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A KIND OF F -INVERSE SPLIT MODULES

M. HOSSEINPOUR AND A. R. MONIRI HAMZEKOLAEE∗

Abstract. Let M be a right module over a ring R. In this man-
uscript, we shall study on a special case of F -inverse split modules
where F is a fully invariant submodule of M introduced in [12].
We say M is Z

2
(M)-inverse split provided f−1(Z

2
(M)) is a direct

summand of M for each endomorphism f of M . We prove that M
is Z

2
(M)-inverse split if and only if M is a direct sum of Z2

(M)

and a Z
2-torsionfree Rickart submodule. It is shown under some

assumptions that the class of right perfect rings R for which every
right R-module M is Z

2
(M)-inverse split (Z(M)-inverse split) is

precisely that of right GV -rings.

1. Introduction

Throughout this paper R denotes a ring with identity, modules are
unital right R-modules and S = EndR(M) denotes the ring of all right
R-module endomorphisms of a module M unless otherwise stated. Also
N ≤ M states that N is a submodule of a module M .

The notions of Rickart and Baer rings have their roots in functional
analysis with close links to C∗-algebras and von Neumann algebras.
Kaplansky introduced the notion of Baer rings in 1955 [4] which was
extended to quasi-Baer rings in 1967 [1]. A ring R is called (quasi-
)Baer if the right annihilator of any nonempty subset (two-sided ideal)
of R is generated by an idempotent as a right ideal. Closely related to
the concept of Baer rings is the more general notion of right Rickart
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rings. The concept of right (left) Rickart rings has been comprehen-
sively studied in the literature. A ring R is called right Rickart if the
right annihilator of any single element of R is generated by an idem-
potent of R as a right ideal. Let R be a ring, M be a right R-module
and S = EndR(M). Following [5], M is a Rickart module if the right
annihilator in M of any single element of S is generated by an idem-
potent of S, equivalently, rM(f) = Kerf is a direct summand of M
for every f ∈ S. It is easy to see that for M = RR, the notion of
a Rickart module coincides with that of a right Rickart ring. Hence
RR is a Rickart module if R is a Baer ring, a von Neumann regular
ring or a right hereditary ring (see [5]). In [5], the authors investi-
gated Rickart modules and their properties and study the connections
between a Rickart module and its endomorphism ring.

A submodule N of a module M is said to be small in M if N+K ̸= M
for any proper submodule K of M . Also a module L is said to be a
small module, in case L is a small submodule of a module T . Following
[2], a module M is called lifting if every submodule N ≤ M there exists
a direct summand D of M such that N/D ≪ M/D. A submodule N
of M is called a supplement in M if there is a submodule K of M such
that M = N+K and N∩K ≪ N . A module M is called supplemented
if every submodule of M has a supplement in M . A module M is amply
supplemented if M = A + B, then A contains a supplement of B in
M . A lifting module is amply supplemented and hence supplemented.
Let R be a ring and M a right R-module. In [10], Talebi and Vanaja
defined Z(M) as a dual of singular submodule as follows: Z(M) =
∩{Kerf | f : M → U,U ∈ S} (here S denotes the class of all small
right R-modules). They called M a cosingular (noncosingular) module
if Z(M) = 0 (Z(M) = M). Clearly every small module is cosingular.
In [10], Z

α
(M) is defined by Z

0
(M) = M , Z

α+1
(M) = Z(Z

α
(M))

and Z
α
(M) =

∩
β<α Z

β
(M) if α is a limit ordinal. Hence there is a

descending chain M = Z
0
(M) ⊇ Z(M) ⊇ Z

2
(M) ⊇ . . . of submodules

of M .
Recall that a submodule F of a module M is called fully invariant

if h(F ) ⊆ F for every h ∈ EndR(M). Let F be a fully invariant
submodule of a module M . Then M is said to be F -inverse split [12],
if h−1(F ) is a direct summand of M for every h ∈ EndR(M). In [13],
the authors defined Z(M)-inverse split modules and investigated their
properties. A module M is Z(M)-inverse split provided h−1(Z(M)) is
a direct summand of M for each endomorphism h of M . They proved
that a module M is Z(M)-inverse split if and only if M is decomposed
to a noncosingular submodule and a cosingular Rickart submodule if
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and only if M = Z(M) ⊕ N where N is cosingular Rickart. In this
article, we define Z

