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A GENERALIZATION OF PRIME HYPERIDEALS IN
KRASNER HYPERRINGS

L. KAMALI ARDEKANI* AND B. DAVVAZ

ABSTRACT. In this paper, we give a characterization of new gen-
eralization of prime hyperideals in Krasner hyperrings by intro-
ducing 2-absorbing hyperideals. We study fundamental properties
of 2-absorbing hyperideals on Krasner hyperrings and investigate
some related results.

1. INTRODUCTION

Prime ideals play a significant role in commutative ring theory. Be-
cause of this importance, the concept of 2-absorbing ideals in a commu-
tative ring was introduced by Badawi [2] as a generalization of prime
ideals. After this, [, 9, 10] have continued these studies and obtained
several results. Recently, this notion is generalized to the hypercase
by introducing the 2-absorbing hyperideals in a multiplicative hyper-
ring [1]. In this paper, we introduce the notion of the 2-absorbing
hyperideals on Krasner hyperrings and give some properties of such
hyperideals.

Let us first recall some preliminary definitions.

Assume that H is a non-empty set and P*(H) is the set of all non-
empty subsets of H. A hyperoperation on H is a map o: H x H —
P*(H) and the couple (H,o) is called a hypergroupoid. If A and B

are non-empty subsets of H, then we denote Ao B = |J aob,
acA, beB

roA={zx}oAand Aox = Ao{z}. A hypergroupoid (H,o) is called
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a semihypergroup if for all x,y, z of H we have (roy)oz=x0(yo z),

which means that |J woz= |J zov. The more general structure
uexroy veyoz
that satisfies the ring-like axioms is the hyperring in the general sense.

There are comprehensive references for hyperrings, for example see
[3, 7]. In fact, different kinds of hyperrings are defined which one of
them is Krasner hyperring described as follows [0]:

A Krasner hyperring is an algebraic structure (R, +, -) satisfying the
following axioms: (1) (R,+) is a canonical hypergroup which means
that (i) (R, +) is a semihypergroup, i.e., z + (y + 2) = (v + y) + 2, for
all z,y,z € R, (i) z+y = y+ z, for all z,y € R, (iii) There exists
0 € R such that 0 + x = {«}, for all x € R, (iv) For all x € R there
exists a unique element 2’ € R such that 0 € = + 2/, (we write —z
for 2/ and we call it the opposite of x), (v) z € x + y implies that
y€—x+zandz € z—y, for all z,y,z € R; (2) (R,-) is a semigroup
having zero as a bilaterally absorbing element, i.e., z-0 = 0-x = 0; (3)
The multiplication is distributive with respect to the hyperoperation +.
Throughout this paper, by a hyperring we mean a Krasner hyperring.

The meaning of center of hyperring (R, +,-) is Z(R) ={z € R | = -
y=y-x, forall y € R} and R is called commutative if Z(R) = R
i.e., (R,-) is a commutative semigroup. A hyperring (R, +,-) is called
hyperfield if (R, -) is a commutative monoid and all nonzero elements of
R are multiplicatively invertible. The identity element of the monoid
(R, ") is called unit element of hyperring (R, +, ). For example, suppose
that K := {0,1} is a commutative monoid with the multiplication
1-0=0and 1-1 = 1. The hyperaddition is given by 0+1=140=1,
0+0=0and 1+1 = {0,1}. Then, K is a hyperfield called the
Krasner hyperfield with unit element 1 [5]. A hyperring (R, +,-) is
called hyperdomain, if R is a commutative hyperring with unit element
and zy = 0 implies that x =0 or y = 0, for all x,y € R.

