΣmX
` = (−1)m∂X`−m,

for ` ∈ Z.
The symbol D(R) denotes the derived category of R-complexes. The

full subcategories D@(R), DA(R), D�(R) and D0(R) of D(R) consist
of R-complexes X while H`(X) = 0, for respectively ` � 0, ` � 0,
|`| � 0 and ` 6= 0. Homology isomorphisms are marked by the sign '.
The right derived functor of the homomorphism functor of R-complexes
and the left derived functor of the tensor product of R-complexes are
denoted by R HomR(−,−) and −⊗L

R −, respectively.
Let M = ⊕n∈ZMn and N = ⊕n∈ZNn be two graded R-modules.

The ∗Hom functor is defined by ∗HomR(M,N) =
⊕

i∈Z Homi(M,N),
such that Homi(M,N) is a Z-submodule of HomR(M,N) consisting of
all ϕ : M → N such that ϕ(Mn) ⊆ Nn+i for all n ∈ Z. In general,
∗HomR(M,N) 6= HomR(M,N), but equality holds if M is finitely gen-
erated, see [6, Lemma 4.2]. Also, the tensor product M⊗RN of M and
N is a graded module with (M ⊗R N)n is generated (as a Z-module)
by elements m⊗ n with m ∈Mi and n ∈ Nj where i+ j = n.

Let {Mα}α∈I be a family of graded R-modules. Then,
⊕

αMα be-
comes a graded R-module with (

⊕
αMα)n =

⊕
α(Mα)n, for all n ∈ Z,

see [6, Page 289]. Recall that the direct products exist in the category
of graded modules. Then the direct product is denoted by ∗

∏
αMα

and (∗
∏

αMα)n =
∏

α(Mα)n for all n ∈ Z, see [6, Page 289]. In this
case, there are the following bijections [6, Page 289]

∗HomR(
⊕

α

Mα,−)
∼=−→ ∗

∏

α

∗HomR(Mα,−),

∗HomR(−,∗
∏

α

Mα)
∼=−→ ∗

∏

α

∗HomR(−,Mα).
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Likewise, direct limits exist in the category of graded modules with

(∗ lim
−→

Mα)n = lim
−→

(Mα)n

for all n ∈ Z, see [6, Page 289].
The symbol ∗C(R) denotes the category of complexes of graded R-

modules and homogeneous differentials. Remember that the category
of graded modules is an abelian category. The derived category of
∗C(R) will be denoted by ∗D(R), (see [10]). Analogously we have
∗C@(R), ∗CA(R), ∗C�(R) and ∗C0(R) (resp. ∗D@(R), ∗DA(R), ∗D�(R)
and ∗D0(R)) which are the full subcategories of ∗C(R) (resp. ∗D(R)).

For R-complexes X and Y of graded modules, with homogeneous
differentials ∂X and ∂Y the homomorphism complex ∗HomR(X, Y ) is
defined as:

∗HomR(X, Y )` = ∗
∏

p∈Z

∗HomR(Xp, Yp+`)

and when ψ = (ψp)p∈Z belongs to ∗HomR(X, Y )`, then the family

∂
∗ HomR(X,Y )
` (ψ) in ∗HomR(X, Y )`−1 has p-th component

∂
∗ HomR(X,Y )
` (ψ)p = ∂Yp+`ψp − (−1)`ψp−1∂

X
p .

When X ∈ ∗CfA(R) and Y ∈ ∗C@(R) all the products

∗
∏

p∈Z

∗HomR(Xp, Yp+`)

are finite. Note that for each p ∈ Z, Xp is finitely generated R-module,
thus ∗HomR(Xp, Yp+`) = HomR(Xp, Yp+`), see [6, Lemma 4.2]. There-
fore

∗
∏

p∈Z

∗HomR(Xp, Yp+`) =
∏

p∈Z
HomR(Xp, Yp+`),

for every ` ∈ Z. Therefore ∗HomR(X, Y ) = HomR(X, Y ).
Also the tensor product complex X ⊗R Y is defined as:

(X ⊗R Y )` =
⊕

p∈Z
(Xp ⊗R Y`−p)

and the `-th differential ∂X⊗RY
` is given on a generator xp ⊗ y`−p in

(X ⊗R Y )`, where xp and y`−p are homogeneous elements, by

∂X⊗RY
` (xp ⊗ y`−p) = ∂Xp (xp)⊗ y`−p + (−1)pxp ⊗ ∂Y`−p(y`−p).

