
Journal of Algebraic Systems
Vol. 7, No. 2, (2020), pp 155-165

P-CLOSURE IN PSEUDO BCI-ALGEBRAS

H. HARIZAVI∗

Abstract. In this paper, for any non-empty subset C of a pseudo
BCI-algebra X, the concept of p-closure of C, denoted by Cpc, is
introduced and some related properties are investigated. Applying
this concept, a characterization of the minimal elements of X is
given. It is proved that Cpc is the least closed pseudo BCI-ideal of
X containing C and K(X) for any ideal C of X. Finally, by using
the concept of p-closure, a closure operator is introduced.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras:
BCK-algebras and BCI-algebras as a generalization of set-theoretic dif-
ference and propositional calculi [5, 6]. We refer useful textbooks for
BCK/BCI-algebra to [9, 10]. The notion of pseudo BCI-algebras was
introduced by W.A. Dudek and Y.B. Jun [4] in 2008 as an extention
of BCI-algebras, and investigated some related properties. Y.B. Jun,
et, al. introduced the notion of pseudo BCI-ideals and pseudo BCI-
homomorphism, and showed that the pseudo BCK-part of pseudo BCI-
algebras is a pseudo BCI-ideal. In [2], G. Dymek introduced the notion
of p-semisimple pseudo BCI-algebras, and established some necessary
and sufficient condition for a pseudo BCI-algebra to be p-semisimple
pseudo BCI-algebra. Also, he proved that there is a one to one re-
lationship between p-semisimple pseudo BCI-algebra and groups. In
[8], Y.H. Kim and K.S. So defined the minimal elements of pseudo
BCI-algebras, and showed that the set of all minimal elements of a
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pseudo BCI-algebra X forms a subalgebra of X. Recently, G. Dymek
[1] introduced the notion of period of elements of pseudo BCI-algebras
and investigated their properties. It is known that for any non-empty
subset C of a BCI-algebra X, the generated ideal ⟨C ∪ C◦⟩ is the least
closed ideal of X containing C, where C◦ = {0 ∗ x | x ∈ C} [10].
According to this fact, for any non-empty subset C of a pseudo BCI-
algebra X, the concept of p-closure of C, denoted by Cpc, is defined
as Cpc := {x ∈ X | a ∗ x ∈ C and a ⋄ x ∈ C for some a ∈ C},
and some related properties are investigated. Applying this concept,
a characterization of the minimal elements of X is given. A necessary
and sufficient condition for a pseudo BCI-algebra to be a p-semisimple
BCI-algebra is given. It is proved that Cpc is the least closed pseudo
BCI-ideal containing C and K(X) for any ideal C of X. Finally, by
using the concept of p-closure, a closure operator is introduced.

2. Preliminary

In this section, we review some definitions and properties that will
be used in this paper. For more details, we refer the reader to [9, 4].

An algebra (X, ∗, 0) of type (2,0) is called a BCI-algebra if it satisfies
the following conditions: for any x, y, z ∈ X,
BCI-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
BCI-2: x ∗ 0 = 0,
BCI-3: x ∗ y = 0 and y ∗ x = 0 imply x = y.

A BCI-algebra (X, ∗, 0) satisfying 0 ∗ x = 0 for all x ∈ X is called a
BCK-algebra.

In any BCI-algebra (and BCK-algebra) X, one can define a partial
order ≤ by putting x ≤ y if and only if x ∗ y = 0.
Definition 2.1. A pseudo BCI-algebra is a structure X = (X,⪯
, ∗, ⋄, 0), where ⪯ is a binary relation on set X, ∗ and ⋄ are binary
operations on X and 0 is an elements of X satisfying the following
axioms: for all x, y, z ∈ X,

