Journal of Algebraic Systems Vol. 6, No. 2, (2019), pp 157-167

ON GRADED INJECTIVE DIMENSION

A. MAHMOODI* AND A. ESMAEELNEZHAD

ABSTRACT. There are remarkable relations between the graded homological dimensions and the ordinary homological dimensions. In this paper, we study the injective dimension of a complex of graded modules and derive its some properties. In particular, we define the *dualizing complex for a graded ring and investigate its consequences.

1. INTRODUCTION

Let R be a Noetherian Z-graded ring. In [5] and [6], Fossum and Fossum-Foxby have studied the graded homological dimension of graded modules and compare them with classical homological dimensions. They showed that for a graded R-module M, one has

$${}^*\operatorname{id}_R M \le \operatorname{id}_R M \le {}^*\operatorname{id}_R M + 1,$$

where $\operatorname{id}_R M$ (resp., $\operatorname{*} \operatorname{id}_R M$) denotes the injective dimension of M in the category of R-modules (resp., category of graded R-modules). It is natural to ask how these inequalities hold for the injective dimension of a complex of graded modules and homogeneous homomorphisms. Section 2 of this paper is devoted to review some hyper-homological algebra for the derived category of the graded ring R. In Section 3, we define the *injective dimension of complexes of graded modules and homogeneous homomorphisms, and derive its some properties. Among other results, we prove the generalization of the dual version of Auslander-Buchbaum equality, which implies the known inequality

MSC(2010): Primary: 13A02; Secondary: 13D05, 13D02.

Keywords: Graded rings, graded modules, injective dimension.

Received: 10 July 2017, Accepted: 03 September 2018.

^{*}Corresponding author.

* $\mathrm{id}_R X \leq \mathrm{id}_R X \leq \mathrm{*id}_R X + 1$ for a complex of graded modules and homogeneous homomorphisms X. Throughout this paper, R is commutative and all complexes are chain complexes, that is their indexes increase to left. For more details on graded rings and modules, see [2] and [6].

2. Derived category of complexes of graded modules

Let X be a complex of R-modules and R-homomorphisms. The supremum and the infimum of a complex X, denoted by $\sup(X)$ and $\inf(X)$, are defined by the supremum and the infimum of the set $\{i \in \mathbb{Z} | H_i(X) \neq 0\}$. For an integer $m, \Sigma^m X$ denotes the complex X shifted m degrees to the left; it is given by

$$(\Sigma^m X)_{\ell} = X_{\ell-m} \text{ and } \partial_{\ell}^{\Sigma^m X} = (-1)^m \partial_{\ell-m}^X,$$

for $\ell \in \mathbb{Z}$.

The symbol $\mathcal{D}(R)$ denotes the *derived category* of *R*-complexes. The full subcategories $\mathcal{D}_{\Box}(R)$, $\mathcal{D}_{\Box}(R)$, $\mathcal{D}_{\Box}(R)$ and $\mathcal{D}_{0}(R)$ of $\mathcal{D}(R)$ consist of *R*-complexes *X* while $H_{\ell}(X) = 0$, for respectively $\ell \gg 0$, $\ell \ll 0$, $|\ell| \gg 0$ and $\ell \neq 0$. Homology isomorphisms are marked by the sign \simeq . The right derived functor of the homomorphism functor of *R*-complexes and the left derived functor of the tensor product of *R*-complexes are denoted by $\mathbf{R} \operatorname{Hom}_{R}(-, -)$ and $-\otimes_{R}^{\mathbf{L}}$, respectively.

Let $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and $N = \bigoplus_{n \in \mathbb{Z}} N_n$ be two graded *R*-modules. The * Hom functor is defined by * Hom_{*R*}(*M*, *N*) = $\bigoplus_{i \in \mathbb{Z}}$ Hom_{*i*}(*M*, *N*), such that Hom_{*i*}(*M*, *N*) is a Z-submodule of Hom_{*R*}(*M*, *N*) consisting of all $\varphi : M \to N$ such that $\varphi(M_n) \subseteq N_{n+i}$ for all $n \in \mathbb{Z}$. In general, * Hom_{*R*}(*M*, *N*) \neq Hom_{*R*}(*M*, *N*), but equality holds if *M* is finitely generated, see [6, Lemma 4.2]. Also, the tensor product $M \otimes_R N$ of *M* and *N* is a graded module with $(M \otimes_R N)_n$ is generated (as a Z-module) by elements $m \otimes n$ with $m \in M_i$ and $n \in N_j$ where i + j = n.

