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A GENERALIZATION OF PRIME HYPERIDEALS IN
KRASNER HYPERRINGS

L. KAMALI ARDEKANI∗ AND B. DAVVAZ

Abstract. In this paper, we give a characterization of new gen-
eralization of prime hyperideals in Krasner hyperrings by intro-
ducing 2-absorbing hyperideals. We study fundamental properties
of 2-absorbing hyperideals on Krasner hyperrings and investigate
some related results.

1. Introduction

Prime ideals play a significant role in commutative ring theory. Be-
cause of this importance, the concept of 2-absorbing ideals in a commu-
tative ring was introduced by Badawi [2] as a generalization of prime
ideals. After this, [8, 9, 10] have continued these studies and obtained
several results. Recently, this notion is generalized to the hypercase
by introducing the 2-absorbing hyperideals in a multiplicative hyper-
ring [1]. In this paper, we introduce the notion of the 2-absorbing
hyperideals on Krasner hyperrings and give some properties of such
hyperideals.

Let us first recall some preliminary definitions.
Assume that H is a non-empty set and P∗(H) is the set of all non-

empty subsets of H. A hyperoperation on H is a map ◦ : H ×H −→
P∗(H) and the couple (H, ◦) is called a hypergroupoid. If A and B
are non-empty subsets of H, then we denote A ◦ B =

∪
a∈A, b∈B

a ◦ b,

x ◦A = {x} ◦A and A ◦ x = A ◦ {x}. A hypergroupoid (H, ◦) is called
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a semihypergroup if for all x, y, z of H we have (x ◦ y) ◦ z = x ◦ (y ◦ z),
which means that

∪
u∈x◦y

u ◦ z =
∪

v∈y◦z
x ◦ v. The more general structure

that satisfies the ring-like axioms is the hyperring in the general sense.
There are comprehensive references for hyperrings, for example see
[3, 7]. In fact, different kinds of hyperrings are defined which one of
them is Krasner hyperring described as follows [6]:

A Krasner hyperring is an algebraic structure (R,+, ·) satisfying the
following axioms: (1) (R,+) is a canonical hypergroup which means
that (i) (R,+) is a semihypergroup, i.e., x+ (y + z) = (x+ y) + z, for
all x, y, z ∈ R, (ii) x + y = y + x, for all x, y ∈ R, (iii) There exists
0 ∈ R such that 0 + x = {x}, for all x ∈ R, (iv) For all x ∈ R there
exists a unique element x′ ∈ R such that 0 ∈ x + x′, (we write −x
for x′ and we call it the opposite of x), (v) z ∈ x + y implies that
y ∈ −x+ z and x ∈ z − y, for all x, y, z ∈ R; (2) (R, ·) is a semigroup
having zero as a bilaterally absorbing element, i.e., x ·0 = 0 ·x = 0; (3)
The multiplication is distributive with respect to the hyperoperation +.
Throughout this paper, by a hyperring we mean a Krasner hyperring.

The meaning of center of hyperring (R,+, ·) is Z(R) = {x ∈ R | x ·
y = y · x, for all y ∈ R} and R is called commutative if Z(R) = R
i.e., (R, ·) is a commutative semigroup. A hyperring (R,+, ·) is called
hyperfield if (R, ·) is a commutative monoid and all nonzero elements of
R are multiplicatively invertible. The identity element of the monoid
(R, ·) is called unit element of hyperring (R,+, ·). For example, suppose
that K := {0, 1} is a commutative monoid with the multiplication
1 ·0 = 0 and 1 ·1 = 1. The hyperaddition is given by 0+1 = 1+0 = 1,
0 + 0 = 0 and 1 + 1 = {0, 1}. Then, K is a hyperfield called the
Krasner hyperfield with unit element 1 [5]. A hyperring (R,+, ·) is
called hyperdomain, if R is a commutative hyperring with unit element
and xy = 0 implies that x = 0 or y = 0, for all x, y ∈ R.