If X and Y are R-complexes of graded modules, then ∗HomR(X,−),
∗HomR(−, Y ), and X ⊗R − are graded functors on ∗C(R).

Note that any object of ∗C@(R) has an ∗injective resolution by [10,
Page 47], and any object of ∗CA(R) has an ∗projective resolution by
[10, Page 48]. The right derived functor of the ∗Hom functor in the
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category of graded complexes is denoted by R ∗HomR(−,−) and set
∗ ExtiR(−,−) = H−i(R ∗HomR(−,−)). It is easily seen that if R is

a Noetherian Z-graded ring and X ∈ ∗CfA(R) and Y ∈ ∗C@(R) then
R ∗HomR(X, Y ) = R HomR(X, Y ). Also the left derived functor of
− ⊗R − in the category of graded complexes is denoted by − ⊗L∗

R −.
Since ∗projective gradedR-modules coincide with projectiveR-modules
by [6, Proposition 3.1] we easily see that − ⊗L∗

R − coincides with the
ordinary left derived functor of − ⊗R − in the category of complexes.
So we use −⊗L

R − instead of −⊗L∗
R −.

We recall the definition of the depth and width of complexes. Let a
be an ideal in a ring R and X a complex of graded R-modules. The
a-depth and a-width of X over R are defined respectively by

depth(a, X) :=− sup R HomR(R/a, X),

width(a, X) := inf(R/a⊗L
R X).

For a local ring (R,m) set depthRX := depth(m, X); widthRX :=
width(m, X). Let (R,m) be a ∗local graded ring and X be a complex
of graded R-modules. By [2, Proposition 1.5.15(c)], − ⊗R Rm is a
faithfully exact functor on the category of graded R-modules. Then we
have

width(m, X) = inf{i|Hi(R/m⊗L
R X) 6= 0}

= inf{i|Hi(R/m⊗L
R X)⊗R Rm 6= 0}

= inf{i|Hi(Rm/mRm ⊗L
Rm

Xm) 6= 0}

= width(mRm, Xm) = widthRm Xm.

Likewise we have depth(m, X) = depthRm
Xm.

3. ∗injective dimension

The injective dimension of a complex X, denoted by idRX, is defined
and studied in [1]. A graded module J is called ∗injective if it is an
injective object in the category of graded modules. In other words, the
functor ∗HomR(−, J) is exact in this category. A long exact sequence
of ∗injective modules is called ∗injective resolution. The injective di-
mension of a graded module M in the category of graded modules, is
denoted by ∗ idRM (cf. [6, 2]). In this section we study the ∗injective
dimension of homologically left bounded complexes of graded modules.

Let n ∈ Z. A homologically left bounded complex of graded modules
X, is said to have ∗injective dimension at most n, denoted by ∗ idRX ≤
n, if there exists an ∗injective resolution X → I, such that Ii = 0 for
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i < −n. If ∗ idRX ≤ n holds, but ∗ idRX ≤ n − 1 does not, we write
∗ idRX = n. If ∗ idRX ≤ n for all n ∈ Z we write ∗ idRX = −∞. If
∗ idRX ≤ n for no n ∈ Z we write ∗ idRX =∞. The following theorem
inspired by [1, Theorem 2.4.I and Corollary 2.5.I].

Theorem 3.1. For X ∈ ∗D@(R) and n ∈ Z the following are equiva-
lent:

(1) ∗ idRX ≤ n.
(2) n ≥ − supU − inf(R∗HomR(U,X)) for all U ∈ ∗D�(R) and

H(U) 6= 0.
(3) n ≥ − inf X and ∗ Extn+1

R (R/J,X) = 0 for every homogeneous
ideal J of R.

(4) n ≥ − inf X and for any (resp. some) ∗injective resolution I of
X, the graded R-module Ker(∂−n : I−n → I−n−1) is ∗injective.

Moreover the following holds:

∗ idRX = sup{j ∈ Z|∗ ExtjR(R/J,X) 6= 0 for some homogeneous ideal J}
= sup{− sup(U)− inf(R∗HomR(U,X))|U � 0 in ∗D�(R)}.