(a1) (x ∗ y) ⋄ (x ∗ z) ⪯ z ∗ y, (x ⋄ y) ∗ (x ⋄ z)) ⪯ z ⋄ y,
(a2) x ∗ (x ⋄ y) ⪯ y, x ⋄ (x ∗ y) ⪯ y,
(a3) x ⪯ x,
(a4) x ⪯ y, y ⪯ x =⇒ x = y,
(a5) x ⪯ y ⇐⇒ x ∗ y = 0 ⇐⇒ x ⋄ y = 0.
A pseudo BCI-algebra X = (X,⪯, ∗, ⋄, 0) satisfying 0 ⪯ x for all

x ∈ X is called a pseudo BCK-algebra.
It is obvious that every pseudo BCI-algebra (resp: pseudo BCK-

algebra) satisfying x ∗ y = x ⋄ y for any x, y ∈ X is a BCI-algebra
(resp: BCK-algebra).
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Any pseudo BCI-algebra X satisfies the following conditions: for
any x, y, z ∈ X,
(p1) x ⪯ 0 ⇒ x = 0,
(p2) x ⪯ y ⇒ x ∗ z ⪯ y ∗ z, x ⋄ z ⪯ y ⋄ z,
(p3) x ⪯ y ⇒ z ∗ y ⪯ z ∗ x, z ⋄ y ⪯ z ⋄ x
(p4) x ⪯ y, y ⪯ z ⇒ x ⪯ z,
(p5) (x ∗ y) ⋄ z = (x ⋄ z) ∗ y,
(p6) x ∗ y ⪯ z ⇔ x ⋄ z ⪯ y,
(p7) (x ∗ y) ∗ (z ∗ y) ⪯ x ∗ z, (x ⋄ y) ⋄ (z ⋄ y) ⪯ x ⋄ z,
(p8) x ∗ (x ⋄ (x ∗ y)) = x ∗ y and x ⋄ (x ∗ (x ⋄ y)) = x ⋄ y,
(p9) x ∗ 0 = x = x ⋄ 0,
(p10) x ∗ x = 0 = x ⋄ x,
(p11) 0 ∗ (x ⋄ y) ⪯ y ⋄ x,
(p12) 0 ⋄ (x ∗ y) ⪯ y ∗ x,
(p13) 0 ∗ x = 0 ⋄ x,
(p14) 0 ∗ (x ∗ y) = (0 ∗ x) ⋄ (0 ∗ y),
(p15) 0 ⋄ (x ⋄ y) = (0 ⋄ x) ∗ (0 ⋄ y).

For any BCI-algebra (and BCK-algebra) X, using axioms (a3), (a4)
and property (p3), the relation order ⪯ defined by axiom (a5), that is,

(∀x, y ∈ X) x ⪯ y ⇐⇒ x ∗ y = 0 ⇐⇒ x ⋄ y = 0,
is a partial order.

A non-empty subset S of a pseudo BCI-algebra X is called a sub-
algebra of X if x ∗ y ∈ S and x ⋄ y ∈ S for all x, y ∈ S. It is easily
seen that the set K(X) = {x ∈ X | 0 ⪯ x} is a subalgebra of X (called
the maximal pseudo BCK-algebra of X). Then (K(X),⪯, ∗, ⋄, 0) is
a pseudo BCK-algebra and so a pseudo BCI-algebra X is a pseudo
BCK-algebra if and only if X = K(X).

An element a of a pseudo BCI-algebra X is called minimal if for
any x ∈ X the following holds:

a ⪯ x =⇒ a = x.

We will denote by M(X) the set of all minimal elements of X. Obvi-
ously, 0 ∈ M(X). In [6], it has proved that a ∈ X is minimal if and
only if a = 0 ∗ (0 ⋄a) if and only if a = 0 ∗x for some x ∈ X. Therefore
M(X) = {x ∈ X | x = 0 ⋄ (0 ∗ x)} = {0 ∗ x | x ∈ X}. A pseudo
BCI-algebra X is called p-semisimple if any element of X is minimal.
It is easily to seen that K(X) ∩M(X) = {0}.