Let $\{M_{\alpha}\}_{\alpha \in I}$ be a family of graded *R*-modules. Then, $\bigoplus_{\alpha} M_{\alpha}$ becomes a graded *R*-module with $(\bigoplus_{\alpha} M_{\alpha})_n = \bigoplus_{\alpha} (M_{\alpha})_n$, for all $n \in \mathbb{Z}$, see [6, Page 289]. Recall that the direct products exist in the category of graded modules. Then the direct product is denoted by * $\prod_{\alpha} M_{\alpha}$ and $(*\prod_{\alpha} M_{\alpha})_n = \prod_{\alpha} (M_{\alpha})_n$ for all $n \in \mathbb{Z}$, see [6, Page 289]. In this case, there are the following bijections [6, Page 289]

$$^* \operatorname{Hom}_R(\bigoplus_{\alpha} M_{\alpha}, -) \xrightarrow{\cong} \prod_{\alpha} \operatorname{Hom}_R(M_{\alpha}, -),$$

$$^* \operatorname{Hom}_R(-, \operatorname{Hom}_{\alpha} M_{\alpha}) \xrightarrow{\cong} \prod_{\alpha} \operatorname{Hom}_R(-, M_{\alpha}).$$

Likewise, direct limits exist in the category of graded modules with

$$(^*\lim M_\alpha)_n = \lim (M_\alpha)_r$$

for all $n \in \mathbb{Z}$, see [6, Page 289].

The symbol ${}^*\mathcal{C}(R)$ denotes the category of complexes of graded *R*modules and homogeneous differentials. Remember that the category of graded modules is an abelian category. The derived category of ${}^*\mathcal{C}(R)$ will be denoted by ${}^*\mathcal{D}(R)$, (see [10]). Analogously we have ${}^*\mathcal{C}_{\Box}(R)$, ${}^*\mathcal{C}_{\Box}(R)$, ${}^*\mathcal{C}_{\Box}(R)$ and ${}^*\mathcal{C}_0(R)$ (resp. ${}^*\mathcal{D}_{\Box}(R)$, ${}^*\mathcal{D}_{\Box}(R)$, and ${}^*\mathcal{D}_0(R)$) which are the full subcategories of ${}^*\mathcal{C}(R)$ (resp. ${}^*\mathcal{D}(R)$).

For *R*-complexes X and Y of graded modules, with homogeneous differentials ∂^X and ∂^Y the homomorphism complex * Hom_{*R*}(X, Y) is defined as:

* Hom_R(X, Y)_{$$\ell$$} = * $\prod_{p \in \mathbb{Z}}$ * Hom_R(X_p, Y_{p+ ℓ})

and when $\psi = (\psi_p)_{p \in \mathbb{Z}}$ belongs to $\operatorname{Hom}_R(X, Y)_{\ell}$, then the family $\partial_{\ell}^{\operatorname{Hom}_R(X,Y)}(\psi)$ in $\operatorname{Hom}_R(X,Y)_{\ell-1}$ has *p*-th component

$$\partial_{\ell}^{*\operatorname{Hom}_{R}(X,Y)}(\psi)_{p} = \partial_{p+\ell}^{Y}\psi_{p} - (-1)^{\ell}\psi_{p-1}\partial_{p}^{X}.$$

When $X \in {}^*\mathcal{C}^f_{\square}(R)$ and $Y \in {}^*\mathcal{C}_{\square}(R)$ all the products ${}^*\prod^* \operatorname{Hom}_{\mathcal{D}}(X, Y, x)$

$$\prod_{p \in \mathbb{Z}^*} \operatorname{Hom}_R(X_p, Y_{p+\ell})$$

are finite. Note that for each $p \in \mathbb{Z}$, X_p is finitely generated *R*-module, thus * Hom_{*R*}($X_p, Y_{p+\ell}$) = Hom_{*R*}($X_p, Y_{p+\ell}$), see [6, Lemma 4.2]. Therefore

$$\prod_{p\in\mathbb{Z}} \operatorname{Hom}_{R}(X_{p}, Y_{p+\ell}) = \prod_{p\in\mathbb{Z}} \operatorname{Hom}_{R}(X_{p}, Y_{p+\ell}),$$

for every $\ell \in \mathbb{Z}$. Therefore * Hom_R(X, Y) = Hom_R(X, Y). Also the *tensor product complex* $X \otimes_R Y$ is defined as:

$$(X \otimes_R Y)_{\ell} = \bigoplus_{p \in \mathbb{Z}} (X_p \otimes_R Y_{\ell-p})$$

and the ℓ -th differential $\partial_{\ell}^{X \otimes_R Y}$ is given on a generator $x_p \otimes y_{\ell-p}$ in $(X \otimes_R Y)_{\ell}$, where x_p and $y_{\ell-p}$ are homogeneous elements, by

$$\partial_{\ell}^{X \otimes_R Y}(x_p \otimes y_{\ell-p}) = \partial_p^X(x_p) \otimes y_{\ell-p} + (-1)^p x_p \otimes \partial_{\ell-p}^Y(y_{\ell-p}).$$

If X and Y are R-complexes of graded modules, then *Hom_R(X, -), *Hom_R(-, Y), and $X \otimes_R$ - are graded functors on * $\mathcal{C}(R)$.

