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FILTER REGULAR SEQUENCES AND LOCAL
COHOMOLOGY MODULES

J. AZAMI*

ABSTRACT. Let R be a commutative Noetherian ring. In this
paper we consider some relations between filter regular sequence,
regular sequence and system of parameters over R-modules. Also
we obtain some new results about cofinitness and cominimaxness
of local cohomology modules.

1. INTRODUCTION

Throughout this paper, let R denote a commutative Noetherian ring
(with identity) and I an ideal of R. For an R-module M, the i*" local
cohomology module of M with respect to I is defined as

H(M) = liny Extiy(R/I", M),
n>1
We refer the reader to [5] or [3] for more details about local cohomology.
The concept of filter regular sequence plays an important role in this
paper. We say that a sequence x4, ..., x, of elements of I, is an [-filter
regular sequence on M, if

(ZEl, e ,ZL’i_l)M ‘M T;

L) eV,

for all i = 1,...,n. Also, we say that an element z € [ is an I- filter
regular sequence on M if Suppy(0 :pr ) € V(I). The concept of an I-
filter regular sequence on M is a generalization of the concept of a filter
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regular sequence which has been studied in [18]. Both concepts coin-
cide if [ is an m-primary ideal of a local ring with maximal ideal m. In
1969, A. Grothendieck conjectured that if I is an ideal of R and M is a
finitely generated R-module, then the R-modules Homg(R/I, H:(M))
are finitely generated for all ¢ > 0. R. Hartshorne has provided a coun-
terexample to this conjecture in [6]. Also he defined a module T" to be
I-cofinite if Supp T C V(I) and Ext%(R/I,T) is finitely generated for
each ¢ > 0 and he asked the following question.

For which rings R and ideals I are the modules H:(M) I-cofinite for
all © and all finitely generated modules M?

Hartshorne proved that if I is an ideal of the complete regular local
ring R and M a finitely generated R-module, then H(M) is I-cofinite
in two following cases:

(i) I is principal ideal, (see [6], Corollary 6.3),
(ii) I is prime ideal with dim R/I =1, (see [6], Corollary 7.7).
This subject was studied by several authors afterwards, (see [1], [11],

9], [19], [1] and [10]).

Some important results of this paper are as follows:

Theorem 1.1. Let (R,m) be a Noetherian local ring and M # 0 be a
finitely generated R-module of dimension d > 1. Let x1,...,x4 € m be

an m-filter reqular sequence for M. Then the following statements are
holds:

(1) 1,...,x4 is a system of parameters for M.
(2) For each 1 < @ < d, the R-module H. (M) is (z1,...,2;)-
cofinite.

Theorem 1.2. Let (R, m) be a Noetherian local ring and I be an ideal
of R. Then for every finitely generated R-module M # 0 of dimension
d, the following statements are equivalent:

(1) Hi(M) is I-cofinite.

(2) Hy(M) = H{(M).
Theorem 1.3. Let R be a Noetherian ring, I an ideal of R and M #
0 be a finitely generated R-module such that dim% <1 Ift >

1 and xy,...,xy € I is an I-filter reqular sequence for M, then for
each 0 < i <t —1, the R-module H:(M) is (x1,...,x;)-cofinite and

R
Hompg (—, H}(M)) is finitely generated.
(X1, ..., x)
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For each R-module L, we denote by AsshgL the set {p € Assg L :
dim R/p = dim L}. Also, for any ideal b of R, the radical of b, denoted
by Rad(b), is defined to be the set {z € R : 2™ € b for some n € N}
and we denote {p € Spec(R) : p O b} by V(b). Finally, for each R-
module L, we denote by mAssgr L, the minimal elements of Assg L. For
any unexplained notation and terminology we refer the reader to [3]

and [12].

2. MAIN RESULTS

Theorem 2.1. Let (R, m) be a Noetherian local ring and M # 0 be a
finitely generated R-module of dimension d > 1. Let x1,...,x4 € m be
an m-filter reqular sequence for M. Then

(1) 1,..., x4 is a system of parameters for M.
(2) For each 1 < i < d, the R-module H{ (M) is (z1,...,x;)-
cofinite.

Proof. (1). By definition z; ¢ U
d, and so x; ¢ U

< <
PeAss<m>\{m}P for each 1 < i <

PeASShR((xl,“?xi_l))P. Therefore zq, ..., x4 is a system
of parameters for M. .
(2). By [8, Proposition 1.2], H}

(@1,

j <i—1 and dim Supp H’ x)(M) < 0. Hence by [!, Theorem 2.6,

(1,00,

H(jx1 p(M) = 0. Thus by [I5, Proposition 3.11], the R-module

Hi, . .)(M) is also (z1,...,2;)-cofinite. Since Hf;llmzi)(M) is Ar-
tinian, it follows from Grothendick vanishing theorem [3, Proposition