Proposition 2.2. [2] Let X be a pseudo BCI-algebra. Then for any
x, y ∈ X the following are equivalent:

(i) X is a p-semisimple,
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(ii) x ∗ (x ⋄ y) = y = x ⋄ (x ∗ y),
(iii) 0 ∗ (0 ⋄ x) = x = 0 ⋄ (0 ∗ x).

For any minimal element a ∈ X, the branch of a is defined by V (a) :=
{x ∈ X | x ⪰ a}. Obviously, a ∈ V (a) and hence V (a) ̸= ∅.

Let X be a pseudo-BCI-algebra. For any none-empty subset J of
X and any element y ∈ X we denote
∗(y, J) := {x ∈ X | x ∗ y ∈ J} and ⋄ (y, J) := {x ∈ X | x ⋄ y ∈ J}.

Definition 2.3. [7] A subset J of a pseudo BCI-algebra X is called a
pseudo BCI-ideal of X if

(I1) 0 ∈ J ,
(I2) (∀y ∈ J) (∗(y, J) ⊆ J and ⋄ (y, J) ⊆ J.)

Theorem 2.4. [7] If J is a pseudo BCI-ideal of a pseudo BCI-algebra
X, then the following hold: for any x, y, z ∈ X,

(i) x ∈ J and y ⪯ x =⇒ y ∈ J ,
(ii) y ∈ J and z ∗ y ∈ J =⇒ z ∈ J,
(iii) y ∈ J and z ⋄ y ∈ J =⇒ z ∈ J.

A pseudo BCI-ideal J of a pseudo BCI-algebra X is called closed
if J is closed under operations ∗ and ⋄. A pseudo BCI-ideal J of a
pseudo BCI-algebra X is closed if and only if 0 ∗x = 0 ⋄x ∈ J for any
x ∈ J (see [7]).

3. Main results

In this section, we start by introducing the concept of p-closure for a
non-empty subset C of a pseudo BCI-algebra X, and then investigate
some related properties.

In what follows, let X denote a pseudo BCI-algebra unless otherwise
specified.
Definition 3.1. For any non-empty subset C of X, we define the p-
closure of C by the set

Cpc := {x∈X | a∗x ∈ C and a ⋄ x ∈ C for some a ∈ C}.
Obviously, 0 ∈ Cpc.

The following lemma is an immediate consequence from Definition
3.1 and (p9).
Lemma 3.2. For any non-empty subsets C and D of X, the following
holds:

(i) if C ⊆ D, then Cpc ⊆ Dpc,
(ii) if 0 ∈ C, then C ⊆ Cpc.
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In the following theorem, we give a characterization of the minimal
elements of X.
Theorem 3.3. An element a of X is minimal if and only if {a}pc =
K(X).
Proof. (⇒) Let a be a minimal element of X. Assume that x ∈ {a}pc.
Then a ∗ x = a = a ⋄ x and so, using (p5), we have 0 = (a ∗ x) ⋄ a =
(a ⋄ a) ∗ x = 0 ∗ x. It follows that x ∈ K(X). Hence {a}pc ⊆ K(X). To
prove the reverse inclusion, let x ∈ K(X). Then 0 ∗ x = 0, and so we
have

a ∗ x = (0 ⋄ (0 ∗ a)) ∗ x by the minimality of a
= (0 ∗ x) ⋄ (0 ∗ a) by (p5)

= 0 ⋄ (0 ∗ a) by (p13)

= a, by the minimality of a
that is, a∗x = a, which implies that x ∈ {a}pc. Therefore K(X) ⊆ {a}pc
and so {a}pc = K(X).
(⇐) Assume that {a}pc = K(X). Let b ∈ X with b ⪯ a. Then

0 ⪯ a∗b and so a∗b ∈ K(X). Thus a∗b ∈ {a}pc and hence a⋄(a∗b) = a.
It follows from (p5) that a∗b = (a⋄(a∗b))∗b = (a∗b)⋄(a∗b) = 0, that
is, a ⪯ b. Hence a = b. Therefore a is a minimal element of X. □