Note that any object of ${}^*\mathcal{C}_{\square}(R)$ has an *injective resolution by [10, Page 47], and any object of ${}^*\mathcal{C}_{\square}(R)$ has an *projective resolution by [10, Page 48]. The right derived functor of the *Hom functor in the

category of graded complexes is denoted by $\mathbf{R}^* \operatorname{Hom}_R(-,-)$ and set $*\operatorname{Ext}^i_R(-,-) = \operatorname{H}_{-i}(\mathbf{R}^* \operatorname{Hom}_R(-,-))$. It is easily seen that if R is a Noetherian \mathbb{Z} -graded ring and $X \in {}^*\mathcal{C}_{\square}^f(R)$ and $Y \in {}^*\mathcal{C}_{\square}(R)$ then $\mathbf{R}^* \operatorname{Hom}_R(X,Y) = \mathbf{R} \operatorname{Hom}_R(X,Y)$. Also the left derived functor of $- \otimes_R -$ in the category of graded complexes is denoted by $- \otimes_R^{\mathbf{L}^*} -$. Since *projective graded R-modules coincide with projective R-modules by [6, Proposition 3.1] we easily see that $- \otimes_R^{\mathbf{L}^*} -$ coincides with the ordinary left derived functor of $- \otimes_R -$ in the category of complexes. So we use $- \otimes_R^{\mathbf{L}} -$ instead of $- \otimes_R^{\mathbf{L}^*} -$.

We recall the definition of the *depth* and *width* of complexes. Let \mathfrak{a} be an ideal in a ring R and X a complex of graded R-modules. The \mathfrak{a} -depth and \mathfrak{a} -width of X over R are defined respectively by

$$depth(\mathfrak{a}, X) := -\sup \mathbf{R} \operatorname{Hom}_{R}(R/\mathfrak{a}, X),$$

width(\mathfrak{a}, X) := $\inf(R/\mathfrak{a} \otimes_{R}^{\mathbf{L}} X).$

For a local ring (R, \mathfrak{m}) set depth_R $X := \text{depth}(\mathfrak{m}, X)$; width_R $X := \text{width}(\mathfrak{m}, X)$. Let (R, \mathfrak{m}) be a *local graded ring and X be a complex of graded *R*-modules. By [2, Proposition 1.5.15(c)], $- \otimes_R R_{\mathfrak{m}}$ is a faithfully exact functor on the category of graded *R*-modules. Then we have

width
$$(\mathfrak{m}, X) = \inf\{i | \mathrm{H}_i(R/\mathfrak{m} \otimes_R^{\mathbf{L}} X) \neq 0\}$$

 $= \inf\{i | \mathrm{H}_i(R/\mathfrak{m} \otimes_R^{\mathbf{L}} X) \otimes_R R_\mathfrak{m} \neq 0\}$
 $= \inf\{i | \mathrm{H}_i(R_\mathfrak{m}/\mathfrak{m} R_\mathfrak{m} \otimes_{R_\mathfrak{m}}^{\mathbf{L}} X_\mathfrak{m}) \neq 0\}$
 $= \mathrm{width}(\mathfrak{m} R_\mathfrak{m}, X_\mathfrak{m}) = \mathrm{width}_{R_\mathfrak{m}} X_\mathfrak{m}.$

Likewise we have $\operatorname{depth}(\mathfrak{m}, X) = \operatorname{depth}_{R_{\mathfrak{m}}} X_{\mathfrak{m}}$.

3. *INJECTIVE DIMENSION

The injective dimension of a complex X, denoted by $id_R X$, is defined and studied in [1]. A graded module J is called *injective if it is an injective object in the category of graded modules. In other words, the functor * $\operatorname{Hom}_R(-, J)$ is exact in this category. A long exact sequence of *injective modules is called *injective resolution. The injective dimension of a graded module M in the category of graded modules, is denoted by * $id_R M$ (cf. [6, 2]). In this section we study the *injective dimension of homologically left bounded complexes of graded modules.

Let $n \in \mathbb{Z}$. A homologically left bounded complex of graded modules X, is said to have *injective dimension at most n, denoted by * id_R $X \leq n$, if there exists an *injective resolution $X \to I$, such that $I_i = 0$ for

i < -n. If $\operatorname{*id}_R X \leq n$ holds, but $\operatorname{*id}_R X \leq n - 1$ does not, we write $\operatorname{*id}_R X = n$. If $\operatorname{*id}_R X \leq n$ for all $n \in \mathbb{Z}$ we write $\operatorname{*id}_R X = -\infty$. If $\operatorname{*id}_R X \leq n$ for no $n \in \mathbb{Z}$ we write $\operatorname{*id}_R X = \infty$. The following theorem inspired by [1, Theorem 2.4.I and Corollary 2.5.I].