2
(M)-inverse split modules and try to investigate

their general properties. We say M is Z
2
(M)-inverse split provided

h−1(Z
2
(M)) is a direct summand of M for each endomorphism h of

M . We prove that a module M is Z
2
(M)-inverse split if and only if

M is decomposed to Z
2
(M) and a Z

2-torsion free Rickart submodule
N . We also present, under some assumptions, new characterizations of
right perfect right GV -rings in terms of Z2-inverse split modules.

2. Z
2-inverse split modules

In this section, we are interested in studying on a special case of
F -inverse split modules. There are many important fully invariant
submodules of a module. Among all of them, the second cosingular
submodule of a module M , namely Z

2
(M), has a key role in deter-

mining of some important modules such as lifting modules and amply
supplemented modules.

We start with introducing Z
2-inverse split modules.

Definition 2.1. A module M is called Z
2
(M)-inverse split whenever

f−1(Z
2
(M)) is a direct summand of M for every f ∈ S.

Here are examples of some known Z
2-inverse split modules.

Example 2.2. (1) The class of Z
2-inverse split modules contains a

large class of modules namely semisimple modules. In particular, every
Artinian (Noetherian) module M over a Boolean ring R is Z

2
(M)-

inverse split.
(2) It is clear that, every noncosingular module M is Z

2
(M)-inverse

split. So that, every right R-module M over a right V -ring R, is Z2
(M)-

inverse split.
(3) Every injective right R-module M over a right hereditary ring

is noncosingular (see [10, Proposition 2.7]) and hence is Z2
(M)-inverse

split.
(4) For a cosingular module M , two concepts ”Rickart” and ”Z2

(M)-
inverse split” coincide. Since a projective Z-module has the form M =
Z(I) where I is an arbitrary nonempty index set, M is cosingular. From
[5, Theorem 2.26], M is Rickart. So that M is Z

2
(M)-inverse split.

We exhibit a characterization of Z2
(M)-inverse split modules which

will be applied excessively throughout the paper.
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Theorem 2.3. Let M be a module. Then the following statements are
equivalent:

(1) M is Z
2
(M)-inverse split;

(2) M = Z
2
(M)⊕N where N is a Rickart module with Z

2
(N) = 0;

(3) M = K⊕L where K is noncosingular and L is a Rickart module
with Z

2
(L) = 0.

Proof. (1) ⇒ (2) Let M be Z
2
(M)-inverse split. So, id−1

M (Z
2
(M)) =

Z
2
(M) is a direct summand of M . Set M = Z

2
(M)⊕N for N ≤ M . We

shall prove N is Rickart. To verify this assertion, suppose g ∈ End(N).
Then f = jogoπN is an endomorphism of M where πN : M → N is
the projection of M on N and j : N → M is the inclusion. Now,
being M a Z

2
(M)-inverse split module leads us that f−1(Z

2
(M)) is

a direct summand of M . By a normal verification, we conclude that
f−1(Z

2
(M)) = Kerg ⊕ Z

2
(M). Hence Kerg is a direct summand of

M . As Kerg is contained in N , we have Kerg is a direct summand of
N , showing N is Rickart.

(2) ⇒ (1) Let M = Z
2
(M) ⊕ N where N is Rickart. Let f ∈

End(M). Consider h = πNofoj : N → N which is an endomorphism
of N such that πN : M → N is the projection of M on N and j :
N → M is the inclusion. Being N a Rickart module implies Kerh
is a direct summand of N . Set Kerh ⊕ L = N . It is not hard to
check that f−1(Z

2
(M)) = Kerh⊕Z

2
(M). By the decomposition M =

(Kerh ⊕ L) ⊕ Z
2
(M) we come to a conclusion that f−1(Z

2
(M)) is a

direct summand.
(2) ⇒ (3) Suppose that M = Z

2
(M)⊕N . Then Z

4
(M) = Z

3
(M) =

Z
2
(M) showing that Z

2
(M) is noncosingular.