Proof. (1)⇒ (2) Let t := supU and I be an ∗injective resolution of X,
such that, for all i < −n, Ii = 0. Then we have

∗ ExtiR(U,X) ∼= H−i(
∗HomR(U, I)).

Since ∗HomR(U, I)−i = 0 for −i < −n− t, the assertion follows.
(2) ⇒ (3) It is trivial that ∗ Extn+1

R (R/J,X) = 0 for every homoge-
neous ideal J of R. For the second assertion let U = R in (2). So that
ExtiR(R,X) = ∗ ExtiR(R,X) = 0 for i > n. Now by [1, Lemma 1.9(b)],
we have H−i(X) = 0 for −i < −n. This means that n ≥ − inf X.

(3) ⇒ (4) By hypothesis of (4) Hi(I) = 0 for i < −n. Thus the
complex

· · · → 0→ 0→ I−n → I−n−1 → · · · → Ii → Ii−1 → · · ·
gives an ∗injective resolution of Ker ∂−n. In particular

∗ Ext1
R(R/J,Ker ∂−n) = H−n−1

∗HomR(R/J, I) = ∗ Extn+1
R (R/J,X) = 0

for every homogeneous ideal J of R. Thus Ker ∂−n is ∗injective by [6,
Corollary 4.3].

(4) ⇒ (1) Let I be any ∗injective resolution of X. By assumption,
the module Ker ∂−n is ∗injective. Thus ∗ idRX < −n by definition.

The last equalities are easy consequences of (1),. . .,(4). �

For a local ring (R,m, k) and for an R-complex X and i ∈ Z the
ith Bass number and Betti number of X are defined respectively by
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µiR(X) := dimk H−i(R HomR(k,X)) and βRi (X) := dimk Hi(k ⊗L
R X).

It is well-known that for X ∈ D@(R) one has (cf. [1, Proposition 5.3.I])

idRX = sup{m ∈ Z|∃p ∈ Spec(R);µmRp
(Xp) 6= 0}.

As a graded analogue we have:

Proposition 3.2. For X ∈ ∗D@(R) we have the following equality

∗ idRX = sup{m ∈ Z|∃p ∈∗ Spec(R);µmRp
(Xp) 6= 0}.

Proof. The argument is the same as proof of [1, Proposition 5.3.I] with
some changes. Denote the supremum by i. By Theorem 3.1, we have
∗ idRX ≥ i. Hence the equality holds if i =∞. Thus assume that i is
finite. By Theorem 3.1 we have to show that if ∗ ExtjR(M,X) 6= 0 for
some finitely generated graded R-module M , then j ≤ i; this implies
that ∗ idRX ≤ i. The elements of Ass(M) are homogeneous prime
ideals. Thus there exists a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M
of graded submodules of M such that for each i we have Mi/Mi−1

∼=
R/pi with pi ∈ SuppM and pi is homogeneous. From the long exact
sequence of ∗ ExtjR(−, X) 6= 0 the set

{q ∈Spec(R)| there is an h ≥ j such that ∗ ExthR(R/q, X) 6= 0},
turns to be non empty. Let p be maximal in this set and for a homo-
geneous x ∈ R\p consider the exact sequence

0→ R/p
x→ R/p→ R/(p +Rx)→ 0.

It induces an exact sequence

∗ ExthR(R/(p +Rx), X)→ ∗ ExthR(R/p, X)
x→ ∗ ExthR(R/p, X)

→ ∗ Exth+1
R (R/(p +Rx), X)

in which the left-hand term is trivial because of the maximality of
p. Thus ∗ ExthR(R/p, X)

x→ ∗ ExthR(R/p, X) is injective for all homo-
geneous elements x ∈ R\p, hence so is the homogeneous localization
homomorphism ∗ ExthR(R/p, X) → ∗ ExthR(R/p, X)(p). Thus the free

R(p)/pR(p)-module ∗ ExthR(R/p, X)(p) is nonzero. Consequently

(∗ ExthR(R/p, X)(p))pR(p)
∼= ExthRp

(Rp/pRp, Xp)

is nonzero. This implies that j ≤ h ≤ i. �
Remark 3.3. (1) A graded module is called ∗projective if it is a projec-
tive object in the category of graded modules. By [6, Proposition 3.1]
the ∗projective graded R-modules coincide with projective R-modules.
The projective dimension of a graded module M in the category of
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graded modules, is denoted by ∗ pdRM (cf. [6]). Let n ∈ Z. A homo-
logically right bounded complex of graded modules X, is said to have
∗projective dimension at most n, denoted by ∗ pdRX ≤ n, if there ex-
ists a ∗projective resolution P → X, such that Pi = 0 for i > n. If
∗ pdRX ≤ n holds, but ∗ pdRX ≤ n−1 does not, we write ∗ pdRX = n.
If ∗ pdRX ≤ n for all n ∈ Z we write ∗ pdRX = −∞. If ∗ pdRX ≤ n
for no n ∈ Z we write ∗ pdRX =∞.