A non-empty subset A of a hyperring (R,+, ·) is called subhyperring
of R if (A,+, ·) is itself a hyperring. A non-empty subset I of a hy-
perring R is called a hyperideal if and only if (1) u, v ∈ I imply that
u− v ⊆ I, for all u, v ∈ I, (2) u ∈ I and r ∈ R imply that r ·u ∈ I and
u · r ∈ I. Remember here that (I :R x) = {y ∈ R | y · x ∈ I}, for all
x ∈ R, is a hyperideal. A hyperideal I is called prime if xy ∈ I implies
that x ∈ I or y ∈ I. A prime hyperideal P is said to be a minimal
prime hyperideal over an ideal I if it is minimal among all prime ideals
containing I. Note that we do not exclude I even if it is a prime ideal.
A prime hyperideal is said to be a minimal prime hyperideal if it is a
minimal prime ideal over the zero hyperideal. By applying the argu-
ment similar in spirit to the proof of Theorem 2.1 of [4], one can easily
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show that if I and P are hyperideals of R such that I ⊆ P and P is a
minimal prime hyperideal of I, then, for all x ∈ P , there is y ∈ R \ P
and a nonnegative integer n such that yxn ∈ I.

A good homomorphism between two hyperrings (R1,+1, ·1) and
(R2,+2, ·2) is a map f : R1 −→ R2 such that for all x, y ∈ R1, we
have f(x +1 y) = f(x) +2 f(y), f(x ·1 y) = f(x) ·2 f(y) and f(0) = 0.
Let f : R1 −→ R2 be a good homomorphism. The kernel of f is defined
as kerf = {x ∈ R1 | f(x) = 0}. It is trivial that kerf is a hyperideal
of R1. Note that a prime hyperideal of a commutative hyperring R can
be described as the kernel of a homomorphism from R to the Krasner
hyperfield K [5].

2. 2-absorbing hyperideals in Krasner hyperrings

In this section, we treat to the introducing 2-absorbing hyperideals
on Krasner hyperrings and investigate more results with respect to such
hyperideals.

Definition 2.1. A proper hyperideal I of a hyperring (R,+, ·) is called
a 2-absorbing hyperideal if a · b · c ∈ I implies that a · b ∈ I or a · c ∈ I
or b · c ∈ I, for all a, b, c ∈ R.

Example 2.2. Let (G,⊙) be a group and H = G ∪ {0, u, v}, where
0 is an absorbing element under multiplication and u, v are distinct
orthogonal idempotents with

u⊙ v = v ⊙ u = 0; u⊙ u = u;
v ⊙ v = v; a⊙ 0 = 0⊙ a = 0, for all a ∈ H;
u⊙ g = g ⊙ u = u; v ⊙ g = g ⊙ v = v, for all g ∈ G.

If we define hyperoperation ⊕ on H as follows:

a⊕ 0 = 0⊕ a = {a}; a⊕ a = {0, a}, for all a ∈ H;
a⊕ b = b⊕ a = H \ {0, a, b}, for all a, b ∈ H \ {0} and a ̸= b.

Then, (H,⊕,⊙) is a Krasner hyperring [3]. Put I = {0, u} and J =
{0}. Obviously, I and J are 2-absorbing hyperideals. The hyperideal
I is prime but J is not prime, because u⊙ v = 0 ∈ J while u, v ̸∈ J .

Example 2.3. Let (R,+, ·) be a hyperdomain and

M =

{(
x1 x2

0 0

)
| x1, x2 ∈ R

}
.
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Put I =

{(
0 a
0 0

)
| a ∈ R

}
and define the hyperoperation ⊕ and

the operation ⊙ on M as(
x1 x2

0 0

)
⊕
(

x′
1 x′

2

0 0

)
=

{(
y1 y2
0 0

)
| yi ∈ xi + x′

i, 1 ≤ i ≤ 2

}
and (

x1 x2

0 0

)
⊙

(
x′
1 x′

2

0 0

)
=

(
x1 · x′

1 x1 · x′
2

0 0

)
.

Then, (M,⊕,⊙) is a Krasner hyperring and I is a 2-absorbing hyper-
ideal of M .

Note that by the same argument of Theorem 2.8 of [1], one can show
that a nonzero proper hyperideal I of a hyperring R is a 2-absorbing
hyperideal if and only if whenever I1 · I2 · I3 ⊆ I, for some hyperideals
I1, I2, I3 of R, then I1 · I2 ⊆ I or I2 · I3 ⊆ I or I1 · I3 ⊆ I.

From now on, the hyperring (R,+, ·) is commutative with unit ele-
ment. Also, we may use xy instead of x · y.

Theorem 2.4. Let I be a 2-absorbing hyperideal of R. Then, one of
the following statements is valid:

(1)
√
I = P is a prime hyperideal of R and P 2 ⊆ I;

(2)
√
I = P1 ∩ P2, P1P2 ⊆ I and (

√
I)2 ⊆ I, where P1 and P2 are

the only distinct prime hyperideals of R that are minimal over
I.

