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P-CLOSURE IN PSEUDO BCI-ALGEBRAS
H. HARIZAVI*

ABSTRACT. In this paper, for any non-empty subset C of a pseudo
BClI-algebra X, the concept of p-closure of C, denoted by C*¢, is
introduced and some related properties are investigated. Applying
this concept, a characterization of the minimal elements of X is
given. It is proved that CP¢ is the least closed pseudo BClI-ideal of
X containing C and K(X) for any ideal C of X. Finally, by using
the concept of p-closure, a closure operator is introduced.

1. INTRODUCTION

Y. Imai and K. Iséki introduced two classes of abstract algebras:
BCK-algebras and BCI-algebras as a generalization of set-theoretic dif-
ference and propositional calculi [5, 6]. We refer useful textbooks for
BCK/BCl-algebra to [9, 10]. The notion of pseudo BCl-algebras was
introduced by W.A. Dudek and Y.B. Jun [/] in 2008 as an extention
of BCl-algebras, and investigated some related properties. Y.B. Jun,
et, al. introduced the notion of pseudo BCl-ideals and pseudo BCI-
homomorphism, and showed that the pseudo BCK-part of pseudo BCI-
algebras is a pseudo BCI-ideal. In [2], G. Dymek introduced the notion
of p-semisimple pseudo BCl-algebras, and established some necessary
and sufficient condition for a pseudo BCl-algebra to be p-semisimple
pseudo BCl-algebra. Also, he proved that there is a one to one re-
lationship between p-semisimple pseudo BCI-algebra and groups. In
(8], Y.H. Kim and K.S. So defined the minimal elements of pseudo
BCl-algebras, and showed that the set of all minimal elements of a
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pseudo BCl-algebra X forms a subalgebra of X. Recently, G. Dymek
[1] introduced the notion of period of elements of pseudo BCl-algebras
and investigated their properties. It is known that for any non-empty
subset C of a BClI-algebra X, the generated ideal (C'U C°) is the least
closed ideal of X containing C, where C° = {0 xz | x € C} [10].
According to this fact, for any non-empty subset C of a pseudo BC'I-
algebra X, the concept of p-closure of C, denoted by C*¢, is defined
as C* .= {z € X | axx € C and aox € C for some a € C},
and some related properties are investigated. Applying this concept,
a characterization of the minimal elements of X is given. A necessary
and sufficient condition for a pseudo BC'[-algebra to be a p-semisimple
BCl-algebra is given. It is proved that C?¢ is the least closed pseudo
BCl-ideal containing C and K (X) for any ideal C of X. Finally, by
using the concept of p-closure, a closure operator is introduced.

2. PRELIMINARY

In this section, we review some definitions and properties that will
be used in this paper. For more details, we refer the reader to [9, 4].

An algebra (X, x,0) of type (2,0) is called a BC'I-algebra if it satisfies
the following conditions: for any z,y, 2z € X,
BCI-1: ((z*xy)*(zxz2))*(2*xy) =0,
BCI-2: %0 =0,
BCI-3: xxy =0 and y*x 2z =0 imply z = y.

A BCT-algebra (X, *,0) satisfying 0« x = 0 for all z € X is called a
BC K-algebra.

In any BC'I-algebra (and BC'K-algebra) X, one can define a partial
order < by putting x < y if and only if z xy = 0.

Definition 2.1. A pseudo BCI-algebra is a structure X = (X, =
,%,0,0), where < is a binary relation on set X, % and ¢ are binary
operations on X and 0 is an elements of X satisfying the following
axioms: for all x,y,z € X,

(a1) (xxy)o(xxz) Jzxy, (zoy)x(xoz2)) X z0oy,
(a2) zx (zoy) 2y, zo(rxy) 2y,
(CL3) x j T,
(a2) 2y, y 2 = 1=y,
(a5) 1y <= xxy=0<=x0oy=0.