In the following theorem, we give a necessary and sufficient condition
for a pseudo BCI-algebra to be a pseudo BCK- algebra.
Theorem 3.4. X is a pseudo BCK-algebra if and only if {0}pc = X.
Proof. (⇒) Let X be a pseudo BCK-algebra. Then for any x ∈ X,
0 ∗ x = 0 = 0 ⋄ x. It follows that x ∈ {0}pc for any x ∈ X. Therefore
{0}pc = X.
(⇐) Assume that {0}pc = X. Then using Theorem 3.3, we get

X = K(X). This implies that X is a pseudo BCK-algebra. □
Corollary 3.5. X is a pseudo BCK-algebra if and only if Cpc = X
for any subset C of X containing 0.
Proof. Using Lemma 3.2(i) and Theorem 3.4, the proof is straightfor-
ward. □

In the following, we introduce some subsets of X whose p-closure are
maximal pseudo BCK-algebra of X.
Theorem 3.6. For any X, the following hold:

(i) if C is a subset of K(X) and 0 ∈ C, then Cpc = K(X),
(ii) K(X)pc = K(X),
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(iii) for any element c of X, {A(c)}pc = K(X), where A(c) = {x ∈
X | x ⪯ c}.

Proof. (i) Since {0} ⊆ C ⊆ K(X), it follows from Lemma 3.2(i) that
{0}pc ⊆ Cpc ⊆ K(X)pc. Thus by Theorem 3.3, we obtain K(X) ⊆ Cpc ⊆
K(X), which implies that Cpc = K(X).

(ii) It is an immediate consequence of (i).
(iii) Let x ∈ K(X). Then 0 ∗ x = 0 = 0 ⋄ x and so (c ∗ x) ⋄ c =

(c ⋄ c) ∗ x = 0 ∗ x = 0. This implies that c ∗ x ⪯ c and so c ∗ x ∈ A(c).
Moreover, c ∈ A(c). Hence, x ∈ A(c)pc and so K(X) ⊆ A(c)pc. Now
let x ∈ A(c)pc. Then there exists t ∈ A(c) such that t ∗ x ⪯ c, that is,
(t ∗ c) ∗ x = 0. On the other hand, from t ∈ A(c) we have t ∗ c = 0.
Thus, 0 ∗ x = 0 and so x ∈ K(X). Therefore A(c)pc = K(X). □

Proposition 3.7. For any subset C of X containing M(X), Cpc = X.

Proof. (i) Let x ∈ X. We know that 0 ∗ (0 ∗ x) is a minimal element of
X, and so 0 ∗ (0 ∗ x) ∈ M(X). Thus, 0 ∗ (0 ∗ x) ∈ C. Now, using (p5),
we get (0 ∗ (0 ∗ x)) ∗ x = 0 ∈ C and (0 ∗ (0 ∗ x)) ⋄ x = 0 ∈ C, which
implies x ∈ Cpc. Therefore Cpc = X. □

Lemma 3.8. Let C be a subalgebra of X. Then the following statement
are equivalent: for any x ∈ X,

(i) x ∈ Cpc.
(ii) 0 ∗ x ∈ C.
(iii) 0 ∗ x ∈ Cpc.

Proof. (i)⇒(ii) Let x ∈ Cpc. Then a ∗ x ∈ C and a ⋄ x ∈ C for some
a ∈ C, and so, since C is closed, we get (a ∗ x) ⋄ a ∈ C. On the other
hand, we have (a ∗ x) ⋄ a = (a ⋄ a) ∗ x = 0 ∗ x. Therefore 0 ∗ x ∈ C.