A non-empty subset A of a hyperring (R, +, -) is called subhyperring
of R if (A,+,-) is itself a hyperring. A non-empty subset I of a hy-
perring R is called a hyperideal if and only if (1) u,v € I imply that
u—v C I, forallu,v € I, (2) u € I and r € R imply that r-u € I and
u-r € I. Remember here that (I :p z) ={y € R |y-x € I}, for all
x € R, is a hyperideal. A hyperideal [ is called prime if zy € I implies
that x € [ or y € I. A prime hyperideal P is said to be a minimal
prime hyperideal over an ideal I if it is minimal among all prime ideals
containing I. Note that we do not exclude I even if it is a prime ideal.
A prime hyperideal is said to be a minimal prime hyperideal if it is a
minimal prime ideal over the zero hyperideal. By applying the argu-
ment similar in spirit to the proof of Theorem 2.1 of [1], one can easily
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show that if I and P are hyperideals of R such that I C P and P is a
minimal prime hyperideal of I, then, for all z € P, thereisy € R\ P
and a nonnegative integer n such that yz" € I.

A good homomorphism between two hyperrings (R, +1,-1) and
(Rg,+2,-2) is a map f : Ry — Ry such that for all x,y € Ry, we
have f(z +1y) = f(z) +2 f(y), flz1y) = f(z) =2 f(y) and f(0) = 0.
Let f : Ry — R5 be a good homomorphism. The kernel of f is defined
as kerf = {x € Ry | f(x) = 0}. It is trivial that kerf is a hyperideal
of R;. Note that a prime hyperideal of a commutative hyperring R can
be described as the kernel of a homomorphism from R to the Krasner
hyperfield K [5].

2. 2-ABSORBING HYPERIDEALS IN KRASNER HYPERRINGS

In this section, we treat to the introducing 2-absorbing hyperideals
on Krasner hyperrings and investigate more results with respect to such
hyperideals.

Definition 2.1. A proper hyperideal I of a hyperring (R, +, -) is called
a 2-absorbing hyperidealif a-b-c € I impliesthat a-b& lora-ce ]
orb-cel, forall a,b,c € R.

Example 2.2. Let (G,®) be a group and H = G U {0, u,v}, where
0 is an absorbing element under multiplication and u,v are distinct
orthogonal idempotents with

uOUv=v0u=0; u®u=u;
vOU = a®0=00a=0, foralla € H;
uOg=gOu=u; vOg=gov=uv, forall g€ d.

If we define hyperoperation @& on H as follows:

ad0=0@a={a}; a®a=1{0,a}, forallaec H;
adb=bda=H\{0,a,b}, forall a,b € H\ {0} and a # b.

Then, (H,®,®) is a Krasner hyperring [3]. Put I = {0,u} and J =
{0}. Obviously, I and J are 2-absorbing hyperideals. The hyperideal
I is prime but J is not prime, because u ® v =0 € J while u,v & J.

Example 2.3. Let (R, +,-) be a hyperdomain and

M:{(gl 52>|[E1,5L‘2€R}.



208 KAMALI ARDEKANI AND DAVVAZ

Put I = {( 8 8 ) | a € R} and define the hyperoperation @& and

the operation ® on M as

Ty T2 Tyowy \ _ Y1 Y2 , , ! '
(0 0 )@(0 0 )= 0 0 | yiexi+a,1<i<2
and

rr@y ¥y wh [ w-x) xp -
0 0 0o 0 ) \O0 0 '

Then, (M, ®,®) is a Krasner hyperring and I is a 2-absorbing hyper-
ideal of M.

Note that by the same argument of Theorem 2.8 of [1], one can show
that a nonzero proper hyperideal I of a hyperring R is a 2-absorbing
hyperideal if and only if whenever I; - I, - I3 C I, for some hyperideals
]1,]2,]3 OfR, then Il '.[2 Q I or IQ ']3 Q I or Il ']3 Q I.

From now on, the hyperring (R, +,-) is commutative with unit ele-
ment. Also, we may use xy instead of x - y.

Theorem 2.4. Let I be a 2-absorbing hyperideal of R. Then, one of
the following statements is valid:

(1) VI = P is a prime hyperideal of R and P?> C I;

(2) VI=P NP, PP, C I and (\/7)2 C I, where P, and P, are
the only distinct prime hyperideals of R that are minimal over
I.