(3) ⇒ (2) If M = K ⊕ L where K is noncosingular and L is Rickart
with Z

2
(L) = 0 then it is obvious that K = Z

2
(M). □

The following is an immediate consequence of Theorem 2.3.

Corollary 2.4. Every Z(M)-inverse split module M is Z2
(M)-inverse

split.

Example 2.5. Every Rickart module M with Z
2
(M) a direct sum-

mand of M , is a Z
2
(M)-inverse split module. Let now M be a lifting

Rickart module. Then by [10, Theorem 4.1], there is a decomposi-
tion M = Z

2
(M) ⊕ N . It follows that M is Z

2
(M)-inverse split. In

particular, every nonsingular injective (extending) lifting module M is
Z

2
(M)-inverse split by [5, Example 2.3].
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Definition 2.6. Let M be a module. We call M a Z
2-torsionfree

module provided Z
2
(M) = 0.

It is easy to see that every cosingular module is Z
2-torsionfree. The

class of Z2-torsionfree modules is closed under submodules, direct sums
and direct products (see [10, Proposition 2.1]). It is also followed by
[6, Theorem 4.41] and [10, Proposition 2.1 and Theorem 3.5] that for
a perfect ring R, the class of Z2-torsionfree R-modules is also closed
under factor modules.

Recall that a module M satisfies (D0) in case M = M1⊕M2 implies
M1 and M2 are relatively projective. We present a new characterization
of right GV -rings in terms of Z2-inverse split modules.

We should note that the proofs for equivalences of (1), (2) and (3)
of the following can be found distinctly in [8]. We state them here to
make useful connections with Z

2-inverse split modules.
Before presenting next result, it is worth to recall that a ring R is

a right GV -ring (generalized V -ring) provided every simple singular
right R-module is injective. In [8], some characterizations of right GV -
rings are given. Among them, it is proved that a ring R is right GV if
and only if every simple cosingular right R-module is projective if and
only if every small right R-module is projective ([8, Theorem 3.1 and
Corollary 3.3]).

Theorem 2.7. Consider the following statements for a right perfect
ring R:

(1) R is a right GV -ring;
(2) Every Z

2-torsionfree right R-module is projective;
(3) Every right R-module is a direct sum of a noncosingular right

R-module and a semisimple right R-module;
(4) Every right R-module M is Z

2
(M)-inverse split.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4). They are equivalent in case every
Z

2-torsionfree module satisfies (D0).

Proof. (1) ⇒ (2) Assume that R is right GV . Let 0 ̸= M be a
Z

2-torsionfree R-module, 0 ̸= x ∈ M and K a maximal submod-
ule of xR. Now the simple R-module xR/K is either singular or
projective (but not both). If xR/K is singular, then it will be non-
cosingular by [7, Theorem 4.1]. Consider the natural epimorphism
π : xR → xR/K. Since R is a right perfect ring, by [6, Theorem 4.41]
xR is amply supplemented. Therefore by [10, Theorem 3.5] we con-
clude that 0 = π(Z

2
(xR)) = Z

2
(xR/K) = Z(xR/K) = xR/K, which



172 HOSSEINPOUR AND MONIRI HAMZEKOLAEE

is a contradiction. Then xR/K is projective and so K is a direct sum-
mand of xR. Hence xR and as well as xR, the module M is semisimple.
Let M = ⊕i∈IMi where each Mi is simple. By mentioned argument in
above, each Mi is projective. Hence M is projective.