A pseudo BCl-algebra X = (X, X, %,9,0) satisfying 0 < z for all
x € X is called a pseudo BC'K-algebra.

It is obvious that every pseudo BCTI-algebra (resp: pseudo BCK-
algebra) satisfying z * y = z oy for any z,y € X is a BCI-algebra
(resp: BC'K-algebra).
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Any pseudo BC'I-algebra X satisfies the following conditions: for
any x,y,z € X,

)
) Ox(zoy) Jyou,
p12) Oo(xxy) Jyxuz,
) Oxz=00uz,
) Ox(zxy)=(0xz)0(0xy),
) Oo(xoy)=(00ox)*(0oy).

(pl) r=20=2=0,

(p2) z=y=>zx*x2z2=y*xz, £023Yoz,

(p3) z=y=>zxy3zxx, zoy=zoxw

() 22y, y2z=2=2,

(5s) (wxy)os=(zo2) %y,

(ps) xzxy=z&xoz =Xy,

(p7) (zxy)*x(zxy) Sxzxz, (zoy)o(zoy) Xzoz,
(pg) xx(xo(xxy))=z*xyandzo(xx(xoy)) =zo0y,
(pg) zx0=x=2x00,

(p1o) z*xx=0=zoux,

(

(

(

(

(

For any BC'I-algebra (and BC K-algebra) X, using axioms (a3), (a4)
and property (ps), the relation order < defined by axiom (as), that is,
Ve,ye X))z Sy<=axxy=0<=x0oy =0,

is a partial order.

A non-empty subset S of a pseudo BCI-algebra X is called a sub-
algebra of X if zxy € Sand zoy € S for all z,y € S. It is easily
seen that the set K(X) = {z € X | 0 <z} is a subalgebra of X (called
the maximal pseudo BC K-algebra of X). Then (K(X), =<, x*,¢,0) is
a pseudo BC K-algebra and so a pseudo BC'[-algebra X is a pseudo
BC K-algebra if and only if X = K(X).

An element a of a pseudo BCT-algebra X is called minimal if for
any z € X the following holds:

ar—a==<x.

We will denote by M (X) the set of all minimal elements of X. Obvi-
ously, 0 € M(X). In [0], it has proved that ¢ € X is minimal if and
only if a = 0% (0oa) if and only if a = 0z for some x € X. Therefore
MX)={zre X |xz=000xx)} ={0xx |z € X}. A pseudo
BC'I-algebra X is called p-semisimple if any element of X is minimal.
It is easily to seen that K(X) N M(X) = {0}.

Proposition 2.2. [2] Let X be a pseudo BCI-algebra. Then for any
x,y € X the following are equivalent:

(i) X is a p-semisimple,
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(ii) zx (xoy) =y =x0 (T *xy),
(iii) 0% (Oox) =2 =00 (0 x).
For any minimal element a € X, the branch of a is defined by V'(a) :=
{z € X |z = a}. Obviously, a € V(a) and hence V (a) # 0.
Let X be a pseudo-BC'I-algebra. For any none-empty subset J of
X and any element y € X we denote

x(y,J)={reX|xxyeJ}land o(y,J) ={r e X |xzoye J}

Definition 2.3. [7] A subset J of a pseudo BCI-algebra X is called a
pseudo BCI-ideal of X if

(I1) 0 € J,

(I12) Vy € J) (x(y,J) C J and o (y,J) C J.)

Theorem 2.4. [7] If J is a pseudo BCI-ideal of a pseudo BCI-algebra
X, then the following hold: for any z,y,z € X,
()rxeJandy 2z =y € J,
(i)yeJand zxy € J = z € J,
(i) ye Jand zoy € J =z € J.

A pseudo BC'I-ideal J of a pseudo BCI-algebra X is called closed
if J is closed under operations * and ¢. A pseudo BC'I-ideal J of a
pseudo BC'[-algebra X is closed if and only if 0xx = 0o x € J for any
x € J (see [7]).