Proof. We prove this statement in three steps:

Step 1: V1 is a 2-absorbing hyperideal of R.
Suppose that z,y, z € R such that zyz € v/I. By assumption, (ryz)? €
I. Thus, 22y?2% € I and this implies that (zy)? = 2%y? € I or (z2)? =
1?22 € I or (yz)? = y*2% € I. Therefore, at least one of xy, vz and yz
belongs to /1.

Step 2: There are at most two distinct prime hyperideals of R that
are minimal over I.
Suppose that P, and P, are distinct prime hyperideals of R that are
minimal over I. Then, there are x; € P, \ P, and 25 € P\ P,.
Also, there exist co € R\ P, ¢4 € R\ P, and m,n € N such that
cox}, cry € I. This implies that cozq, 1290 € I C PN Py, because [ is
a 2-absorbing hyperideal. Consequently, ¢; € P, \ P, and ¢; € P, \ P;.
Hence, (¢;+c)NP; = 0, since if t € (¢;+c2)NPy, then ¢y € —c;+t C Py
which contradicts c; € P;. In the same way, (c; + co) N P, = (.
Therefore, for all t € ¢; + ¢ we have txy & Py and tzy € P» which lead
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to txy,try € I. On the other hand, (¢; + ¢o)zy2e C I. Thus, for all
t € c1 + co we get tryxo € I and this implies that xyxo € 1.

Now, suppose that P; is a prime hyperideal of R that is minimal
over I and P3 # Pj, P,. Consequently, there are y; € P\ (P,U P3) and
yo € Py \ (Py U P3). Then, by the previous argument 3,5, € I C Pj
which leads to y; € P5 or y, € P3, a contradiction.

Step 3: In this step, we prove the principle assertion of Theorem.
Suppose that z,y € VI. Then, 22,4> € I and so z(z + y)y C 1.
Therefore, for all t € x4y, we have ot € [ or xy € [ or ty € I, because
I is a 2-absorbing hyperideal. If 2t € I, then zt € x(z +y) = 2% + 1y
and consequently zy € —2% + 2t C I. Similarly, ty € I yields xy € I.
Therefore, we have (v/1)2 C I. By Steps (1) and (2), VI = P is a
prime hyperideal of R or VI=PnN Ps, where P, and P, are the only
distinct prime hyperideals of R that are minimal over I. If /I = P,
then P2 = (VI)2 C I. If /I = PINPy, thenforally € VI, 2, € P\ P,
and zo € Py \ P, we have y + z; C P, \ P5. By the same argument of
Step 2, we get z120 € [ and (y+ 21)22 C I. Thus, for all s € yzo + 2129,
we have yzy € s — 2120 C [. Similarly, yz; € [ and this implies that
PP, CI. O

Theorem 2.5. Let I be a hyperideal of R. Then, I is a 2-absorbing
hyperideal of R if and only if (I :r x) is a prime hyperideal of R
containing VI, for all z € I\ 1.

Proof. By Theorem 2.4, either /I = P or v/I = P, N Py, where P is
a prime hyperideal and P;, P, are nonzero distinct prime hyperideals
of R that are minimal over I. We prove the statement for the case
VI = P,N P, and a similar argument implies the assertion for the case
VI=P.

Suppose that [ is a 2-absorbing hyperideal of R. According to The-
orem 2.4, we conclude xPy, 2P, C I, for all z € VI \ I. This means
that Py, P, C (I :g x) and consequently v/I C (I :p z). Assume that
yz € (I :g x), where y,2 € R and x € I\ I. Clearly, the state-
ment is valid when y € P, U P, or z € P, U P,. Then, we prove it for
y,z & Py U P,. In this case, we have yz ¢ P, N P, = /I that leads
to yz ¢ 1. Hence, by assumption we get y € (I :g x) or z € (I :g z)
which implies that (I :g x) is a prime hyperideal.