(2) ⇒ (3) Let M be a right R-module. Since R is a right perfect ring,
M is amply supplemented by [6, Theorem 4.41]. Now consider natural
epimorphism π : M → M/Z

2
(M). Hence by [10, Theorem 3.5], we have

0 = π(Z
2
(M)) = Z

2
(M/Z

2
(M)). Now, we conclude by assumption

that Z
2
(M) is a direct summand of M . Suppose M = Z

2
(M) ⊕ N

for a submodule N of M . It is clear that Z
2
(M) is noncosingular.

We shall show that N is semisimple. To verify this assertion, let 0 ̸=
x ∈ N . As xR is finitely generated, it contains a maximal submodule
say K. Consider the simple module xR/K which must be small or
injective, but not both. Assume that xR/K is injective. Then xR/K
is noncosingular. Now, designate the natural epimorphism π : xR →
xR/K. Being R a right perfect ring combining with [10, Theorem 3.5]
implies that 0 = π(Z

2
(xR)) = Z

2
(xR/K) = Z(xR/K) = xR/K which

causes a contradiction. By the way, xR/K is small and therefore by
assumption xR/K is projective concluding that K is a direct summand
of xR. Hence xR is semisimple which implies N is semisimple.
(3) ⇒ (1) Let M be a simple singular right R-module. Then M is

either small or injective. If M is small, then it is projective which is a
contradiction. It follows that M is injective.

(3) ⇒ (4) Let M be a right R-module. By (3), there is a decom-
position M = N ⊕ S where N is noncosingular and S is semisim-
ple. Let us consider S as (⊕α∈A(Sα)) ⊕ (⊕β∈B(S

′
β)) while for each

α ∈ A, Sα is noncosingular and S ′
β for each β ∈ B is small (note that

a simple module is either injective (noncosingular) or small). Now,
M = [N ⊕ (⊕α∈A(Sα))] ⊕ [(⊕β∈B(S

′
β))] is a direct sum of Z2

(M) and
a semisimple (Rickart) module. Hence, M is Z

2
(M)-inverse split by

Theorem 2.3.
Now let every Z

2-torsionfree module satisfy (D0).
(4) ⇒ (3) Let M be a module. Then by assumption, M = Z

2
(M)⊕N

where N is a Rickart module. We shall prove that N is semisimple.
To verify this assertion, take an arbitrary nonzero x in N . Being xR
finitely generated implies xR has at least a maximal submodule. Sup-
pose K is a maximal submodule of xR. As Z2

(xR⊕xR/K) = 0, it satis-
fies (D0) by assumption (note that Z2

(xR/K) = (Z
2
(xR)+K)/K = 0

as R is right perfect). It follows that xR/K is xR-projective which
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implies that K is a direct summand of xR. Therefore, xR and hence
N are semisimple.

□
Theorem 2.7 combining characterizations of GV -rings in [8], gives us

the following:

Corollary 2.8. Let R be a right perfect ring. Consider the following:
(1) R is a right GV -ring;
(2) Every (simple) cosingular right R-module is projective;
(3) Every right R-module is a direct sum of a noncosingular right

R-module and a semisimple right R-module;
(4) Every right R-module M is Z

2
(M)-inverse split.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4). They are equivalent in case every
Z

2-torsionfree module satisfies (D0).

Proof. It follows from Theorem 2.7, [8, Theorems 3.1 and 3.18]. □
We shall prove under some assumptions that the class of right perfect

rings R for which every right R-module M is Z(M)-inverse split is
precisely that of right GV -rings.

Corollary 2.9. Let R be a right perfect ring such that every Z
2-

torsionfree module satisfies (D0). Then the following statements are
equivalent:

(1) R is a right GV -ring;
(2) Every right R-module M is Z(M)-inverse split;
(3) Every right R-module M is Z

2
(M)-inverse split.

Proof. (1) ⇒ (2) Let M be a right R-module. It follows from Corollary
2.8 that M = N ⊕ S where N is noncosingular and S is semisimple.
Similar to argument mentioned in (3) ⇒ (4) of the proof of Theorem
2.7, we can conclude that M = Z(M) ⊕ H where H is semisimple.
Hence by [13, Theorem 3.3], M is Z(M)-inverse split.
(2) ⇒ (3) It is obvious.
(3) ⇒ (1) It follows from Theorem 2.7. □

Corollary 2.10. Let R be a right perfect ring such that every non-
cosingular submodule of a module is a direct summand of that module.
If every Z

2-torsionfree right R-module satisfies (D0), then every right
R-module M is Z

2
(M)-inverse split.