(2) For X ∈ ∗DA(R) by the same method as in [1, Theorem 2.4.P
and Corollary 2.5.P] we have
∗ pdRX = sup{j ∈ Z|∗ ExtjR(X,N) 6= 0 for some graded R-module N}

= sup{inf(U)− inf(R ∗HomR(X,U))|U � 0 in ∗D�(R)}.
(3) It is easy to see that for X ∈ ∗DA(R), we have ∗ pdRX 6 pdRX.
(4) The notions of ∗flat module and ∗flat dimension are obtained

by replacing ‘projective’ by ‘flat’ in (1). By [6, Proposition 3.2] the
∗flat graded R-modules coincide with flat R-modules. Therefore for a
homologically right bounded complex of graded modules X, we have
∗ fdRX 6 ∗ pdRX.

The proof of the following proposition is easy so we omit it (see
[2, Theorem 1.5.9]). Let J be an ideal of the graded ring R. Then
the graded ideal J∗ denotes the ideal generated by all homogeneous
elements of J . It is well-known that if p is a prime ideal of R, then p∗

is a homogeneous prime ideal of R by [2, Lemma 1.5.6].

Proposition 3.4. Let X ∈ ∗D�(R) and p is a non-homogeneous prime

ideal in R. Then µi+1
Rp

(Xp) = µiRp∗
(Xp∗) and β

Rp

i (Xp) = β
Rp∗
i (Xp∗) for

any integer i ≥ 0.

Corollary 3.5. Let X ∈ ∗D�(R) and p be a non-homogeneous prime
ideal in R. Then

depthXp = depthXp∗ + 1.

Proof. Using Proposition 3.4, we can assume that both depthXp and
depthXp∗ are finite. So the equality follows from the fact that over a
local ring (R,m, k) we have depthRX = inf{i ∈ Z|µiR(X) 6= 0}. �

Foxby defined the small support of a homologically right bounded
complex X over a Noetherian ring R, denoted by suppRX, as the set
of prime ideal of R such that R(p)/pR(p) ⊗LR X is non-trivial complex
(See [7]). It is well known that;

suppRX = {p ∈ SpecR|∃m ∈ Z : βRp
m (Xp) 6= 0}.

Let ∗ suppRX be a subset of suppRX consisting of homogeneous prime
ideals of suppRX. Then from Proposition 3.4 we see that p ∈ suppRX
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if and only if p∗ ∈ ∗ suppRX. Also using [12, Lemma 2.3] for p ∈
suppRX we have depthXp <∞ if and only if widthRp Xp <∞. There-
fore by corollary 3.5 we get;

widthRp Xp <∞⇔ widthRp∗ Xp∗ <∞.
Proposition 3.6. Let X ∈ ∗D�(R) and p is a non-homogeneous prime
ideal in R. Then

widthRp Xp = widthRp∗ Xp∗ .

Proof. We can assume that both widthXp and widthXp∗ are finite
numbers, and the argument would be dual to the proof of [2, Theorem
1.5.9]. �

The ungraded version of the following theorem was proved for mod-
ules by Chouinard [3, Corollary 3.1], and extended to complexes by
Yassemi [12, Theorem 2.10].

Theorem 3.7. Let X ∈ ∗D�(R). If ∗ idRX <∞, then
∗ idRX = sup{depthRp − widthXp|p ∈ ∗Spec(R)}.