Now, suppose that (I :z 2) is a prime hyperideal, for all z € v/I\I. In
order to prove that [ is a 2-absorbing hyperideal, assume that xyz € I,
where x,y,z € R. Then, yz € (I :g ). Obviously, at least one of
z,y,z belongs to (P, U P,) \ I. For proving the assertion, without
loss of generality suppose that x € (P, U P,) \ I. In this case either
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v eVI\Iorxec (P UP)\VI. Ifz € /I\I, then by the hypothesis
we get y € (I :g x) or z € (I :gr x). Consequently, yr € [ or zx € [
which implies that I is a 2-absorbing hyperideal. If 2 € (P, U Py) \ V1,
then (I :gp x1) = Py and (I :g z3) = Py, for all x; € P\ P, and
ro € P\ P;. Similar to the previous argument, we find that I is a

2-absorbing hyperideal.
OJ

Theorem 2.6. Let I be a 2-absorbing hyperideal and P = P; and Py
be prime hyperideals of R. Then,

(1) If VI = P, then (I :p x) is a 2-absorbing hyperideal of R, for
allz € R\ P with \/(I :gx) =P and Q={(I :rz) | * € R}
is a totally ordered set;

(2) If VI = P, N Py, then (I :p x) is a 2-absorbing hyperideal of
R, for all x € R\ (P, U Py) with \/(I :rx) = PLN P, and
Q={(I:gz) | z€ R\ (PLA P)} is a totally ordered set;

(3) If VI = PLN Py, then (I : ) = Py, for all z € P, \ Py and
(I:rx)= Py, forallx € P,\ P;.

Proof. The proof is similar to Theorem 2.5 of [1]. O

Theorem 2.7. Let I be a 2-absorbing hyperideal of R such that I # V1.
Then,
(1) If € VI\ I and y € R such that yx ¢ I, then (I : yx) =
([ ‘R .’17),'
(2) Ifx,y € VI\I, then (I :g fx+dy) = (I :g x), for all f,d € R
such that fd & (I :r x). In particular, (I :r x +y) = (I g x).

Proof. (1) Suppose that ¢ € (I :g yx), where z € I\ I and y € R.
Then, ¢y € (I :g x) which means that ¢ € (I :g x), by Theorem 2.5.
Therefore, (I :g yz) C (I :g ). It is clear that (I ;g z) C (I :g yz)
and consequently the statement is valid.

(2) Suppose that 2,y € I\ I. Then, (I :gx x) C (I :g y) or
(I :ry) C (I :gx), by Theorem 2.6. In order to establish the assertion,
without loss the generality, assume that (I :g z) C (I :g y) which
leads to (I :g ) C (I ;g y) € (I :g dy) and (I :g ) C (I :g fx).
Therefore, for all t € (I :g x) we get t(dy + fx) C [ and so (I :g
xz) C (I :gr dy + fx). For proving equality, suppose that there exists
s € dy + fx such that (I :g ) # (I :g s). By applying Theorem
2.6, there exists z € (I :g y) N (I :g s) such that z & (I :g x), because
(I :gz) C({:gy)and (I :gx) C (I :g dy+ fz). Since zs € z(dy+ fx),
hence zfx € —zdy+zs C I which means that zf € (I :g z). Therefore,
z€ (I:gx)or fe(]:gx) and this is a contradiction. O
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Definition 2.8. Let I be a nonzero proper hyperideal of R and
Zr(R/I)={r+1€ R/I|3se R\I such that rs € I}.

Then, I is called Primal if Zgr(R/I) is a prime hyperideal of R con-
taining /.

Theorem 2.9. Let I be a 2-absorbing hyperideal of R such that I # /1.
Then, I is a Primal hyperideal of R.

Proof. First, we show that Zg(R/I) = Q/I,whereQ = |J (I :gx).
ze(VI\I)

For this purpose, suppose that a + I € @/I. Then, there exists

x € I\ I such that a € (I :g z). Therefore, ax € I which fol-

lows that a +1 € Zg(R/I). For proving Zr(R/I) C /I, assume that

a+ 1 € Zr(R/I), where a ¢ I. Then, there is b € R\ I such that

ab € I. By Theorem 2.4, we can distinguish two cases:

Case 1: /I = P is a hyperideal of R. Then, we have ab € P and
consequently a € P\ I or b € P\ I. Therefore, a € (I :gp a) or
a € (I :g b) which implies that a + 1 € Q/I.