Proof. Let M be an arbitrary right R-module. By assumption Z
2
(M) is

a direct summand of M . Set M = Z
2
(M)⊕L for some submodule L of
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M . It is clear that Z
2
(L) = 0, so that by assumption L satisfies (D0).

By a similar argument stated in (4) ⇒ (3) of the proof of Theorem
2.7, L is semisimple. Therefore, M is Z

2
(M)-inverse split by Theorem

2.3. □

Corollary 2.11. Let R be a left and right Artinian serial ring with
J(R)2 = 0. If every injective module is noncosingular, then every left
and right R-module M is Z

2
(M)-inverse split. In particular, over a

hereditary left and right Artinian serial ring R with J(R)2 = 0, every
R-module M is Z

2
(M)-inverse split.

Proof. By [2, 29.10], every R-module M has a decomposition M =
E ⊕ S where E is an injective R-module and S is a semisimple R-
module. Now, by assumption E is noncosingular. The result follows
from Theorem 2.7. The last assertion follows from first part and [10,
Proposition 2.7]. □

The following introduces a ring over which every module M is Z2
(M)-

inverse split.

Example 2.12. ([8, Example 3.15]) Let F be a field and R =

[
F F
0 F

]
the ring of 2 × 2 upper triangular matrices over F . By [3, Example
13.6], every singular (left and right) R-module is injective. Hence R is

a left and right GV -ring. Since J(R) =

[
0 F
0 0

]
, R can not be a (left

and right) V -ring. Also R is (left and right) hereditary Artinian serial
from [3, Example 13.6]. It is easy to check that J(R)2 = 0. Hence by
Corollary 2.11, every right R-module M is Z

2
(M)-inverse split.

There are Z
2
(M)-inverse split modules which are not Rickart. Now,

consider the Z-module M = Z(I)
p∞ for an arbitrary non-empty indexed

set I. Then M is not Rickart, since Zp∞ is not a Rickart Z-module
by [5, Example 2.17]. On the other hand, M is noncosingular and so
it is Z

2
(M)-inverse split. Generally, every non-Rickart noncosingular

module provides an example of a Z
2
(M)-inverse split module that is

not Rickart.

Proposition 2.13. Let M be an indecomposable module. Then the
following are equivalent:

(1) M is Z
2
(M)-inverse split;

(2) M is noncosingular or M is Rickart with Z
2
(M) = 0.
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Proof. (1) ⇒ (2) Let M be Z
2
(M)-inverse split. Then by Theorem

2.3, M = Z
2
(M) ⊕ N where N is Rickart. Being M indecomposable

implies M = Z
2
(M) or M = N . First case yields M is noncosingular

and the second one implies M is Rickart with Z
2
(M) = 0.

(2) ⇒ (1) It is straightforward. □

Example 2.14. Consider the Z-module M = Zpn where p is a prime
and n ∈ N. Then M is an indecomposable cosingular Z-module. Now,
earmark the endomorphism h : M → M by h(x) = px. It is clear that
0 ̸= Kerh < M . Therefore, M is not a Rickart Z-module. As M is
cosingular indecomposable, M is not Z

2
(M)-inverse split by Proposi-

tion 2.13.

Recall from [9] that a module M has C∗-property provided that every
submodule N of M contains a direct summand D of M such that N/D
is cosingular. Let R be a ring. Then every right R-module satisfies
C∗ if and only if every right R-module is a direct sum of an injective
module and a cosingular module (see [9, Theorem 2.9]). Recall also
from [2] that a ring R is right Harada in case every injective right R-
module is lifting. It follows from [2, 28.10] that R is right Harada if
and only if every right R-module is decomposed to an injective right
R-module and a small right R-module. So, over a right Harada ring
every right R-module satisfies C∗.