(ii)⇒(iii) This is obvious by Lemma 3.2(ii).
(iii)⇒(i) Let 0∗x ∈ Cpc. Then there exists a ∈ C such that a∗(0∗x) ∈

C and a ⋄ (0 ∗x) ∈ C. Since C is closed, we obtain (a ∗ (0 ∗x)) ⋄ a ∈ C.
But using (p5), we have (a∗(0∗x))⋄a = 0∗(0∗x). Hence 0∗(0∗x) ∈ C.
Now, by (p5), we get (0 ∗ (0 ∗ x)) ∗ x = 0 = (0 ∗ (0 ∗ x)) ⋄ x. Therefore,
it follows from 0 ∈ C that x ∈ Cpc. □

The following follows from Lemma 3.8.

Corollary 3.9. If C is a subalgebra of X, then so is Cpc.

In the following theorem, for any subalgebra C of X, we give a
characterization of Cpc by some branches of C.

Theorem 3.10. If C is a subalgebra of X, then Cpc =
∪
c∈C

V (0 ∗ c).
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Proof. Let x ∈ Cpc. Then by Lemma 3.8, 0∗x ∈ C. Since 0∗(0∗x) ⪯ x,
by putting c = 0 ∗ x, we get x ∈ V (0 ∗ c). This implies that Cpc ⊆∪
c∈C

V (0∗ c). In order to show the reverse inclusion, let x ∈
∪
c∈C

V (0∗ c).

Then there exists c ∈ C such that x ∈ V (0 ∗ c)). Thus, 0 ∗ c ⪯ x and
so (0 ∗ c) ∗x = 0 and (0 ∗ c) ⋄x = 0. Moreover, since C is a subalgebra,
we have 0 ∗ c ∈ C and hence x ∈ Cpc. Therefore

∪
c∈C

V (0 ∗ c) ⊆ Cpc,

and so the proof is completed. □
In the following, we establish an important property of the p-closure.

Theorem 3.11. If C is a pseudo BCI-ideal of X, then Cpc is a pseudo
BCI-ideal of X, too.

Proof. We first prove that Cpc is a pseudo BCI-ideal of X. Clearly,
0 ∈ Cpc. Now, we show that ∗(y, Cpc) ⊆ Cpc and ⋄(y, Cpc) ⊆ Cpc for any
y ∈ Cpc. Let x ∈ ∗(y, Cpc). Then x ∗ y ∈ Cpc, and so there exists b ∈ C
such that b∗(x∗y) ∈ C and b⋄(x∗y) ∈ C. Also, from y ∈ Cpc, we have
a∗y ∈ C and a⋄y ∈ C for some a ∈ C. We first show that b⋄(0∗a) ∈ C.
It is easy to see that (b ⋄ (0 ∗ a)) ∗ b = (b ∗ b) ⋄ (0 ∗ a) = 0 ⋄ (0 ∗ a) ⪯ a.
Thus, since a, b ∈ C, we conclude

b ⋄ (0 ∗ a) ∈ C. (3.1)
Now, we show that x ∈ Cpc. For this purpose, using (p5) and axiom
(a1), we have
((b ⋄ (0 ∗ a)) ⋄ x) ∗ (b ⋄ (x ∗ y)) = ((b ⋄ (0 ∗ a)) ∗ (b ⋄ (x ∗ y))) ⋄ x

⪯ ((x ∗ y) ⋄ (0 ∗ a)) ⋄ x
= ((x ⋄ (0 ∗ a)) ∗ y) ⋄ x
= ((x ⋄ (0 ∗ a)) ⋄ x) ∗ y

Thus
((b ⋄ (0 ∗ a)) ⋄ x) ∗ (b ⋄ (x ∗ y)) ⪯ ((x ⋄ (0 ∗ a)) ⋄ x) ∗ y. (3.2)

On the other hand, using (p5) and axiom (a1) again, we have
(((x ⋄ (0 ∗ a)) ⋄ x) ∗ y) ⋄ (a ∗ y) ⪯ ((x ⋄ (0 ∗ a)) ⋄ x) ∗ a

= ((x ⋄ (0 ∗ a)) ∗ a) ⋄ x
= ((x ∗ a) ⋄ (0 ∗ a)) ⋄ x
⪯ (x ∗ 0) ⋄ x
= 0.