Proof. We prove this statement in three steps:
Step 1:

√
I is a 2-absorbing hyperideal of R.

Suppose that x, y, z ∈ R such that xyz ∈
√
I. By assumption, (xyz)2 ∈

I. Thus, x2y2z2 ∈ I and this implies that (xy)2 = x2y2 ∈ I or (xz)2 =
x2z2 ∈ I or (yz)2 = y2z2 ∈ I. Therefore, at least one of xy, xz and yz

belongs to
√
I.

Step 2: There are at most two distinct prime hyperideals of R that
are minimal over I.
Suppose that P1 and P2 are distinct prime hyperideals of R that are
minimal over I. Then, there are x1 ∈ P1 \ P2 and x2 ∈ P2 \ P1.
Also, there exist c2 ∈ R \ P1, c1 ∈ R \ P2 and m,n ∈ N such that
c2x

n
1 , c1x

m
2 ∈ I. This implies that c2x1, c1x2 ∈ I ⊆ P1∩P2, because I is

a 2-absorbing hyperideal. Consequently, c1 ∈ P1 \ P2 and c2 ∈ P2 \ P1.
Hence, (c1+c2)∩P1 = ∅, since if t ∈ (c1+c2)∩P1, then c2 ∈ −c1+t ⊆ P1

which contradicts c2 ̸∈ P1. In the same way, (c1 + c2) ∩ P2 = ∅.
Therefore, for all t ∈ c1 + c2 we have tx2 ̸∈ P1 and tx1 ̸∈ P2 which lead
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to tx1, tx2 ̸∈ I. On the other hand, (c1 + c2)x1x2 ⊆ I. Thus, for all
t ∈ c1 + c2 we get tx1x2 ∈ I and this implies that x1x2 ∈ I.

Now, suppose that P3 is a prime hyperideal of R that is minimal
over I and P3 ̸= P1, P2. Consequently, there are y1 ∈ P1 \ (P2∪P3) and
y2 ∈ P2 \ (P1 ∪ P3). Then, by the previous argument y1y2 ∈ I ⊆ P3

which leads to y1 ∈ P3 or y2 ∈ P3, a contradiction.
Step 3: In this step, we prove the principle assertion of Theorem.

Suppose that x, y ∈
√
I. Then, x2, y2 ∈ I and so x(x + y)y ⊆ I.

Therefore, for all t ∈ x+y, we have xt ∈ I or xy ∈ I or ty ∈ I, because
I is a 2-absorbing hyperideal. If xt ∈ I, then xt ∈ x(x + y) = x2 + xy
and consequently xy ∈ −x2 + xt ⊆ I. Similarly, ty ∈ I yields xy ∈ I.
Therefore, we have (

√
I)2 ⊆ I. By Steps (1) and (2),

√
I = P is a

prime hyperideal of R or
√
I = P1 ∩ P2, where P1 and P2 are the only

distinct prime hyperideals of R that are minimal over I. If
√
I = P ,

then P 2 = (
√
I)2 ⊆ I. If

√
I = P1∩P2, then for all y ∈

√
I, z1 ∈ P1\P2

and z2 ∈ P2 \ P1 we have y + z1 ⊆ P1 \ P2. By the same argument of
Step 2, we get z1z2 ∈ I and (y+ z1)z2 ⊆ I. Thus, for all s ∈ yz2+ z1z2,
we have yz2 ∈ s − z1z2 ⊆ I. Similarly, yz1 ∈ I and this implies that
P1P2 ⊆ I. □

Theorem 2.5. Let I be a hyperideal of R. Then, I is a 2-absorbing
hyperideal of R if and only if (I :R x) is a prime hyperideal of R

containing
√
I, for all x ∈

√
I \ I.