Proposition 2.15. Let R be a right perfect ring such that every right
R-module has C∗-property. Then every Rickart R-module M is Z2

(M)-
inverse split. In particular, every Rickart module M over a Harada ring
(quasi-Frobenius ring) is Z

2
(M)-inverse split.

Proof. Let M be a Rickart module. As R is right perfect, Z2
(M) is

a noncosingular submodule of M . Now, from [9, Theorem 2.9], there
is a decomposition Z

2
(M) = E ⊕ C such that E is injective and C

is cosingular. It follows that Z
2
(M) is injective and hence a direct

summand of M . Being M a Rickart module implies that M is Z2
(M)-

inverse split. □

The following contains an example of a Z
2
(M)-inverse split module

which is not Z(M)-inverse split showing that the concept of Z2
(M)-

inverse split modules is a proper generalization of the Z(M)-inverse
split modules.
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Example 2.16. Let K be a field and

R =




a 0 0 0
0 a b 0
0 0 c 0
d 0 0 c

 | a, b, c, d ∈ K

 .

Then R is a subring of M4×4(K). Now consider e = e11 + e22 and
f = e33 + e44 where eij is an element of R such that (i, j)-component
is 1 and elsewhere is 0. Then e and f are two idempotents in R and
R = eR⊕ fR. The ring R is a (4-dimensional) Frobenius algebra and
eR is an indecomposable projective module where Soc(eR) = e23R is
the only non-trivial proper submodule of eR (it can be easily checked).
Therefore, eR is a local right R-module with Soc(eR) = Rad(eR) ≪
eR. Now by [11, Corollary 2.8], we have Z(eR) = Soc(eR) ≪ eR,
so that Z

2
(eR) = 0. Note that the only proper submodule of eR is

Soc(eR). Now, suppose that φ : eR → eR is an arbitrary nonzero
endomorphism of eR. Then Kerφ = 0 or Kerφ = Soc(eR). Since
eR/Soc(eR) is not isomorphic to a submodule of eR, we conclude that
Kerφ = 0. In fact, eR/Soc(eR) is isomorphic to a submodule of fR.
Hence, Kerφ is a direct summand of eR implying that eR is a Rickart
right R-module. Now by Theorem 2.3, eR is Z2

(eR)-inverse split while
eR is not Z(eR)-inverse split as Z(eR) ≪ eR.

A submodule N of a Z
2
(M)-inverse split module M need not be

Z
2
(N)-inverse split. Now, consider the Z-module M = Q ⊕ Z2. By

Theorem 2.3 and [5, Example 2.5], M is Z
2
(M)-inverse split. Set

N = Z ⊕ Z2 which is a cosingular submodule of M . By [5, Example
2.5], N is a Rickart Z-module. Hence N is not a Z

2
(N)-inverse split

module. We next show that a direct summand of a Z
2-inverse split

module inherits the property.

Proposition 2.17. Let M be a Z
2
(M)-inverse split module and N a

direct summand of M . Then N is Z
2
(N)-inverse split.

Proof. Let M = N ⊕K be a Z
2
(M)-inverse split module with N and

K submodules of M . By Theorem 2.3, there is a decomposition M =

Z
2
(M) ⊕ L where L is Rickart. Since Z

2
(M) = Z

2
(N) ⊕ Z

2
(K),

we conclude that M = Z
2
(N) ⊕ Z

2
(K) ⊕ L. Modular law implies

N = Z
2
(N) ⊕ [(Z

2
(K) ⊕ L) ∩ N ]. Let Y = (Z

2
(K) ⊕ L) ∩ N and

f ∈ EndR(Y ). It just remains to prove that Y is a Rickart module.
It is easy to check that h = jofoπY is an endomorphism of M where
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j : Y → M is the inclusion map and πY : M → Y is the projection
of M on Y . Being M a Z

2
(M)-inverse split module conduces that

h−1(Z
2
(M)) = Z

2
(N) ⊕ Z

2
(K) ⊕ Kerf is a direct summand of M .