Proof. We have the following computations
∗ idRX = sup{m ∈ Z|∃p ∈ ∗ Spec(R) : µmRp

(Xp) 6= 0}

= sup{m ∈ Z|∃p ∈ ∗Spec(R) : Hm(R HomRp(κ(p), Xp)) 6= 0}

= sup{− inf R HomRp(κ(p), Xp)|p ∈ ∗Spec(R)}

= sup{depthRp − widthRp Xp|p ∈ ∗Spec(R)}.
The first equality holds by Proposition 3.2, and the last one holds by
[12, Lemma 2.6(a)], since idRX <∞ by Propositions 3.2 and 3.4. �

The following corollary was already known for graded modules in [6,
Corollary 4.12].

Corollary 3.8. For every X ∈ ∗D�(R), we have
∗ idRX ≤ idRX ≤ ∗ idRX + 1.

Proof. First of all note that by Proposition 3.4, idRX < ∞ if and
only if ∗ idRX <∞. The first inequality is clear by Theorem 3.7 and
[12, Theorem 2.10]. For the second one let p ∈ SpecR be such that
idRX = depthRp − widthRp Mp by [12, Theorem 2.10]. By Corollary
3.5 and Proposition 3.6 we have

depthRp−widthRp Mp ≤ depthRp∗ −widthRp∗ Mp∗ + 1 ≤ ∗ idRX + 1,

where the second inequality holds by Theorem 3.7. �
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Here we define the ∗dualizing complex for a graded ring and prove
some related results.

Definition 3.9. A ∗dualizing complex D for a graded ring R is a homo-
logically finite and bounded complex of graded R-modules, such that
∗ idRD < ∞ and the homothety morphism ψ : R → R ∗HomR(D,D)
is invertible in ∗D(R).

Corollary 3.10. Any ∗dualizing complex for R is a dualizing complex
for R.

The proof of the following lemma is the same as [10, Chapter V,
Proposition 3.4].

Lemma 3.11. Let (R,m, k) be a ∗local ring and D is a ∗dualizing com-
plex of R. Then there exists an integer t such that Hi(R ∗HomR(k,D))=
0 for i 6= t and Ht(R ∗HomR(k,D)) ∼= k.

Assume that (R,m) is a ∗local ring. A ∗dualizing complex D is said
to be normalized ∗dualizing complex if t = 0 in the lemma. It is easy
to see that a suitable shift of any ∗dualizing complex is a normalized
one. Also using [10, Chapter V, Proposition 3.4] we see that if D is
a normalized ∗dualizing complex for (R,m), then Dm is a normalized
dualizing complex for Rm.

Lemma 3.12. Let (R,m, k) be a ∗local ring and that D is a normal-
ized ∗dualizing complex for R. Then there exists a natural functorial
isomorphism from the category of graded modules of finite length to
itself

φ : H0(R ∗HomR(−, D))→ ∗HomR(−,∗ ER(k)),

where ∗ER(k) is the ∗injective envelope of k over R.

Proof. Since D is a normalized ∗dualizing complex for R, the func-
tor T := H0(R ∗HomR(−, D)) is an additive contravariant exact func-
tor from the category of graded modules of finite length to itself.
Let M be a graded R-module and m ∈ M is a homogeneous ele-
ment of degree α. Then εm : R(−α) → M is a homogeneous mor-
phism which sends 1 into m. Thus we have a homogeneous morphism
ψ(M) : T (M) → ∗HomR(M,T (R)) which sends a homogeneous el-
ement x ∈ T (M) to a morphism fx ∈∗ HomR(M,T (R)) such that
fx(m) = T (εm)(x) for every homogeneous element m ∈ M . It is easy
to see that it is functorial on M . Thus there exists a natural functorial
morphism ψ : T → ∗HomR(−, T (R)). Note that if M is a finite graded
R-module, using a finite presentation of M , there is an isomorphism
∗ lim
−→
∗HomR(M,T (R/mn))

∼=−→ ∗HomR(M,∗ lim
−→

T (R/mn)). Therefore
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by the same method of [9, Lemma 4.4 and Propositions 4.5], there is a
functorial isomorphism

φ : H0(R ∗HomR(−, D))→ ∗HomR(−, ∗ lim
−→

T (R/mn)),

from the category of graded modules of finite length to itself. Using
the technique of proof of [9, Proposition 4.7] in conjunction with [6,
Corollary 4.3], we see that ∗ lim

−→
T (R/mn) is an ∗injective R-module.

Since D is a normalized ∗dualizing complex for R we have
∗HomR(k, ∗ lim

−→
T (R/mn)) ∼= H0(R ∗HomR(k,D)) ∼= k.