Proof. By Theorem 2.4, either
√
I = P or

√
I = P1 ∩ P2, where P is

a prime hyperideal and P1, P2 are nonzero distinct prime hyperideals
of R that are minimal over I. We prove the statement for the case√
I = P1∩P2 and a similar argument implies the assertion for the case√
I = P .
Suppose that I is a 2-absorbing hyperideal of R. According to The-

orem 2.4, we conclude xP1, xP2 ⊆ I, for all x ∈
√
I \ I. This means

that P1, P2 ⊆ (I :R x) and consequently
√
I ⊆ (I :R x). Assume that

yz ∈ (I :R x), where y, z ∈ R and x ∈
√
I \ I. Clearly, the state-

ment is valid when y ∈ P1 ∪ P2 or z ∈ P1 ∪ P2. Then, we prove it for
y, z ̸∈ P1 ∪ P2. In this case, we have yz ̸∈ P1 ∩ P2 =

√
I that leads

to yz ̸∈ I. Hence, by assumption we get y ∈ (I :R x) or z ∈ (I :R x)
which implies that (I :R x) is a prime hyperideal.

Now, suppose that (I :R x) is a prime hyperideal, for all x ∈
√
I\I. In

order to prove that I is a 2-absorbing hyperideal, assume that xyz ∈ I,
where x, y, z ∈ R. Then, yz ∈ (I :R x). Obviously, at least one of
x, y, z belongs to (P1 ∪ P2) \ I. For proving the assertion, without
loss of generality suppose that x ∈ (P1 ∪ P2) \ I. In this case either
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x ∈
√
I \ I or x ∈ (P1 ∪P2) \

√
I. If x ∈

√
I \ I, then by the hypothesis

we get y ∈ (I :R x) or z ∈ (I :R x). Consequently, yx ∈ I or zx ∈ I

which implies that I is a 2-absorbing hyperideal. If x ∈ (P1∪P2) \
√
I,

then (I :R x1) = P2 and (I :R x2) = P1, for all x1 ∈ P1 \ P2 and
x2 ∈ P2 \ P1. Similar to the previous argument, we find that I is a
2-absorbing hyperideal.

□
Theorem 2.6. Let I be a 2-absorbing hyperideal and P = P1 and P2

be prime hyperideals of R. Then,
(1) If

√
I = P , then (I :R x) is a 2-absorbing hyperideal of R, for

all x ∈ R \ P with
√

(I :R x) = P and Ω = {(I :R x) | x ∈ R}
is a totally ordered set;

(2) If
√
I = P1 ∩ P2, then (I :R x) is a 2-absorbing hyperideal of

R, for all x ∈ R \ (P1 ∪ P2) with
√
(I :R x) = P1 ∩ P2 and

Ω = {(I :R x) | x ∈ R \ (P1 △ P2)} is a totally ordered set;
(3) If

√
I = P1 ∩ P2, then (I :R x) = P2, for all x ∈ P1 \ P2 and

(I :R x) = P1, for all x ∈ P2 \ P1.
Proof. The proof is similar to Theorem 2.5 of [1]. □
Theorem 2.7. Let I be a 2-absorbing hyperideal of R such that I ̸=

√
I.

Then,
(1) If x ∈

√
I \ I and y ∈ R such that yx ̸∈ I, then (I :R yx) =

(I :R x);
(2) If x, y ∈

√
I \ I, then (I :R fx+ dy) = (I :R x), for all f, d ∈ R

such that fd ̸∈ (I :R x). In particular, (I :R x+ y) = (I :R x).

Proof. (1) Suppose that c ∈ (I :R yx), where x ∈
√
I \ I and y ∈ R.

Then, cy ∈ (I :R x) which means that c ∈ (I :R x), by Theorem 2.5.
Therefore, (I :R yx) ⊆ (I :R x). It is clear that (I :R x) ⊆ (I :R yx)
and consequently the statement is valid.

(2) Suppose that x, y ∈
√
I \ I. Then, (I :R x) ⊂ (I :R y) or

(I :R y) ⊂ (I :R x), by Theorem 2.6. In order to establish the assertion,
without loss the generality, assume that (I :R x) ⊂ (I :R y) which
leads to (I :R x) ⊂ (I :R y) ⊆ (I :R dy) and (I :R x) ⊆ (I :R fx).
Therefore, for all t ∈ (I :R x) we get t(dy + fx) ⊆ I and so (I :R
x) ⊆ (I :R dy + fx). For proving equality, suppose that there exists
s ∈ dy + fx such that (I :R x) ̸= (I :R s). By applying Theorem
2.6, there exists z ∈ (I :R y) ∩ (I :R s) such that z ̸∈ (I :R x), because
(I :R x) ⊆ (I :R y) and (I :R x) ⊆ (I :R dy+fx). Since zs ∈ z(dy+fx),
hence zfx ∈ −zdy+zs ⊆ I which means that zf ∈ (I :R x). Therefore,
z ∈ (I :R x) or f ∈ (I :R x) and this is a contradiction. □
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Definition 2.8. Let I be a nonzero proper hyperideal of R and
ZR(R/I) = {r + I ∈ R/I | ∃ s ∈ R \ I such that rs ∈ I}.