3. MAIN RESULTS

In this section, we start by introducing the concept of p-closure for a
non-empty subset C' of a pseudo BC'I-algebra X, and then investigate
some related properties.

In what follows, let X denote a pseudo BC'I-algebra unless otherwise
specified.

Definition 3.1. For any non-empty subset C' of X, we define the p-
closure of C by the set

C* .= {zeX | axxr € C and a o x € C for some a € C}.
Obviously, 0 € C¥<.

The following lemma is an immediate consequence from Definition
3.1 and (py).

Lemma 3.2. For any non-empty subsets C' and D of X, the following
holds:

(i) if C C D, then C* C DP,

(i) if 0 € C, then C C C¥-.
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In the following theorem, we give a characterization of the minimal
elements of X.

Theorem 3.3. An element a of X is minimal if and only if {a}* =
K(X).

Proof. (=) Let a be a minimal element of X. Assume that z € {a}".
Then a *xx = a = a ¢z and so, using (ps), we have 0 = (axz) o a =
(aoa)*xx=0=xx. It follows that z € K(X). Hence {a}’ C K(X). To
prove the reverse inclusion, let x € K(X). Then 0% x = 0, and so we
have

axx=(00(0%a))xzx by the minimality of a
=(0xz)o(0*a) by (ps)
=00 (0*a) by (p13)
= a, by the minimality of a

that is, axz = a, which implies that = € {a}**. Therefore K (X) C {a}*
and so {a}’ = K(X%).

(<) Assume that {a}’ = K(X). Let b € X with b < a. Then
0 <axband so axb € K(X). Thus axb € {a}" and hence ao(axb) = a.
It follows from (ps) that axb = (ao(axb))*xb = (a*b)o(axb) = 0, that
is, a =< b. Hence a = b. Therefore a is a minimal element of X. O

In the following theorem, we give a necessary and sufficient condition
for a pseudo BC'I-algebra to be a pseudo BC'K- algebra.

Theorem 3.4. X is a pseudo BCK -algebra if and only if {0} = X.

Proof. (=) Let X be a pseudo BC'K-algebra. Then for any z € X,
Oxx=0=00uz It follows that x € {0} for any « € X. Therefore

{0}F = X.
(<) Assume that {0}’ = X. Then using Theorem 3.3, we get
X = K(X). This implies that X is a pseudo BC'K-algebra. O

Corollary 3.5. X is a pseudo BCK -algebra if and only if C** = X
for any subset C' of X containing 0.

Proof. Using Lemma 3.2(i) and Theorem 3.4, the proof is straightfor-
ward. O

In the following, we introduce some subsets of X whose p-closure are
maximal pseudo BC K-algebra of X.

Theorem 3.6. For any X, the following hold:

(i) if C is a subset of K(X) and 0 € C, then C* = K(X),
(if) K(X)" = K(X),
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(iii) for any element ¢ of X, {A(c)}** = K(X), where A(c) = {z €
X |z =}

Proof. (i) Since {0} C C' C K(X), it follows from Lemma 3.2(i) that
{0} C CP* C K(X)P*. Thus by Theorem 3.3, we obtain K (X) C C?* C
K (%), which implies that C?* = K(X).

(ii) It is an immediate consequence of (7).

(iii) Let z € K(X). Then 0z =0 = 0oz and so (c*xz)oc =
(coc)xx =0xx =0. This implies that cxx < c and so cxz € A(c).
Moreover, ¢ € A(c). Hence, € A(c)™ and so K(X) C A(c)*. Now
let # € A(c)™. Then there exists ¢t € A(c) such that t x x < ¢, that is,
(t % c¢) x x = 0. On the other hand, from ¢ € A(c) we have t x ¢ = 0.
Thus, 0 2z = 0 and so z € K(X). Therefore A(c)" = K(X). O

Proposition 3.7. For any subset C' of X containing M (%), C* = X.