Case 2: VI =P, () P, where P, and P; are the only distinct prime
hyperideals of R that are minimal over I. If a € VVI\ I or b € VI \ I,
then by applying the same argument as for Case (1), we find a + I €
Q/I. Now, suppose that a,b & /T \ I. Therefore, a belongs to P, \ P,
or P, \ P, and consequently a € (I :g b), by Theorem 2.5. Hence,
a+ I € Q/I which leads to Zr(R/I) C Q/I.

Thus in both cases, we have Zr(R/I) = Q/I as desired. Moreover,
since, I # /I, then Theorem 2.6 implies that Q = {(I :g z) | = €
VI \ I} is a set of linear ordered (prime) hyperideals of R. Therefore,
Zr(R/I)= U (({:gx)/I)is a hyperideal of R/I. O

(I:pz)eR
Theorem 2.10. Let R’ be a commutative hyperring with unit element
and ¢ : R — R’ be a good homomorphism.
(1) If I' is a 2-absorbing hyperideal of R', then o *(I') is a 2-
absorbing hyperideal of R;
(2) If ¢ is an epimorphism and I is a 2-absorbing hyperideal of R
containing kery, then o(I) is a 2-absorbing hyperideal of R'.

Proof. (1) Suppose that abc € p=(I"), then p(a)p(b)p(c) € I'. There-
fore, at least one of the ¢(ab), p(bc) and p(ac) belongs to I’ which
implies that ab € p=*(I") or bc € ¢~ (I") or ac € p~(I").

(2) Assume that a/,b0',¢ € R’ such that a't/c’ € ¢(I). Then, there
are a,b,c € R such that p(a) = @/, ¢(b) = b and p(c) = . There-
fore, p(abc) = a'b'c’ € p(I) which deduce that there is i € I such that
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(abe — i) Nkery # (. Consider t € (abc — i) N kerp. We conclude that
abc € t +1 C kero + I C I. This implies that ab € I or ac € I or
bc € I. Consequently, at least one of the a't/, a’¢ and b'¢’ belongs to

(1), [
The following corollary is deduced directly from Theorem 2.10.

Corollary 2.11. Let I and J be distinct proper hyperideals of R. If
J C I and I is a 2-absorbing hyperideal of R, then I/J is a 2-absorbing
hyperideal of R/J.

Theorem 2.12. Let Ry, Ry be Krasner hyperrings and R = R; X Rs.

(1) If I (I3, respectively) is a 2-absorbing hyperideal of Ry (Ra,
respectively), then Iy X Ry (Ry X Iy, respectively) is a 2-absorbing
hyperideal of R;

(2) If J is a 2-absorbing hyperideal of R, then either J = I} X Ry
(J = Ry x Iy, respectively), where I (I3, respectively) is a 2-
absorbing hyperideal of Ry (Ra, respectively) or I = I x I,
where I (Iy, respectively) is a prime hyperideal of Ry (Ra,
respectively).

Proof. (1) It is straightforward.

(2) Suppose that J is a proper 2-absorbing hyperideal of R. Then,
J = I, x I, where for ¢« = 1,2 we have [; is a hyperideal of R;.
Assume that Iy = Ry and R’ = R/({0} x Ry). Therefore, I} # R, and
J' = J/({0} x Ry) is a 2-absorbing hyperideal of R’, by Corollary 2.11.
It follows that I is a 2-absorbing hyperideal of Ry, since R’ = R; and
I =2 J'. In the same way, I; = R; implies that I, is a 2-absorbing
hyperideal of R,.