Then, I is called Primal if ZR(R/I) is a prime hyperideal of R con-
taining I.

Theorem 2.9. Let I be a 2-absorbing hyperideal of R such that I ̸=
√
I.

Then, I is a Primal hyperideal of R.
Proof. First, we show that ZR(R/I) = Q/I, where Q =

∪
x∈(

√
I\I)

(I :R x).

For this purpose, suppose that a + I ∈ Q/I. Then, there exists
x ∈

√
I \ I such that a ∈ (I :R x). Therefore, ax ∈ I which fol-

lows that a+ I ∈ ZR(R/I). For proving ZR(R/I) ⊆ Q/I, assume that
a + I ∈ ZR(R/I), where a ̸∈ I. Then, there is b ∈ R \ I such that
ab ∈ I. By Theorem 2.4, we can distinguish two cases:

Case 1:
√
I = P is a hyperideal of R. Then, we have ab ∈ P and

consequently a ∈ P \ I or b ∈ P \ I. Therefore, a ∈ (I :R a) or
a ∈ (I :R b) which implies that a+ I ∈ Q/I.

Case 2:
√
I = P1

∩
P2, where P1 and P2 are the only distinct prime

hyperideals of R that are minimal over I. If a ∈
√
I \ I or b ∈

√
I \ I,

then by applying the same argument as for Case (1), we find a + I ∈
Q/I. Now, suppose that a, b ̸∈

√
I \ I. Therefore, a belongs to P1 \ P2

or P2 \ P1 and consequently a ∈ (I :R b), by Theorem 2.5. Hence,
a+ I ∈ Q/I which leads to ZR(R/I) ⊆ Q/I.

Thus in both cases, we have ZR(R/I) = Q/I as desired. Moreover,
since, I ̸=

√
I, then Theorem 2.6 implies that Ω = {(I :R x) | x ∈√

I \ I} is a set of linear ordered (prime) hyperideals of R. Therefore,
ZR(R/I) =

∪
(I:Rx)∈Ω

((I :R x)/I) is a hyperideal of R/I. □

Theorem 2.10. Let R′ be a commutative hyperring with unit element
and φ : R −→ R′ be a good homomorphism.

(1) If I ′ is a 2-absorbing hyperideal of R′, then φ−1(I ′) is a 2-
absorbing hyperideal of R;

(2) If φ is an epimorphism and I is a 2-absorbing hyperideal of R
containing kerφ, then φ(I) is a 2-absorbing hyperideal of R′.

Proof. (1) Suppose that abc ∈ φ−1(I ′), then φ(a)φ(b)φ(c) ∈ I ′. There-
fore, at least one of the φ(ab), φ(bc) and φ(ac) belongs to I ′ which
implies that ab ∈ φ−1(I ′) or bc ∈ φ−1(I ′) or ac ∈ φ−1(I ′).

(2) Assume that a′, b′, c′ ∈ R′ such that a′b′c′ ∈ φ(I). Then, there
are a, b, c ∈ R such that φ(a) = a′, φ(b) = b′ and φ(c) = c′. There-
fore, φ(abc) = a′b′c′ ∈ φ(I) which deduce that there is i ∈ I such that
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(abc− i) ∩ kerφ ̸= ∅. Consider t ∈ (abc− i) ∩ kerφ. We conclude that
abc ∈ t + i ⊆ kerφ + I ⊆ I. This implies that ab ∈ I or ac ∈ I or
bc ∈ I. Consequently, at least one of the a′b′, a′c′ and b′c′ belongs to
φ(I). □

The following corollary is deduced directly from Theorem 2.10.

Corollary 2.11. Let I and J be distinct proper hyperideals of R. If
J ⊆ I and I is a 2-absorbing hyperideal of R, then I/J is a 2-absorbing
hyperideal of R/J .