Particularly we can embed k to ∗ lim
−→

T (R/mn). In order to show that
∗ lim
−→

T (R/mn) is an ∗essential extension of k, let Q be a graded sub-

module of ∗ lim
−→

T (R/mn) such that k∩Q = 0. Then ∗HomR(k,Q) can

be embed in
∗HomR(k, ∗ lim

−→
T (R/mn)) ∼= k.

Therefore ∗HomR(k,Q) = 0. On the other hand for each n ∈ N the
set V (m) includes Ass(T (R/mn)). Now by [11, Proposition 2.1], the
fact that each prime ideal of Ass( ∗ lim

−→
T (R/mn)) is the annihilator of

a homogeneous element [2, Lemma 1.5.6], and the definition of ∗ lim
−→

,

we have

Ass( ∗ lim
−→

T (R/mn)) ⊆
⋃

n∈N
Ass(T (R/mn)) ⊆ V (m).

Consequently Q has support in V (m), so that Q = 0. Therefore
∗ lim
−→

T (R/mn) ∼= ∗ ER(k). �

Let a be an ideal of R. The right derived local cohomology functor
with support in a is denoted by RΓa(−). Its right adjoint, LΛa(−), is
the left derived local homology functor with support in a (see [8] for
detail).

Finally, we have the following proposition, its proof uses Lemma 3.12
and the argument is similar to [10, Chapter V, Proposition 6.1].

Proposition 3.13. Let (R,m, k) be a ∗local ring and that D be a nor-
malized ∗dualizing complex for R. Then RΓm(D) ' ∗ ER(k).

Acknowledgments

The authors would like to thank the referee for the invaluable com-
ments on the manuscript. This research was supported by a grant
from Payame Noor University, Iran.



ON GRADED INJECTIVE DIMENSION 167

References

1. L. L. Avramov and H. B. Foxby, Homological dimensions of unbounded com-
plexes, J. Pure Appl. Algebra, 71 (1991), 129–155.

2. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced
Mathematics 39, Cambridge University Press, Cambridge, 1998.

3. Leo G. Chouinard II, On finite weak and injective dimension, Proc. Amer. Math.
Soc., 60 (1976), 57–60.

4. L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics 1747,
Springer-Verlag, Berlin, 2000.

5. R. M. Fossum, The structure of indecomposable injective modules, Math. Scand.,
36 (1975), 291–312.

6. R. M. Fossume and H. B. Foxby, The category of graded modules, Math. Scand.,
35 (1974), 288–300.

7. H. B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra, 15
(1979), 149–172.

8. A. Frankild, Vanishing of local homology modules, Math. Z., 244 (3), (2003),
615–630.

9. A. Grothendieck, Local cohomology, Lecture notes in Math. 41 Springer Verlag,
1967.

10. R. Hartshorne, Residues and duality, Lecture Notes in math. 20, Springer-
Verlag, Heidelberg, 1966.

11. A. Singh and I. Swanson, Associated primes of local cohomology modules and
of Frobenius powers, Int. Math. Res. Not., 33 (2004), 1703–1733.

12. S. Yassemi, Width of complexes of modules, Acta Math. Vietnam., 23(1) (1998)
161–169.

Akram Mahmoodi
Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-
4697, Tehran, Iran.
Email: ak.mahmoodi@pnu.ac.ir

Afsaneh Esmaeelnezhad
Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-
4697, Tehran, Iran.
Email: esmaeelnezhad81@gmail.com



Journal of Algebraic Systems

ON GRADED INJECTIVE DIMENSION

A. MAHMOODI AND A. ESMAEELNEZHAD

مدرج انژکتیو بعد

اسماعیل�نژاد افسانه و محمودی اکرم
تهران نور پیام دانشگاه تهران، ایران،

این در دارد. وجود مدرج همولوژیکی بعدهای و همولوژیکی بعدهای مابین ذکری قابل رابطه�های
به می�شود. بررسی آن خواص و گرفته قرار مطالعه مورد مدرج مدول�های از همبافت انژکتیو بعد مقاله،
می�دهیم. تعمیم را مربوطه نتایج و کرده تعریف را مدرج حلقه یک برای مدرج، دوگان�ساز همبافت ویژه،

انژکتیو. بعد مدرج، مدول�های مدرج، حلقه�های کلیدی: کلمات
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