Theorem 3.1. For $X \in {}^*\mathcal{D}_{\sqsubset}(R)$ and $n \in \mathbb{Z}$ the following are equivalent:

- (1) * $\operatorname{id}_R X \leq n$.
- (2) $n \ge -\sup U \inf(\mathbf{R}^* \operatorname{Hom}_R(U, X))$ for all $U \in {}^*\mathcal{D}_{\Box}(R)$ and $H(U) \ne 0$.
- (3) $n \ge -\inf X$ and * $\operatorname{Ext}_{R}^{n+1}(R/J, X) = 0$ for every homogeneous ideal J of R.
- (4) $n \ge -\inf X$ and for any (resp. some) *injective resolution I of X, the graded R-module $\operatorname{Ker}(\partial_{-n}: I_{-n} \to I_{-n-1})$ is *injective.

Moreover the following holds:

*
$$\operatorname{id}_R X = \sup\{j \in \mathbb{Z} | * \operatorname{Ext}_R^j(R/J, X) \neq 0 \text{ for some homogeneous ideal } J\}$$

= $\sup\{-\sup(U) - \inf(\mathbf{R}^* \operatorname{Hom}_R(U, X)) | U \ncong 0 \text{ in } *\mathcal{D}_{\Box}(R)\}.$

Proof. (1) \Rightarrow (2) Let $t := \sup U$ and I be an *injective resolution of X, such that, for all i < -n, $I_i = 0$. Then we have

$$\operatorname{Ext}_{R}^{i}(U,X) \cong \operatorname{H}_{-i}(\operatorname{Hom}_{R}(U,I)).$$

Since $* \operatorname{Hom}_{R}(U, I)_{-i} = 0$ for -i < -n - t, the assertion follows.

 $(2) \Rightarrow (3)$ It is trivial that * $\operatorname{Ext}_{R}^{n+1}(R/J, X) = 0$ for every homogeneous ideal J of R. For the second assertion let U = R in (2). So that $\operatorname{Ext}_{R}^{i}(R, X) = \operatorname{Ext}_{R}^{i}(R, X) = 0$ for i > n. Now by [1, Lemma 1.9(b)], we have $\operatorname{H}_{-i}(X) = 0$ for -i < -n. This means that $n \geq -\inf X$.

 $(3) \Rightarrow (4)$ By hypothesis of (4) $H_i(I) = 0$ for i < -n. Thus the complex

$$\cdots \to 0 \to 0 \to I_{-n} \to I_{-n-1} \to \cdots \to I_i \to I_{i-1} \to \cdots$$

gives an *injective resolution of Ker ∂_{-n} . In particular

*
$$\operatorname{Ext}_{R}^{1}(R/J, \operatorname{Ker} \partial_{-n}) = \operatorname{H}_{-n-1}^{*} \operatorname{Hom}_{R}(R/J, I) = \operatorname{Ext}_{R}^{n+1}(R/J, X) = 0$$

for every homogeneous ideal J of R. Thus $\operatorname{Ker} \partial_{-n}$ is *injective by [6, Corollary 4.3].

 $(4) \Rightarrow (1)$ Let *I* be any "injective resolution of *X*. By assumption, the module Ker ∂_{-n} is "injective. Thus" $\operatorname{id}_R X < -n$ by definition.

The last equalities are easy consequences of $(1), \ldots, (4)$.

For a local ring (R, \mathfrak{m}, k) and for an *R*-complex X and $i \in \mathbb{Z}$ the *i*th *Bass number* and *Betti number* of X are defined respectively by

 $\mu_R^i(X) := \dim_k \operatorname{H}_{-i}(\mathbf{R} \operatorname{Hom}_R(k, X)) \text{ and } \beta_i^R(X) := \dim_k \operatorname{H}_i(k \otimes_R^{\mathbf{L}} X).$ It is well-known that for $X \in \mathcal{D}_{\sqsubset}(R)$ one has (cf. [1, Proposition 5.3.I])

 $\mathrm{id}_R X = \sup\{m \in \mathbb{Z} | \exists \mathfrak{p} \in \mathrm{Spec}(R); \mu^m_{R_\mathfrak{p}}(X_\mathfrak{p}) \neq 0\}.$

As a graded analogue we have:

Proposition 3.2. For $X \in {}^*\mathcal{D}_{\sqsubset}(R)$ we have the following equality

$$\operatorname{id}_{R} X = \sup\{m \in \mathbb{Z} | \exists \mathfrak{p} \in \operatorname{Spec}(R); \mu_{R_{\mathfrak{p}}}^{m}(X_{\mathfrak{p}}) \neq 0\}.$$