Theorem 2.12. Let R1, R2 be Krasner hyperrings and R = R1 ×R2.
(1) If I1 (I2, respectively) is a 2-absorbing hyperideal of R1 (R2,

respectively), then I1×R2 (R1×I2, respectively) is a 2-absorbing
hyperideal of R;

(2) If J is a 2-absorbing hyperideal of R, then either J = I1 × R2

(J = R1 × I2, respectively), where I1 (I2, respectively) is a 2-
absorbing hyperideal of R1 (R2, respectively) or I = I1 × I2,
where I1 (I2, respectively) is a prime hyperideal of R1 (R2,
respectively).

Proof. (1) It is straightforward.
(2) Suppose that J is a proper 2-absorbing hyperideal of R. Then,

J = I1 × I2, where for i = 1, 2 we have Ii is a hyperideal of Ri.
Assume that I2 = R2 and R′ = R/({0} ×R2). Therefore, I1 ̸= R1 and
J ′ = J/({0}×R2) is a 2-absorbing hyperideal of R′, by Corollary 2.11.
It follows that I1 is a 2-absorbing hyperideal of R1, since R′ ∼= R1 and
I1 ∼= J ′. In the same way, I1 = R1 implies that I2 is a 2-absorbing
hyperideal of R2.

For completing the proof it is enough to show that if I1 ̸= R1 and I2 ̸=
R2, then Ii is a prime hyperideal of Ri, where i = 1, 2. Assume that at
least one of Ii is not prime, e.g. I1. Therefore, there are a, b ∈ R1 such
that ab ∈ I1 but a, b ̸∈ I1. Putting x = (a, 1), y = (1, 0) and z = (b, 1),
we give xyz = (ab, 0) ∈ J while xy = (a, 0), xz = (ab, 1), yz = (b, 0) do
not belong to J and this is a contradiction to the assumption. □

Theorem 2.13. Let I be a hyperideal of R and S be a multiplicatively
closed subset of R. In addition, let S−1R be the hyperring of quotients
of R.

(1) If I is a 2-absorbing hyperideal of R and S ∩ I = ∅, then S−1I
is a 2-absorbing hyperideal of S−1R;

(2) If S−1I is a 2-absorbing hyperideal of S−1R and S∩ZR(R/I) =
∅, then I is a 2-absorbing hyperideal of R.
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Proof. (1) Suppose that a, b, c ∈ R and s, t, k ∈ S such that (a/s)(b/t)
(c/k) ∈ S−1I. Then, there exists u ∈ S such that uabc ∈ I. Hence,
uab ∈ I or uac ∈ I or bc ∈ I, by hypothesis. If uab ∈ I, then (a/s)(b/t)
= (uab)/(ust) ∈ S−1I. Also, uac ∈ I implies that (a/s)(c/k) =
(uac)/(usk) ∈ S−1I and bc ∈ I. Therefore, (b/t)(c/k) ∈ S−1I. By
the above result, S−1I is a 2-absorbing hyperideal.

(2) Suppose that a, b, c ∈ I such that abc ∈ I. In this case, we
have (abc)/1 = (a/1)(b/1)(c/1) ∈ S−1I. Hence, (a/1)(b/1) ∈ S−1I or
(b/1)(c/1) ∈ S−1I or (a/1)(c/1) ∈ S−1I, since S−1I is a 2-absorbing
hyperideal. If (a/1)(b/1) ∈ S−1I, then there exists u ∈ S such that
uab ∈ I. This implies that ab ∈ I, since S ∩ ZR(R/I) = ∅.

Similarly, (b/1)(c/1) ∈ S−1I ((a/1)(c/1) ∈ S−1I, respectively) which
leads to bc ∈ I (ac ∈ I, respectively). Consequently, I a 2-absorbing
hyperideal. □
Definition 2.14. A proper hyperideal I of R is called irreducible pre-
cisely if I can not be expressed as the intersection of two strictly larger
hyperideals of R.

The following theorem shows the relationship between irreducible
and 2-absorbing hyperideals.
Theorem 2.15. Let I be an irreducible hyperideal of R and P = P1,
P2 be distinct prime hyperideals of R.

(1) If
√
I = P , then I is a 2-absorbing hyperideal if and only if

P 2 ⊆ I and (I :R x) = (I :R x2), for all x ∈ R \ P ;
(2) If

√
I = P1 ∩ P2, then I is a 2-absorbing hyperideal if and only

if P1P2 ⊆ I and (I :R x) = (I :R x2), for all x ∈ R \ P1 ∩ P2.
Proof. (1) For proving the necessity part, it is only necessary to check
(I :R x2) ⊆ (I :R x), for all x ∈ R \ P . Because, it is clear (I :R x) ⊆
(I :R x2) and P 2 ⊆ I, by Theorem 2.4.