This implies that
((x ⋄ (0 ∗ a)) ⋄ x) ∗ y ⪯ a ∗ y (3.3)
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Combining (3.2) and (3.3), we obtain ((b ⋄ (0 ∗ a)) ⋄ x) ∗ (b ⋄ (x ∗ y)) ⪯
a∗y ∈ C. Thus, since b⋄(x∗y) ∈ C, we get (b⋄(0∗a))⋄x ∈ C. Similarly,
applying a⋄(x∗y) ∈ C and a⋄y ∈ C, we can show that (b⋄(0∗a))∗x ∈ C.
Hence, by (3.1), we have x ∈ Cpc, and so ∗(y, Cpc) ⊆ Cpc. By the similar
argument, we can show that ⋄(y, Cpc) ⊆ Cpc. Therefore Cpc is a pseudo
BCI-ideal of X. □

The following is another important property of the p-closure.

Theorem 3.12. If C is a pseudo BCI-ideal of X, then Cpc is a closed
pseudo BCI-ideal of X containing K(X).

Proof. Let x ∈ Cpc. Then a ∗ x ∈ C and a ⋄ x ∈ C for some a ∈ C.
Using (p5), we get (a ∗ (0 ∗ a)) ⋄ a = 0 ∗ (0 ∗ a) ⪯ a ∈ C, and so
a ∗ (0 ∗ a) ∈ C. Similarly, we have a ⋄ (0 ∗ a) ∈ C. Thus 0 ∗ a ∈ Cpc.
Now, since (0∗x)∗ (a∗x) ⪯ 0∗a ∈ Cpc, it follows from a∗x ∈ C ⊆ Cpc

that 0 ∗ x ∈ Cpc. Therefore Cpc is closed. Also, using Theorem 3.3
and Lemma 3.2, we get K(X) = {0}pc ⊆ Cpc, and so the proof is
completed. □

Lemma 3.13. For any X,

K(X) = {x ⋄ (0 ∗ (0 ∗ x)) | for some x ∈ X}
= {x ∗ (0 ∗ (0 ∗ x)) | for some x ∈ X}.

Proof. (i) For any x ∈ X, we have

0 ∗ (x ⋄ (0 ∗ (0 ∗ x))) = (0 ∗ x) ⋄ (0 ∗ (0 ∗ (0 ∗ x))) by (p14)

= (0 ∗ x) ⋄ (0 ∗ x) by (p8)

= 0

Thus for any x ∈ X, x⋄(0∗(0∗x)) ∈ K(X). Therefore {x⋄(0∗(0∗x)) |
for some x ∈ X} ⊆ K(X). On the other hand, if x ∈ K(X), then
0∗x = 0 and so x = x⋄(0∗(0∗x)). This implies K(X) ⊆ {x⋄(0∗(0∗x)) |
for some x ∈ X}. Therefore K(X) = {x ⋄ (0 ∗ (0 ∗ x)) | for some x ∈
X}. Similarly, we can show the second part of the lemma. □

In the following, we introduce an interesting property of the p-
closure.

Theorem 3.14. If C is a pseudo BCI-ideal of X, then Cpc = (Cpc)pc.

Proof. Since 0 ∈ Cpc, it follows from Lemma 3.2(ii) that Cpc ⊆ (Cpc)pc.
To show the reverse inclusion, let x ∈ (Cpc)pc. By Theorem 3.12, Cpc



P-CLOSURE IN PSEUDO BCI-ALGEBRAS 163

is a subalgebra of X and so by Lemma 3.8, we get 0 ∗ x ∈ Cpc. Then,
since Cpc is closed, we have