Proof. (i) Let x € X. We know that 0% (0% x) is a minimal element of
X,and so 0% (0% 2) € M(X). Thus, 0% (0 2z) € C. Now, using (ps),
we get (0% (0xz))xx=0¢€ C and (0% (0xx))ox =0 € C, which
implies © € C¥*°. Therefore C?* = X. OJ

Lemma 3.8. Let C' be a subalgebra of X . Then the following statement
are equivalent: for any x € X,
(i) z € C*.
(ii) Oxz € C.
(iii) 0%z € C¥.

Proof. (i)=(ii) Let x € C**. Then axx € C and aox € C for some
a € C, and so, since C is closed, we get (a *x)oa € C. On the other
hand, we have (a*x)oa = (a¢oa)*x = 0% x. Therefore 0z € C.

(ii)=-(iii) This is obvious by Lemma 3.2(ii).

(iii)=-(i) Let Oz € C*°. Then there exists a € C such that ax(0xz) €
C and a¢ (0*x) € C. Since C is closed, we obtain (a* (0*xx))ca € C.
But using (ps), we have (a*(0xz))oa = 0% (0*x). Hence 0% (0xx) € C.
Now, by (ps), we get (0% (0*z))*2x =0 = (0% (0% x))ox. Therefore,
it follows from 0 € C that x € C*¥". O

The following follows from Lemma 3.8.
Corollary 3.9. If C is a subalgebra of X, then so is C*.

In the following theorem, for any subalgebra C' of X, we give a
characterization of C*® by some branches of C'.

Theorem 3.10. If C is a subalgebra of X, then C* = |J V(0 xc).
ceC
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Proof. Let x € C**. Then by Lemma 3.8, 0xz € C. Since 0% (0*z) =< z,
by putting ¢ = 0% z, we get x € V(0 % ¢). This implies that C?* C

J V(0x*c). In order to show the reverse inclusion, let z € [J V(0xc).
ceC ceC
Then there exists ¢ € C such that x € V(0 ¢)). Thus, 0% ¢ < 2 and

so (0xc)xx =0 and (0*c)ox = 0. Moreover, since C' is a subalgebra,

we have 0% ¢ € C' and hence x € C?. Therefore |J V(0% c¢) C C¥,
ceC
and so the proof is completed. O

In the following, we establish an important property of the p-closure.

Theorem 3.11. If C is a pseudo BCI-ideal of X, then C** is a pseudo
BC1T-ideal of X, too.

Proof. We first prove that C*¢ is a pseudo BC'I-ideal of X. Clearly,
0 € C?¢. Now, we show that *(y, C?*) C C*¢ and o(y, C?*) C C** for any
y € C*. Let x € *(y,C?). Then z xy € C*, and so there exists b € C'
such that bx (z*y) € C and bo(zxy) € C. Also, from y € C*, we have
axy € C and aoy € C for some a € C'. We first show that bo(0xa) € C.
It is easy to see that (bo (0xa))*xb=(bxb)o(0xa) =00 (0%a) = a.
Thus, since a,b € C', we conclude

bo(0xa) e C. (3.1)

Now, we show that = € C**. For this purpose, using (ps) and axiom
(al), we have

(bo(0Oxa))ox)x(bo(xxy)) = ((bo(0xa))x(bo(xxy)))ox
= ((z*xy)o(0*a))ox
(xo(0%a))xy)ox
(xo(0xa))ox)x*
Thus
(bo(0xa))ox)*(bo(xxy)) X ((xo(0xa))ox)*y. (3.2)
On the other hand, using (ps) and axiom (al) again, we have
(xo(0xa))ox)xy)o(axy) =X ((zro(0xa))ox)*a
= ((zo(0xa))*xa)ox
(x*xa)o (O*a))o:r
( +0) o

PN

This implies that
((xo(0xa))ox)xy axy (3.3)
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Combining (3.2) and (3.3), we obtain ((bo (0% a))oz)* (bo (z*xy)) =
axy € C. Thus, since bo(zxy) € C, we get (bo(0xa))ox € C. Similarly,
applying ao(z*y) € C and acy € C, we can show that (bo(0xa))xx € C.
Hence, by (3.1), we have x € C?¢, and so *(y, C**) C C?*. By the similar
argument, we can show that o(y, C?¢) C C*¢. Therefore C** is a pseudo
BCI-ideal of X. 0

The following is another important property of the p-closure.