Proof. The argument is the same as proof of [1, Proposition 5.3.1] with some changes. Denote the supremum by i. By Theorem 3.1, we have ${}^*\operatorname{id}_R X \geq i$. Hence the equality holds if $i = \infty$. Thus assume that i is finite. By Theorem 3.1 we have to show that if ${}^*\operatorname{Ext}_R^j(M, X) \neq 0$ for some finitely generated graded R-module M, then $j \leq i$; this implies that ${}^*\operatorname{id}_R X \leq i$. The elements of Ass(M) are homogeneous prime ideals. Thus there exists a filtration $0 = M_0 \subset M_1 \subset \cdots \subset M_t = M$ of graded submodules of M such that for each i we have $M_i/M_{i-1} \cong$ R/\mathfrak{p}_i with $\mathfrak{p}_i \in \operatorname{Supp} M$ and \mathfrak{p}_i is homogeneous. From the long exact sequence of ${}^*\operatorname{Ext}_R^j(-, X) \neq 0$ the set

$$\{\mathfrak{q} \in \operatorname{Spec}(R) | \text{ there is an } h \geq j \text{ such that}^* \operatorname{Ext}_R^h(R/\mathfrak{q}, X) \neq 0\},\$$

turns to be non empty. Let \mathfrak{p} be maximal in this set and for a homogeneous $x \in R \setminus \mathfrak{p}$ consider the exact sequence

$$0 \to R/\mathfrak{p} \xrightarrow{x} R/\mathfrak{p} \to R/(\mathfrak{p} + Rx) \to 0.$$

It induces an exact sequence

in which the left-hand term is trivial because of the maximality of \mathfrak{p} . Thus * $\operatorname{Ext}_R^h(R/\mathfrak{p}, X) \xrightarrow{x} * \operatorname{Ext}_R^h(R/\mathfrak{p}, X)$ is injective for all homogeneous elements $x \in R \setminus \mathfrak{p}$, hence so is the homogeneous localization homomorphism * $\operatorname{Ext}_R^h(R/\mathfrak{p}, X) \to * \operatorname{Ext}_R^h(R/\mathfrak{p}, X)_{(\mathfrak{p})}$. Thus the free $R_{(\mathfrak{p})}/\mathfrak{p}R_{(\mathfrak{p})}$ -module * $\operatorname{Ext}_R^h(R/\mathfrak{p}, X)_{(\mathfrak{p})}$ is nonzero. Consequently

$$(* \operatorname{Ext}_{R}^{h}(R/\mathfrak{p}, X)_{(\mathfrak{p})})_{\mathfrak{p}R_{(\mathfrak{p})}} \cong \operatorname{Ext}_{R_{\mathfrak{p}}}^{h}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, X_{\mathfrak{p}})$$

is nonzero. This implies that $j \leq h \leq i$.

Remark 3.3. (1) A graded module is called *projective if it is a projective object in the category of graded modules. By [6, Proposition 3.1] the *projective graded R-modules coincide with projective R-modules. The projective dimension of a graded module M in the category of

162

graded modules, is denoted by $* \operatorname{pd}_R M$ (cf. [6]). Let $n \in \mathbb{Z}$. A homologically right bounded complex of graded modules X, is said to have $*\operatorname{projective}$ dimension at most n, denoted by $* \operatorname{pd}_R X \leq n$, if there exists a $*\operatorname{projective}$ resolution $P \to X$, such that $P_i = 0$ for i > n. If $* \operatorname{pd}_R X \leq n$ holds, but $* \operatorname{pd}_R X \leq n-1$ does not, we write $* \operatorname{pd}_R X = n$. If $* \operatorname{pd}_R X \leq n$ for all $n \in \mathbb{Z}$ we write $* \operatorname{pd}_R X = -\infty$. If $* \operatorname{pd}_R X \leq n$ for no $n \in \mathbb{Z}$ we write $* \operatorname{pd}_R X = \infty$.

(2) For $X \in {}^*\mathcal{D}_{\square}(R)$ by the same method as in [1, Theorem 2.4.P and Corollary 2.5.P] we have

*
$$\operatorname{pd}_R X = \sup\{j \in \mathbb{Z} | \operatorname{Ext}_R^j(X, N) \neq 0 \text{ for some graded } R \operatorname{-module } N\}$$

= $\sup\{\inf(U) - \inf(\mathbb{R}^* \operatorname{Hom}_R(X, U)) | U \ncong 0 \text{ in } {}^*\mathcal{D}_{\Box}(R)\}.$

(3) It is easy to see that for $X \in {}^*\mathcal{D}_{\square}(R)$, we have ${}^*\operatorname{pd}_R X \leq \operatorname{pd}_R X$.

(4) The notions of *flat module and *flat dimension are obtained by replacing 'projective' by 'flat' in (1). By [6, Proposition 3.2] the *flat graded *R*-modules coincide with flat *R*-modules. Therefore for a homologically right bounded complex of graded modules X, we have * $\operatorname{fd}_R X \leq \operatorname{*} \operatorname{pd}_R X$.