By modular law, Kerf is a direct summand of Y resulting that Y is a
Rickart module. □

Theorem 2.18. The following are equivalent for a module M :
(1) M is Z

2
(M)-inverse split and Kerf is a direct summand of

f−1(Z
2
(M)) for any f ∈ S;

(2) M is Rickart and Z
2
(M) is a direct summand of M .

Proof. (1) ⇒ (2) Let M be a Z
2
(M)-inverse split module and f ∈ S.

Then f−1(Z
2
(M)) is a direct summand of M and by hypothesis, Kerf

is a direct summand of f−1(Z
2
(M)). It follows that M is Rickart. In

addition, by Theorem 2.3, Z2
(M) is a direct summand of M .

(2) ⇒ (1) Let M be a Rickart module and M = Z
2
(M) ⊕ N for

some submodule N of M . Then N is Rickart and so M is Z
2
(M)-

inverse split by Theorem 2.3. Being M Rickart leads us that Kerf is
a direct summand of M . The result follows from the fact that Kerf is
a submodule of f−1(Z

2
(M)) for any f ∈ S. □

We shall state an analogue of [13, Theorem 3.12] for a Z
2
(M)-inverse

split module.

Proposition 2.19. Let f : M → M ′ be an epimorphism of modules
where M is Z

2
(M)-inverse split. If Kerf is noncosingular, then M ′ is

Z
2
(M ′)-inverse split.

Proof. Let M be Z
2
(M)-inverse split. Then by Theorem 2.3, M =

Z
2
(M) ⊕ N where N is a Rickart module. It is easy to check that

Z
2
(N) = 0. Taking image of M , we have M ′ = f(Z

2
(M)) + f(N).

As Kerf is noncosingular, it is contained in Z
2
(M). So by a similar

argument given in the proof of [13, Theorem 3.12], we conclude that
M ′ = f(Z

2
(M)) ⊕ f(N). Note that the condition Kerf ⊆ Z

2
(M)

implies there is an isomorphism between N and f(N). Existing such
isomorphism implies f(N) is a Rickart module and Z

2
(f(N)) = 0, as

well as Z
2
(N) = 0. Hence M ′ = Z

2
(M ′) ⊕ f(N). The result then

follows from Theorem 2.3. □
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A KIND OF F-INVERSE SPLIT MODULES

M. HOSSEINPOUR AND A. R. MONIRI HAMZEKOLAEE

ͳافته شدن΋ش F‐وارون مدول های از نوع Έی

حمزه کلایی منیری علیرضا و حسین پور محراب
ایران بابلسر، مازندران، دانشΎاه ،ͳریاض علوم دانش΋ده ،ͳریاض گروه

از خاص حالت Έی مقاله این در باشد. R حلقه روی راست R‐مدول Έی M کنید فرض
مطالعه مورد را است M از پایا کاملا̈ زیرمدول Έی F آن در که ͳافته شدن΋ش F‐وارون مدول های
ͳدرونریخت هر برای هرگاه است ͳافته شدن΋ش Z٢‐وارون

(M) مدول Έی M گوییم مͳ دهیم. قرار
Έی M دادیم نشان باشد. M از مستقیم جمعوند Έی f−١(Z

٢
(M)) زیرمدول ،M مدول از f

Έی و Z
٢
(M) مستقیم مجموع M اگر تنها و اگر است ͳافته شدن΋ش Z٢‐وارون

(M) مدول
مانند مدول هر که حلقه ای که کردیم ثابت ͳشرایط تحت همچنین باشد. تاب Z٢‐بدون زیرمدول

است. تعمیم یافته V‐حلقه ی Έی دقیقاً باشد، ͳافته شدن΋ش Z٢‐وارون
(M) آن روی M

Z٢‐وارون
(M) مدول ،ͳافته شدن΋ش Z(M)‐وارون مدول ری΋ارت، مدول کلیدی: کلمات

.ͳافته شدن΋ش
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