Suppose that y ∈ (I :R x2). Then, yx ∈ I or x2 ∈ I. If x2 ∈ I, then
x ∈ P and this is a contradiction. Then, yx ∈ I which implies that
y ∈ (I :R x) and consequently (I :R x2) ⊆ (I :R x) as desired.

For establishing the sufficiency part, assume that x, y, z ∈ R such
that xyz ∈ I and xy ̸∈ I. We show that either xz ∈ I or yz ∈ I.
From xy ̸∈ I, it follows that x ̸∈ P or y ̸∈ P and so (I :R x) = (I :R
x2) or (I :R y) = (I :R y2), respectively. Without loss of generality,
suppose that (I :R x) = (I :R x2). For completing the proof as a
contradiction, assume that xz ̸∈ I and yz ̸∈ I. Consider a ∈ ⟨I + xz⟩∩
⟨I + yz⟩ which follows that there are a1, a2 ∈ I and r1, r2 ∈ R such
that a ∈ (a1 + r1xz) ∩ (a2 + r2yz). Consequently, ax ∈ a1x + r1x

2z
and ax ∈ a2x + r2yzx ⊆ I which lead to r1x

2z ∈ −a1x + ax ⊆ I.
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Therefore, r1z ∈ (I :R x2) = (I :R x), by assumption. This implies
that a ∈ a1 + r1xz ⊆ I. Then, < I + xz > ∩ < I + yz >⊆ I and so
< I + xz > ∩ < I + yz >= I which contradicts irreducibility of I.

(2) The proof is similar to Part (1). □
In the process of proving the next theorem, we need the following

lemma.

Lemma 2.16. Let P1, P2, ..., Pn, where n ≥ 2, be hyperideals of R such
that at most two of them are not prime. Furthermore, let S be an addi-
tive canonical subhypergroup of R which is closed under multiplication
and S ⊆

n∪
i=1

Pi. Then, there exists 1 ≤ j ≤ n such that S ⊆ Pj.

Proof. We prove this statement by induction on n. First, consider for
n = 2 that is S ⊆ P1 ∪ P2. As a contradiction, assume that S ⊈ P1

and S ⊈ P2. Then, there exists aj ∈ S \ Pj, where j = 1, 2. Therefore,
the hypothesis leads to a1 ∈ P2 and a2 ∈ P1. On the other hand,
a1 + a2 ⊆ S ⊆ P1 ∪ P2 and so for all t ∈ a1 + a2 we have t belongs
to either P1 or P2. Since a1 ∈ {a1} = a1 + 0 ⊆ (a1 + a2) − a2, then
there exists t ∈ a1 + a2 such that a1 ∈ t− a2. By the above results, if
t ∈ P1, then a1 ∈ P1. Also, if t ∈ P2, then a2 ∈ −t − a1 ⊆ P2, which
is a contradiction in two cases. Thus we must have S ⊆ P1 or S ⊆ P2.
Now, suppose that k ≥ 2 and our assertion is valid for n = k. For
completing the proof, assume that n = k + 1, where k ≥ 2. Thus, we

have S ⊆
k+1∪
i=1

Pi and since at most two of the Pi are not prime, we can
assume that they have been indexed in such a way that Pk+1 is prime.

We claim that there is 1 ≤ j ≤ k such that S ⊆
k+1∪
i=1
i ̸=j

Pi. For proving this

claim as a contradiction suppose that S ⊈
k+1∪
i=1
i≠j

Pi, for all 1 ≤ j ≤ k. It

follows that for all 1 ≤ j ≤ k, there exists aj ∈ S \
k+1∪
i=1
i ̸=j

Pi which implies

that aj ∈ Pj, by hypothesis. Moreover, since Pk+1 ∈ Spec(R), we

conclude that a1 · · · ak ̸∈ Pk+1. Consequently, a1 · · · ak ∈
k∩

i=1

Pi \ Pk+1

and ak+1 ∈ Pk+1 \
k∪

i=1

Pi. Now consider the element b ∈ a1 · · · ak +ak+1.
If b ∈ Pk+1, then a1 · · · ak ∈ b−ak+1 ⊆ Pk+1 and this is a contradiction.
Therefore, b does not belong to Pk+1. Also, we can not have b ∈ Pj,
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where 1 ≤ j ≤ k, for that would imply ak+1 ∈ b− a1 · · · ak ⊆ Pj, again
a contradiction. But b ∈ S, since for all 1 ≤ j ≤ k we have aj ∈ S,