The proof of the following proposition is easy so we omit it (see [2, Theorem 1.5.9]). Let J be an ideal of the graded ring R. Then the graded ideal J^* denotes the ideal generated by all homogeneous elements of J. It is well-known that if \mathbf{p} is a prime ideal of R, then \mathbf{p}^* is a homogeneous prime ideal of R by [2, Lemma 1.5.6].

Proposition 3.4. Let $X \in {}^*\mathcal{D}_{\Box}(R)$ and \mathfrak{p} is a non-homogeneous prime ideal in R. Then $\mu_{R_{\mathfrak{p}}}^{i+1}(X_{\mathfrak{p}}) = \mu_{R_{\mathfrak{p}}*}^i(X_{\mathfrak{p}*})$ and $\beta_i^{R_{\mathfrak{p}}}(X_{\mathfrak{p}}) = \beta_i^{R_{\mathfrak{p}}*}(X_{\mathfrak{p}*})$ for any integer $i \geq 0$.

Corollary 3.5. Let $X \in {}^*\mathcal{D}_{\Box}(R)$ and \mathfrak{p} be a non-homogeneous prime ideal in R. Then

$$\operatorname{lepth} X_{\mathfrak{p}} = \operatorname{depth} X_{\mathfrak{p}^*} + 1.$$

Proof. Using Proposition 3.4, we can assume that both depth $X_{\mathfrak{p}}$ and depth $X_{\mathfrak{p}^*}$ are finite. So the equality follows from the fact that over a local ring (R, \mathfrak{m}, k) we have depth_R $X = \inf\{i \in \mathbb{Z} | \mu_R^i(X) \neq 0\}$. \Box

Foxby defined the *small support* of a homologically right bounded complex X over a Noetherian ring R, denoted by $\operatorname{supp}_R X$, as the set of prime ideal of R such that $R_{(\mathfrak{p})}/\mathfrak{p}R_{(\mathfrak{p})} \otimes_R^L X$ is non-trivial complex (See [7]). It is well known that;

$$\operatorname{supp}_{R} X = \{ \mathfrak{p} \in \operatorname{Spec} R | \exists m \in \mathbb{Z} : \beta_{m}^{R_{\mathfrak{p}}}(X_{\mathfrak{p}}) \neq 0 \}.$$

Let $* \operatorname{supp}_R X$ be a subset of $\operatorname{supp}_R X$ consisting of homogeneous prime ideals of $\operatorname{supp}_R X$. Then from Proposition 3.4 we see that $\mathfrak{p} \in \operatorname{supp}_R X$

if and only if $\mathfrak{p}^* \in \mathrm{supp}_R X$. Also using [12, Lemma 2.3] for $\mathfrak{p} \in \mathrm{supp}_R X$ we have depth $X_{\mathfrak{p}} < \infty$ if and only if width_{$R_{\mathfrak{p}}$} $X_{\mathfrak{p}} < \infty$. Therefore by corollary 3.5 we get;

width_{$R_{\mathfrak{p}}$} $X_{\mathfrak{p}} < \infty \Leftrightarrow \text{width}_{R_{\mathfrak{p}^*}} X_{\mathfrak{p}^*} < \infty$.

Proposition 3.6. Let $X \in {}^*\mathcal{D}_{\Box}(R)$ and \mathfrak{p} is a non-homogeneous prime ideal in R. Then

width_{$$R_p$$} X_p = width _{R_{p^*}} X_{p^*} .

Proof. We can assume that both width $X_{\mathfrak{p}}$ and width $X_{\mathfrak{p}^*}$ are finite numbers, and the argument would be dual to the proof of [2, Theorem 1.5.9].

The ungraded version of the following theorem was proved for modules by Chouinard [3, Corollary 3.1], and extended to complexes by Yassemi [12, Theorem 2.10].

Theorem 3.7. Let $X \in {}^*\mathcal{D}_{\Box}(R)$. If ${}^*\operatorname{id}_R X < \infty$, then ${}^*\operatorname{id}_R X = \sup\{\operatorname{depth} R_{\mathfrak{p}} - \operatorname{width} X_{\mathfrak{p}} | \mathfrak{p} \in {}^*\operatorname{Spec}(R)\}.$

Proof. We have the following computations

The first equality holds by Proposition 3.2, and the last one holds by [12, Lemma 2.6(a)], since $\operatorname{id}_R X < \infty$ by Propositions 3.2 and 3.4. \Box

The following corollary was already known for graded modules in [6, Corollary 4.12].