Theorem 3.12. If C' is a pseudo BCI-ideal of X, then C® is a closed
pseudo BCI-ideal of X containing K(X).

Proof. Let x € C?. Then axx € C' and aox € C for some a € C.
Using (ps), we get (a* (0*xa))oa = 0% (0*xa) < a € C, and so
ax (0xa) € C. Similarly, we have a ¢ (0 xa) € C. Thus 0 xa € C*.
Now, since (0xz)* (a*xx) < 0xa € CP, it follows from axz € C' C C
that 0 x x € CP. Therefore C*¢ is closed. Also, using Theorem 3.3
and Lemma 3.2, we get K(X) = {0} C C*, and so the proof is
completed. O]

Lemma 3.13. For any X,

K(X) = {zo(0x(0xx))| for some z € X}
= {x*(0x(0%x))| for some x € X}.

Proof. (i) For any = € X, we have

Ox(xo (0% (0xx))) = Yo (0% (0 (0xx))) by (p14)

* 1) o (0% ) by (ps)

Thus for any x € X, 20 (0%(0xx)) € K(X). Therefore {xo (0% (0xx)) |
for some x € X} C K(X). On the other hand, if x € K(X), then
0%z = 0 and so x = xo(0%(0%z)). This implies K (X) C {xo(0%(0xz)) |
for some x € X}. Therefore K(X) = {z<o (0% (0%x)) | for some z €
X}. Similarly, we can show the second part of the lemma. 0

In the following, we introduce an interesting property of the p-
closure.

Theorem 3.14. If C is a pseudo BCI-ideal of X, then CP* = (C¥*)™.

Proof. Since 0 € C¥¢, it follows from Lemma 3.2(ii) that C* C (C¥¢)*.
To show the reverse inclusion, let z € (C*)**. By Theorem 3.12, C¥*
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is a subalgebra of X and so by Lemma 3.8, we get 0 x x € CP*. Then,
since C*¢ is closed, we have

0x (0*xx) e CP. (3.4)
By Lemma 3.13, we have z ¢ (0% (0 x)) € K(X). On the other hand,

K(X) C C*. Hence x ¢ (0% (0*x)) € C*, and so by (3.4), we get
x € CP. Therefore (C*)" C O, which completes the proof. O

Corollary 3.15. For any X, the mapping pc : [(X) — I(X) defined by
pe(C) = C* for any C € I(X) is a closure operator on (I(X), C), where
I(X) denotes the set of all pseudo BCI-ideals of X.

Proof. 1t is an immediate consequence from Lemma 3.2 and Theorem
3.14. OJ

In the following theorem, we give a necessary and sufficient condition
for a pseudo BC'I- ideal to be closed.

Theorem 3.16. Let C' be a pseudo BCI-ideal of X. If we denote
Co ={x € C|0xxz e C}, then the following are equivalent:
(i) C is closed,
(i) C' = C,,
(iii) CP* = C,*™.

Proof. The proof of (i)= (ii) and (ii)= (iii) are easy.

(ili)= (i) Assume that C,’* = C?* and « € C. Then, by the closeness
of C*, we have 0 x x € C* and so by assumption, 0 x 2 € C.*°. Thus
there exists a € C, such that ax (0xx) € C;, and ao (0xz) € Cs,. From
this and definition of C, it follows that 0 % (a % (0 x x)) € C. Now we
have

(0xz)*a=(0c(0%(00ox))) *a by (ps)
=(0*xa)o(0*(0ox)) by axiom (a2)
=0x*(ax(0xx)) by (p14)

Hence (0 xz) *a € C and so from a € Cy C C, we conclude 0% x € C.
Therefore C' is closed. O

In the following, we consider the p-closure of intersection of a family
of closed pseudo BC'I-ideals of X.