0 ∗ (0 ∗ x) ∈ Cpc. (3.4)
By Lemma 3.13, we have x ⋄ (0 ∗ (0 ∗ x)) ∈ K(X). On the other hand,
K(X) ⊆ Cpc. Hence x ⋄ (0 ∗ (0 ∗ x)) ∈ Cpc, and so by (3.4), we get
x ∈ Cpc. Therefore (Cpc)pc ⊆ Cpc, which completes the proof. □
Corollary 3.15. For any X, the mapping pc : I(X) → I(X) defined by
pc(C) = Cpc for any C ∈ I(X) is a closure operator on (I(X),⊆), where
I(X) denotes the set of all pseudo BCI-ideals of X.
Proof. It is an immediate consequence from Lemma 3.2 and Theorem
3.14. □

In the following theorem, we give a necessary and sufficient condition
for a pseudo BCI- ideal to be closed.
Theorem 3.16. Let C be a pseudo BCI-ideal of X. If we denote
C◦ = {x ∈ C | 0 ∗ x ∈ C}, then the following are equivalent:

(i) C is closed,
(ii) C = C◦,
(iii) Cpc = C◦

pc.
Proof. The proof of (i)⇒ (ii) and (ii)⇒ (iii) are easy.

(iii)⇒ (i) Assume that C◦
pc = Cpc and x ∈ C. Then, by the closeness

of Cpc, we have 0 ∗ x ∈ Cpc and so by assumption, 0 ∗ x ∈ C◦
pc. Thus

there exists a ∈ C◦ such that a∗ (0∗x) ∈ C◦ and a⋄ (0∗x) ∈ C◦. From
this and definition of C◦ it follows that 0 ∗ (a ∗ (0 ∗ x)) ∈ C. Now we
have

(0 ∗ x) ∗ a = (0 ⋄ (0 ∗ (0 ⋄ x))) ∗ a by (p8)

= (0 ∗ a) ⋄ (0 ∗ (0 ⋄ x)) by axiom (a2)
= 0 ∗ (a ∗ (0 ∗ x)) by (p14)

Hence (0 ∗ x) ∗ a ∈ C and so from a ∈ C0 ⊆ C, we conclude 0 ∗ x ∈ C.
Therefore C is closed. □

In the following, we consider the p-closure of intersection of a family
of closed pseudo BCI-ideals of X.
Theorem 3.17. For every family {Cα}α∈I of closed pseudo BCI-ideals
of X, (

∩
α∈I Cα)

pc =
∩

α∈I Cα
pc.

Proof. By Lemma 3.2(i), (
∩

α∈I Cα)
pc ⊆ Cα

pc for every α ∈ I. Thus
(
∩

α∈I Cα)
pc ⊆

∩
α∈I Cα

pc. Now let x ∈
∩

α∈I Cα
pc. Then for every

α ∈ I, there exists cα ∈ Cα such that cα ∗ x ∈ Cα. Using (p7) and the
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fact that Cα is closed, we conclude (0∗x)∗(cα∗x) ⪯ 0∗cα ∈ Cα. Then,
it follows from cα∗x ∈ Cα that 0∗x ∈ Cα and so 0∗x ∈

∩
α∈I Cα. Also,

obviously, 0 ⋄ x ∈
∩

α∈I Cα. Thus x ∈ (
∩

α∈I Cα)
pc, and consequently∩

α∈I(Cα)
pc ⊆ (

∩
α∈I Cα)

pc. Therefore (
∩

α∈I Cα)
pc =

∩
α∈I Cα

pc. □
To give a characterization of the p-semisimple pseudo BCI-algebras,

we recall the following notation [10].
For any non-empty subset C of X, we denote

C◦ := {0 ∗ x | x ∈ C} = {0 ⋄ x | x ∈ C}.

Lemma 3.18. For any pseudo BCI-ideal C of X, the following hold:
(i) C◦ ⊆ Cpc,
(ii) ⟨C ∪ C◦⟩pc = Cpc.

