A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION | ||
Journal of Algebraic Systems | ||
مقاله 6، دوره 7، شماره 2، فروردین 2020، صفحه 179-187 اصل مقاله (141.75 K) | ||
نوع مقاله: Research Note | ||
شناسه دیجیتال (DOI): 10.22044/jas.2019.7367.1363 | ||
نویسندگان | ||
M. Mohagheghy Nezhad1؛ F. Rahbarnia* 1؛ M. Mirzavaziri2؛ R. Ghanbari1 | ||
1Department of Applied Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, Iran. | ||
2Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, Iran. | ||
چکیده | ||
The \textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a \textit{metric basis} for $G$. The \textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Giving a characterization for those graphs whose metric dimensions are two, we enumerate the number of $n$ vertex metric two dimensional graphs with basic distance 1. | ||
کلیدواژهها | ||
Metric dimension؛ Resolving set؛ Metric basis؛ Basic distance؛ Contour of a graph | ||
آمار تعداد مشاهده مقاله: 1,080 تعداد دریافت فایل اصل مقاله: 703 |