Corollary 3.8. For every $X \in {}^*\mathcal{D}_{\Box}(R)$, we have

 $\operatorname{id}_R X \leq \operatorname{id}_R X \leq \operatorname{id}_R X + 1.$

Proof. First of all note that by Proposition 3.4, $\operatorname{id}_R X < \infty$ if and only if $\operatorname{*id}_R X < \infty$. The first inequality is clear by Theorem 3.7 and [12, Theorem 2.10]. For the second one let $\mathfrak{p} \in \operatorname{Spec} R$ be such that $\operatorname{id}_R X = \operatorname{depth} R_{\mathfrak{p}} - \operatorname{width}_{R_{\mathfrak{p}}} M_{\mathfrak{p}}$ by [12, Theorem 2.10]. By Corollary 3.5 and Proposition 3.6 we have

depth $R_{\mathfrak{p}}$ - width_{$R_{\mathfrak{p}}$} $M_{\mathfrak{p}} \leq \operatorname{depth} R_{\mathfrak{p}^*}$ - width_{$R_{\mathfrak{p}^*}$} $M_{\mathfrak{p}^*} + 1 \leq \operatorname{*id}_R X + 1$, where the second inequality holds by Theorem 3.7. Here we define the *dualizing complex for a graded ring and prove some related results.

Definition 3.9. A *dualizing complex D for a graded ring R is a homologically finite and bounded complex of graded R-modules, such that $* \operatorname{id}_R D < \infty$ and the homothety morphism $\psi : R \to \mathbb{R}^* \operatorname{Hom}_R(D, D)$ is invertible in $*\mathcal{D}(R)$.

Corollary 3.10. Any * dualizing complex for R is a dualizing complex for R.

The proof of the following lemma is the same as [10, Chapter V, Proposition 3.4].

Lemma 3.11. Let (R, \mathfrak{m}, k) be a *local ring and D is a *dualizing complex of R. Then there exists an integer t such that $H^{i}(\mathbf{R} * \operatorname{Hom}_{R}(k, D)) =$ 0 for $i \neq t$ and $H^{t}(\mathbf{R} * \operatorname{Hom}_{R}(k, D)) \cong k$.

Assume that (R, \mathfrak{m}) is a *local ring. A *dualizing complex D is said to be *normalized* **dualizing complex* if t = 0 in the lemma. It is easy to see that a suitable shift of any *dualizing complex is a normalized one. Also using [10, Chapter V, Proposition 3.4] we see that if D is a normalized *dualizing complex for (R, \mathfrak{m}) , then $D_{\mathfrak{m}}$ is a normalized dualizing complex for $R_{\mathfrak{m}}$.

Lemma 3.12. Let (R, \mathfrak{m}, k) be a *local ring and that D is a normalized *dualizing complex for R. Then there exists a natural functorial isomorphism from the category of graded modules of finite length to itself

 $\phi: H^0(\mathbf{R}^* \operatorname{Hom}_R(-, D)) \to \operatorname{Hom}_R(-, \operatorname{E}_R(k)),$

where ${}^{*}E_{R}(k)$ is the ${}^{*}injective$ envelope of k over R.

Proof. Since D is a normalized *dualizing complex for R, the functor $T := \operatorname{H}^{0}(\mathbb{R}^{*} \operatorname{Hom}_{R}(-, D))$ is an additive contravariant exact functor from the category of graded modules of finite length to itself. Let M be a graded R-module and $m \in M$ is a homogeneous element of degree α . Then $\epsilon_{m} : R(-\alpha) \to M$ is a homogeneous morphism which sends 1 into m. Thus we have a homogeneous morphism $\psi(M) : T(M) \to \operatorname{*Hom}_{R}(M, T(R))$ which sends a homogeneous element $x \in T(M)$ to a morphism $f_{x} \in \operatorname{*Hom}_{R}(M, T(R))$ such that $f_{x}(m) = T(\epsilon_{m})(x)$ for every homogeneous element $m \in M$. It is easy to see that it is functorial on M. Thus there exists a natural functorial morphism $\psi: T \to \operatorname{*Hom}_{R}(-, T(R))$. Note that if M is a finite graded R-module, using a finite presentation of M, there is an isomorphism $\operatorname{*Iim}^{*} \operatorname{Hom}_{R}(M, T(R/\mathfrak{m}^{n})) \xrightarrow{\cong} \operatorname{*Hom}_{R}(M, \operatorname{*Iim} T(R/\mathfrak{m}^{n}))$. Therefore

by the same method of [9, Lemma 4.4 and Propositions 4.5], there is a functorial isomorphism

$$\phi : \mathrm{H}^{0}(\mathbf{R}^{*} \mathrm{Hom}_{R}(-, D)) \to \mathrm{Hom}_{R}(-, \mathrm{Hom}_{R}(-, \mathrm{Hom}^{n})),$$

from the category of graded modules of finite length to itself. Using the technique of proof of [9, Proposition 4.7] in conjunction with [6, Corollary 4.3], we see that $\lim T(R/\mathfrak{m}^n)$ is an "injective *R*-module. Since *D* is a normalized "dualizing complex for *R* we have

* $\operatorname{Hom}_R(k, \operatorname{*}\lim T(R/\mathfrak{m}^n)) \cong \operatorname{H}^0(\mathbf{R}^* \operatorname{Hom}_R(k, D)) \cong k.$