Proof. (i) Let 0 ∗ x ∈ C◦ for some x ∈ C. Then, from 0 ∗ (0 ∗ x) ⪯ x,
we get 0 ∗ (0 ∗ x) ∈ C. Also, obviously, 0 ⋄ (0 ∗ x) ∈ C. Theerfore
0 ∗ x ∈ Cpc and so C◦ ⊆ Cpc.

(ii) By (i) and Lemma 3.2(ii), we have C,C◦ ⊆ Cpc. Since Cpc is
a pseudo BCI-ideal, we obtain C ⊆ ⟨C ∪ C◦⟩ ⊆ Cpc, hence Cpc ⊆
⟨C ∪C◦⟩pc ⊆ (Cpc)pc. Thus by Theorem 3.14, we conclude ⟨C ∪C◦⟩pc =
Cpc. □

In the next theorem, we give a characterization of the p-semisimple
pseudo BCI-algebras.

Theorem 3.19. X is p-semisimple ⇔ ⟨C ∪ C◦⟩ = Cpc for all pseudo
BCI-ideal C of X.

Proof. (⇒) This is obvious by Lemma 3.18(ii).
(⇐) Assume that ⟨C ∪ C◦⟩ = Cpc for any pseudo BCI-ideal C of

X. Taking C := {0}, we get C◦ = {0} and so by Theorem 3.6(ii),
we have Cpc = K(X). On the other hand, by assumption, we obtain
Cpc =< C ∪ C◦ >= {0}. Therefore K(X) = {0} and so by Lemma
3.13, we obtain x ⋄ (0 ∗ (0 ∗ x) = 0 for any x ∈ X. On the other hand,
(0 ∗ (0 ∗ x) ⋄ x = 0. Therefore 0 ∗ (0 ∗ x) = x and so by Proposition 2.2,
X is a p-semisimple BCI-algebra. □

In the following theorem, we establish the main result of this paper.

Theorem 3.20. For any pseudo BCI-ideal C of X, Cpc is the least
closed pseudo BCI-ideal of X containing C and K(X).

Proof. Combining Lemma 3.2(ii) and Theorems 3.11 and 3.12, we con-
clude Cpc is a closed pseudo BCI-ideal of X containing C and K(X).
To complete the proof, let D be another closed pseudo BCI-ideal of
X containing C and K(X), and let x ∈ Cpc. Then, since Cpc is closed,
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we get 0 ∗ x ∈ Cpc. But from C ⊆ D, we have Cpc ⊆ Dpc. Thus
0 ∗ x ∈ Dpc and so it follows from Lemma 3.8 that 0 ∗ (0 ∗ x) ∈ D. We
note that x ⋄ (0 ∗ (0 ∗ x)) ∈ K(X) and so from K(X) ⊆ D, we obtain
x ⋄ (0 ∗ (0 ∗ x)) ∈ D. Hence, since 0 ∗ (0 ∗ x) ∈ D, we conclude x ∈ D.
Therefore Cpc ⊆ D, and so the proof is completed. □
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5. Y. Imai and K. Iséki, On axiom system of propositional calculi, Proc. Japan

Acad., 42 (1966), 19–22.
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BCI-جبرها شبه در p-بستار

حریزاوی حبیب
ایران اهواز، اهواز، چمران شهید دانشگاه کامپیوتر، و ریاضی علوم دانشکده ریاضی، گروه

p مفهوم ،X -جبر BCI شبه یک از C ناتهی زیرمجموعه ی هر برای مقاله، این در : مقاله چکیده
است. گرفته قرار بررسی مورد آن با مرتبط خواص برخی و است شده معرفی ،Cpc نمایش با C -بستار
Cpc که است شده ثابت است. گردیده ارائه X مینیمال عناصر از توصیفی مفهوم این به کارگیری با
p مفهوم به کارگیری با نهایت، در است. K(X) و C شامل X بسته ی BCI-ایدآل شبه کوچکترین

است. شده بیان بستار عملگر یک -بستار،

BCI-ایدآل. شبه BCI-جبر، شبه p-بستار، کلیدی: کلمات
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