which leads to a contradiction to the hypothesis that S ⊆
k+1∪
i=1

Pi. It
follows that the statement is valid. In fact, there is 1 ≤ j ≤ k+1 such

that S ⊆
k+1∪
i=1
i ̸=j

Pi. By applying the inductive hypothesis, we deduce that

S ⊆ Pi, where 1 ≤ i ≤ k + 1. □

Theorem 2.17. Let I1, I2, ..., In be 2-absorbing hyperideals of R and I
be a hyperideal of R such that I ⊆ I1 ∪ I2 ∪ ... ∪ In. Then, there exists
1 ≤ i ≤ n such that I2 ⊆ Ii.

Proof. First, we show that there exists 1 ≤ i ≤ n such that
√
I ⊆

√
Ii.

By Theorem 2.4, we can assume that they have been indexed in such
a way that

√
Ii = pi and

√
Ij = pj,1 ∩ pj,2, for all 1 ≤ i ≤ k and

k + 1 ≤ j ≤ n, where pi, pj,1, pj,2 are prime hyperideals of R. Then,√
I ⊆ p1 ∪ p2 ∪ · · · ∪ pk ∪ (pk+1,1 ∩ pk+1,2) ∪ · · · ∪ (pn,1 ∩ pn,2) which

follows that
√
I ⊆ p1 ∪ p2 ∪ · · · ∪ pk ∪ pk+1,tk+1

∪ · · · ∪ pn,tn , where
tk+1, · · · , tn ∈ {1, 2}. Therefore by applying Lemma 2.16, we find that√
I ⊆ pi or

√
I ⊆ pj,ts , for some 1 ≤ i ≤ k, k + 1 ≤ j ≤ n and

ts ∈ {1, 2}. If
√
I ⊆ pj,ts , where k + 1 ≤ j ≤ n, ts ∈ {1, 2}, then

√
I ⊆ pj,ts ⊆

n∪
j=k+1

pj,ts . We may assume that
√
I ⊆

s∩
j=k+1

pj,1 and
√
I ̸⊆

n∪
j=s+1

pj,1, where k + 1 ≤ s ≤ n. On the other hand,
√
I ⊆

pk+1,2 ∪ · · · ∪ ps,2 ∪ ps+1,1 ∪ · · · ∪ pn,1. Therefore,
√
I ⊆ pj,2, for some

k + 1 ≤ j ≤ s, by Lemma 2.16. Hence,
√
I ⊆ pj,1 ∩ pj,2 =

√
Ij, where

k+1 ≤ j ≤ s. Then, in general there is 1 ≤ i ≤ n such that
√
I ⊆

√
Ii

which leads to I2 ⊆ (
√
I)2 ⊆ (

√
Ii)

2. By applying Theorem 2.4, we get
I2 ⊆ Ii. □
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A GENERALIZATION OF PRIME HYPERIDEALS IN KRASNER HYPERRINGS

L. KAMALI ARDEKANI AND B. DAVVAZ

کراسنر ابرحلقه های روی اول ابرایده آل های از تعمیمی

دواز٢ بیژن و اردکانی١ کمالی لیلی
ایران اردکان، اردکان، دانشگاه مهندسی، و فنی ١دانشکده

ایران یزد، یزد، دانشگاه ریاضی، ٢دانشکده

ابرایده آل های معرفی به مقاله این در ابرحلقه ها، نظریه ی در اول ابرایده آل های مهم نقش به توجه با
برخی می شود. پرداخته کراسنر ابرحلقه های روی اول ابرایده آل های از جدید تعمیمی عنوان به ٢ -جاذب
قرار بررسی و مطالعه مورد کراسنر ابرحلقه های روی ٢ -جاذب ابرایده آل های از اساسی نتایج و خواص
بیان R کراسنر ابرحلقه ی از I ٢ -جاذب ابرایده آل  روی را شرایطی آن ها مهمترین از یکی که است گرفته

است. ٢ -جاذب ابرایده آل یک (I :R x) = {y ∈ R | y · x ∈ I} آن تحت که می کند

کراسنر. ابرحلقه ی ٢ -جاذب، ابرایده آل اول، ابرایده آل کلیدی: کلمات
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