For completing the proof it is enough to show that if I # R, and I #
Ry, then [; is a prime hyperideal of R;, where i = 1,2. Assume that at
least one of [; is not prime, e.g. I;. Therefore, there are a,b € R; such
that ab € I, but a,b ¢ I,. Putting x = (a,1), y = (1,0) and z = (b, 1),
we give xyz = (ab,0) € J while xy = (a,0),xz = (ab,1),yz = (b,0) do
not belong to J and this is a contradiction to the assumption. O

Theorem 2.13. Let I be a hyperideal of R and S be a multiplicatively
closed subset of R. In addition, let ST'R be the hyperring of quotients
of R.
(1) If I is a 2-absorbing hyperideal of R and SN 1T =, then S™'I
is a 2-absorbing hyperideal of ST R;
(2) If S7'I is a 2-absorbing hyperideal of ST*R and SNZr(R/I) =
0, then I is a 2-absorbing hyperideal of R.
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Proof. (1) Suppose that a,b,c € R and s,t,k € S such that (a/s)(b/t)
(¢/k) € S7'I. Then, there exists u € S such that uabc € I. Hence,
uab € I or uac € I or be € I, by hypothesis. If uab € I, then (a/s)(b/t)
= (uab)/(ust) € S7'I. Also, uac € I implies that (a/s)(c/k) =
(uac)/(usk) € S™'I and be € I. Therefore, (b/t)(c/k) € S7'I. By
the above result, S7'I is a 2-absorbing hyperideal.

(2) Suppose that a,b,c € I such that abc € I. In this case, we
have (abc)/1 = (a/1)(b/1)(c/1) € S'I. Hence, (a/1)(b/1) € S7'I or
(b/1)(c/1) € ST or (a/1)(c/1) € S7'I, since S7'I is a 2-absorbing
hyperideal. If (a/1)(b/1) € S7'I, then there exists u € S such that
uab € I. This implies that ab € I, since SN Zg(R/I) = .

Similarly, (b/1)(c/1) € ST ((a/1)(c/1) € S7'I, respectively) which
leads to be € I (ac € I, respectively). Consequently, I a 2-absorbing
hyperideal. 0

Definition 2.14. A proper hyperideal I of R is called irreducible pre-
cisely if I can not be expressed as the intersection of two strictly larger
hyperideals of R.

The following theorem shows the relationship between irreducible
and 2-absorbing hyperideals.

Theorem 2.15. Let I be an irreducible hyperideal of R and P = P,
P, be distinct prime hyperideals of R.
(1) If VI = P, then I is a 2-absorbing hyperideal if and only if
P?CTland (I :gx)= (I:g2?), forallx € R\ P;
(2) If VI = P, N\ Py, then I is a 2-absorbing hyperideal if and only
if PLPo C T and (I :gp z) = (I :g 2?), for allz € R\ P, N Ps.

Proof. (1) For proving the necessity part, it is only necessary to check
(I :r 2*) C (I :g x), for all x € R\ P. Because, it is clear (I :g x) C
(I :g z*) and P? C I, by Theorem 2.4.

Suppose that y € (I :g 2%). Then, yz € I or 2*> € I. If 2* € I, then
x € P and this is a contradiction. Then, yx € I which implies that
y € (I :g x) and consequently (I :g 2*) C (I :p x) as desired.

For establishing the sufficiency part, assume that x,y,z € R such
that xyz € [ and xy ¢ I. We show that either xz € I or yz € I.
From zy ¢ I, it follows that x ¢ P ory € P and so (I :g ) = (I :g
x?) or (I :p y) = (I :g y?), respectively. Without loss of generality,
suppose that (I :x ) = (I :z 2*). For completing the proof as a
contradiction, assume that xz ¢ I and yz ¢ I. Consider a € (I + zz)N
(I +yz) which follows that there are aj,as € I and ri,7, € R such
that a € (a; + rizz) N (ag + royz). Consequently, ax € a1z + riz?z
and ax € aox + royzx C I which lead to ria?z € —ajx + ax C 1.
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Therefore, 712 € (I :g 2?) = (I :g x), by assumption. This implies
that a € ay +rxz C I. Then, < [ + 2z >N < [ +yz >C [ and so
< I+ xz>N< I+ yz>= 1 which contradicts irreducibility of I.

(2) The proof is similar to Part (1). O

In the process of proving the next theorem, we need the following
lemma.