Particularly we can embed k to $\lim_{K \to \infty} T(R/\mathfrak{m}^n)$. In order to show that $\lim_{K \to \infty} T(R/\mathfrak{m}^n)$ is an *essential extension of k, let Q be a graded submodule of $\lim_{K \to \infty} T(R/\mathfrak{m}^n)$ such that $k \cap Q = 0$. Then $\operatorname{Hom}_R(k, Q)$ can be embed in

* $\operatorname{Hom}_R(k, * \lim T(R/\mathfrak{m}^n)) \cong k.$

Therefore $* \operatorname{Hom}_R(k, Q) = 0$. On the other hand for each $n \in \mathbb{N}$ the set $V(\mathfrak{m})$ includes $\operatorname{Ass}(T(R/\mathfrak{m}^n))$. Now by [11, Proposition 2.1], the fact that each prime ideal of $\operatorname{Ass}(* \lim_{\longrightarrow} T(R/\mathfrak{m}^n))$ is the annihilator of a homogeneous element [2, Lemma 1.5.6], and the definition of $* \lim_{\longrightarrow}$, we have

$$\operatorname{Ass}(* \lim_{\longrightarrow} T(R/\mathfrak{m}^n)) \subseteq \bigcup_{n \in \mathbb{N}} \operatorname{Ass}(T(R/\mathfrak{m}^n)) \subseteq V(\mathfrak{m}).$$

Consequently Q has support in $V(\mathfrak{m})$, so that Q = 0. Therefore $* \lim T(R/\mathfrak{m}^n) \cong * E_R(k)$.

Let \mathfrak{a} be an ideal of R. The right derived *local cohomology functor* with support in \mathfrak{a} is denoted by $\mathbf{R}\Gamma_{\mathfrak{a}}(-)$. Its right adjoint, $\mathbf{L}\Lambda^{\mathfrak{a}}(-)$, is the left derived *local homology functor* with support in \mathfrak{a} (see [8] for detail).

Finally, we have the following proposition, its proof uses Lemma 3.12 and the argument is similar to [10, Chapter V, Proposition 6.1].

Proposition 3.13. Let (R, \mathfrak{m}, k) be a *local ring and that D be a normalized *dualizing complex for R. Then $\mathbf{R}\Gamma_{\mathfrak{m}}(D) \simeq^* \mathbf{E}_R(k)$.

Acknowledgments

The authors would like to thank the referee for the invaluable comments on the manuscript. This research was supported by a grant from Payame Noor University, Iran.

166

References

- L. L. Avramov and H. B. Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra, 71 (1991), 129–155.
- W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics **39**, Cambridge University Press, Cambridge, 1998.
- Leo G. Chouinard II, On finite weak and injective dimension, Proc. Amer. Math. Soc., 60 (1976), 57–60.
- 4. L. W. Christensen, *Gorenstein dimensions*, Lecture Notes in Mathematics **1747**, Springer-Verlag, Berlin, 2000.
- R. M. Fossum, The structure of indecomposable injective modules, *Math. Scand.*, 36 (1975), 291–312.
- R. M. Fossume and H. B. Foxby, The category of graded modules, *Math. Scand.*, 35 (1974), 288–300.
- H. B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra, 15 (1979), 149–172.
- A. Frankild, Vanishing of local homology modules, *Math. Z.*, **244** (3), (2003), 615–630.
- A. Grothendieck, *Local cohomology*, Lecture notes in Math. 41 Springer Verlag, 1967.
- R. Hartshorne, *Residues and duality*, Lecture Notes in math. 20, Springer-Verlag, Heidelberg, 1966.
- A. Singh and I. Swanson, Associated primes of local cohomology modules and of Frobenius powers, *Int. Math. Res. Not.*, **33** (2004), 1703–1733.
- S. Yassemi, Width of complexes of modules, Acta Math. Vietnam., 23(1) (1998) 161–169.

Akram Mahmoodi

Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran.

Email: ak.mahmoodi@pnu.ac.ir

Afsaneh Esmaeelnezhad

Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran.

Email: esmaeelnezhad810gmail.com

Journal of Algebraic Systems

ON GRADED INJECTIVE DIMENSION

A. MAHMOODI AND A. ESMAEELNEZHAD

بعد انژکتيو مدرج

اکرم محمودی و افسانه اسماعیلنژاد ایران، تهران، دانشگاه پیام نور تهران

رابطههای قابل ذکری مابین بعدهای همولوژیکی و بعدهای همولوژیکی مدرج وجود دارد. در این مقاله، بعد انژکتیو همبافت از مدولهای مدرج مورد مطالعه قرار گرفته و خواص آن بررسی میشود. به ویژه، همبافت دوگانساز مدرج، برای یک حلقه مدرج را تعریف کرده و نتایج مربوطه را تعمیم میدهیم.

كلمات كليدي: حلقههاي مدرج، مدولهاي مدرج، بعد انژكتيو.