Theorem 3.17. For every family {C,}aecr of closed pseudo BCI-ideals
of X, (ﬂaez Co )Pt = ﬂael Ca.
Proof. By Lemma 3.2(1), ((N,e; Ca)™ € C,F° for every a € I. Thus

(Nacs Ca)’ € Nuer Ca¥c. Now let € [,o; Cof*. Then for every
a € I, there exists ¢, € C, such that ¢, * x € C,. Using (p;) and the
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fact that C,, is closed, we conclude (0% z)* (co*z) = 0%c, € Cy. Then,
it follows from ¢, *x € C,, that Oxxz € C, and so Oz € ﬂae] C,. Also,

obviously, 0 oz € (,c; Ca- Thus z € ((,; Ca)¥, and consequently

Nucs(Ca)’ € (Naes Ca)™. Therefore (N, c; Ca)? = Naes Ca' O

To give a characterization of the p-semisimple pseudo BC'[-algebras,
we recall the following notation [10].
For any non-empty subset C' of X, we denote

Co:={0xx|xeC}={00cx|xeC}.

Lemma 3.18. For any pseudo BCI-ideal C' of X, the following hold:
(i) C° C C*,
(i) (C'UC°)Pe = CFe.

Proof. (i) Let 0%z € C° for some « € C. Then, from 0* (0 *x) < z,
we get 0% (0% z) € C. Also, obviously, 0 ¢ (0 * z) € C. Theerfore
0*x € C* and so C° C C¥-.

(ii) By (i) and Lemma 3.2(ii), we have C,C° C C*¢. Since C** is
a pseudo BCI-ideal, we obtain C' C (C'U C°) C CP¢, hence C* C
(C'UCPYe C (CP)*. Thus by Theorem 3.14, we conclude (C'UC°) =
Cre.

In the next theorem, we give a characterization of the p-semisimple
pseudo BC'I-algebras.

O

Theorem 3.19. X is p-semisimple < (C' U C°) = C** for all pseudo
BC1I-ideal C' of X.

Proof. (=) This is obvious by Lemma 3.18(ii).

(<) Assume that (C'U C°) = CP* for any pseudo BCI-ideal C' of
X. Taking C' := {0}, we get C° = {0} and so by Theorem 3.6(ii),
we have C?* = K(X). On the other hand, by assumption, we obtain
CP =< CUC° >= {0}. Therefore K(X) = {0} and so by Lemma
3.13, we obtain x ¢ (0% (0% x) = 0 for any x € X. On the other hand,
(0% (0% x)ox =0. Therefore 0 (0*x) = x and so by Proposition 2.2,
X is a p-semisimple BC'I-algebra. 0

In the following theorem, we establish the main result of this paper.

Theorem 3.20. For any pseudo BC1I-ideal C' of X, CP* is the least
closed pseudo BCI-ideal of X containing C' and K(X).

Proof. Combining Lemma 3.2(ii) and Theorems 3.11 and 3.12, we con-
clude C* is a closed pseudo BCI-ideal of X containing C' and K (X).
To complete the proof, let D be another closed pseudo BC'I-ideal of
X containing C' and K (X), and let x € C?*. Then, since C** is closed,
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we get 0 xz € C?. But from C C D, we have C* C DP*. Thus
02 € D and so it follows from Lemma 3.8 that 0% (0*z) € D. We
note that ¢ (0% (0 xx)) € K(X) and so from K(X) C D, we obtain
o (0% (0*x)) € D. Hence, since 0 (0% x) € D, we conclude = € D.
Therefore C?* C D, and so the proof is completed. O
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