Lemma 2.16. Let Py, Ps, ..., P,, wheren > 2, be hyperideals of R such
that at most two of them are not prime. Furthermore, let S be an addi-
tive canonical subhypergroup of R which is closed under multiplication
and S C |J P;. Then, there exists 1 < j < n such that S C P;.
i=1

Proof. We prove this statement by induction on n. First, consider for
n = 2 that is S C P, U P,. As a contradiction, assume that S gZ P
and S ¢ P,. Then, there exists a; € S\ Pj, where j = 1,2. Therefore,
the hypothesis leads to a1 € P, and as € P;. On the other hand,
a1 +ay; €S C PLUP, and so for all t € a; + as we have t belongs
to either Py or P,. Since a; € {a1} = a3 + 0 C (a1 + az) — ag, then
there exists t € a; + ag such that a; € t — ay. By the above results, if
t € P, then a; € P,. Also, if t € P,, then ay € —t — a; C P, which
is a contradiction in two cases. Thus we must have S C P, or S C P.
Now, suppose that & > 2 and our assertion is valid for n = k. For

completing the proof, assume that n = k 4+ 1, where k > 2. Thus, we
k41
have S C |J P; and since at most two of the P; are not prime, we can

=1
assume that they have been indexed in such a way that P, is prime.
kt1
We claim that there is 1 < j < k such that S C |J P;. For proving this

=1
7]

k41
claim as a contradiction suppose that S € |J P, for all 1 < j < k. It
i=1

i#£]
k+1
follows that for all 1 < j <k, there exists a; € S\ |J P which implies
i=1
i#]j

that a; € P;, by hypothesis. Moreover, since Py € Spec(R), we

k
conclude that a; ---ar € Pyy1. Consequently, a;---ax € (| P\ Pii1
i=1

k
and a1 € Piy1 \ U Pi. Now consider the element b € ay - - - ag + ajy1.
i=1

Ifb € Piyq1, thenay---a € b—agy1 C Pryq and this is a contradiction.

Therefore, b does not belong to Py4;. Also, we can not have b € P,
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where 1 < j <k, for that would imply ax41 € b —ay---ar C Pj, again

a contradiction. But b € S, since for all 1 < j7 < k we have a; € S,
k+1

which leads to a contradiction to the hypothesis that S C (J P;. It

=1
follows that the statement is valid. In fact, there is 1 < j < k4 1 such

k41
that S C |J P;. By applying the inductive hypothesis, we deduce that
2
S C P, where 1 <i<k-+1. O

Theorem 2.17. Let I, I5, ..., I, be 2-absorbing hyperideals of R and I
be a hyperideal of R such that I C I Ul U ...UI,. Then, there exists
1 <i<n such that I? C I,.

Proof. First, we show that there exists 1 < i < n such that v/ C /T,.
By Theorem 2.4, we can assume that they have been indexed in such
a way that /I, = p; and \/I_] = pj1 Npje, for all 1 <7 < k and
k41 < j <mn, where p;,p;1,p;2 are prime hyperideals of R. Then,
VI CpiUps U Upp U Brens Nprsra) Us- U (P N pap) which
follows that VI C prUpaU---Upp Uppyrg,, U - Uppy,, where
tist, - 5t € {1,2}. Therefore by applying Lemma 2.16, we find that
\/Tgpior\/Tgpj,ts,forsomel§z’§k,k+1§j§nand
te € {1,2}. Tf VT C pjy,, where k +1 < j < n, t, € {1,2}, then

n S
VI C pis. € U pje.. We may assume that /I C () p;1 and
j=k+1 j=k+1

VI ¢ U pj1, where £k +1 < s < n. On the other hand, VI C
Jj=s+1

Pit12 U - UpsaUpsrin U---Upyq. Therefore, VI C pj,2, for some

k+1<j<s, by Lemma 2.16. Hence, v'I C p;1 Np;2 = /I, where

k41 < j <s. Then, in general there is 1 < i < n such that vI C VT,

which leads to 12 C (v1)? C (v/T;)?. By applying Theorem 2.4, we get

I? C I, ]
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