6.1, Hg,, (Hz:z)(M)) = 0. By [17], there exists an exact se-
(H" (M) — H| M) —

quence as follows 0 — H} (100 20) (@1, xi+1)(

Rzxi1q

HY,., (H,,  .,(M)) — 0. Note that this exact sequence shows
i ~ 770 i
H(Z‘l ..... .Z’l_t,_l)(M) = HR$i+1 (H(Z‘l ..... .I,)(M)) ‘
Also by [9], we have
ngl ..... .Z‘Prl)(M) = Hl’i‘l(M)

Therefore . '
Hy(M) = Hig, sy (His,..oc) (M)
and there exists an exact sequence as 0 — Hy, (M) — H{, .
R
Since Homp (—
((L’l, c. ,.TZ'>

Hi,  .)(M) is (z1,...,2)-cofinite), it follows that the R—module

-

HY o (M )> is finitely generated (because

(z1,...,
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R ,
Hompg < ( ),H&(M )) is also finitely generated. Now, by [10,
T1y...,%4
Theorem 1.6] and by Artinianess of HE (M), we conclude that HE (M)
is (x1, ..., x;)-cofinite. O

Theorem 2.2. Let (R,m) be a complete Noetherian local ring and

M # 0 be a finitely generated R-module of dimension d > 1. Let
R

P € Ass M be such that dim = t > 1. Then for any m-filter reqular

sequence for M such as xy,...,x; € m, Rad(P + (z1,...,2;)) =m. In

particular x1,...,x; is a system of parameters for o

Proof. By Cohen’s theorem every complete Noetherian ring is a homo-
morphic image of a Gorenstein local ring. Then by [2], we have

{q € Attp HL (M) | dimg =t} ={qe€ AssM | dimg =t}.

Since P € Ass M and dim% = t, it follows that P € Att HL(M).

By the previous Theorem, the R-module HE (M) is (x4, ..., x;)-cofinite
and so by [10, Theorem 1.6], Rad(P + (z1,...,2:)) = m. O

Theorem 2.3. Let (R,m) be a Noetherian local ring and I be an ideal
of R. Then for every finitely generated R-module M # 0 of dimension
d, the following statements are equivalent.

(1) HL(M) is I-cofinite.

(2) Hy(M) = Hj(M).
Proof. 1 — 2 Let Hi(M) be I-cofinite module. Then HZ(M) ®r
R is also IR-cofinite. Hence by [16, Theorem 1.6], for each P e

~ ~ - - R
Attp <Hf1R(M)> = Assh (M), Rad(IR + P) = mR and so H?R(F) +

X R .
0. Therefore H?R(R) ®p B # 0 and P € Attg H?E(R). Consequently

Atty HEp(R) C Attg HY (R) AttAH;iR(R) and s0 Att (H! (R)) =
Atty (H?R(R)). Now by [7], HiR(R) = H?R(R). Hence we have the
following;:

Hy(R) = Hy5(R) = Hyp(R) = H{(R)
(2 — 1). By [15], HYM) is I-cofinite. Since H}(M) = HZ(M), it
follows that HZ(M) is I-cofinite. O]

Corollary 2.4. Let (R,m) be a Noetherian local ring of dimension d
and I be an ideal of R such that HL(R) is I-cofinite. Then ara(l) = d.
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Proof. The module HZ(R) is I-cofinite, hence H¢(R) = H.(R) # 0
and so ara(l) > cd(I,R) = d. On the other hand by [I1, Corollary
2.8], ara(I) < d. O

Definition 2.5. Let I be an ideal of R. The arithmetic rank of I,
denoted by ara([), is the least number of elements of R required to
generate an ideal which has the same radical as I.

Corollary 2.6. Let (R,m) be a Noetherian local ring of dimension
d >0 and x1,...,x4-1 € m be such that [ = (x1,...,24-1). Then

R
Homp <7, Hi(R)) is not finitely generated.

Proof. By [16, Theorem 1.6], the R-module HomR(§, HZ(R)) is finitely

generated if and only if H(R) is I-cofinite. But in this case ara(I) = d.
On the other hand ara(/) < d — 1 which is a contradiction. O

Proposition 2.7. Let (R, m) be a complete Noetherian local ring and
M # 0 be a finitely generated R-module. Let N be submodule of M
such that dim N =t > 1. Then any m-filter reqular sequence for M
such as x1,...,x; € m is a system of parameters for N.

Proof. Let mAssgk N = {Py,...,P,}, where mAssg N denotes the

minimal elements of Assg N . Then for each 1 < ¢ < n, dimF <

R R
dim N = t and clearly dimF > 1. Let j = dimf. Then 5 < t

and by Theorem 2.2, Rad(P, I (1,...,2;)) =m. Since (1,...,25) C
(x1,...,2¢), it follows that Rad(P; + (z1,...,2:)) = m. We claim that
Rad(N, P; + (z1,...,2¢)) = m. For this, let @ be a minimal prime of
NP P, + (x1,...,2;). Hence there exists 1 < j < n such that P; C @
and so p; + (x1,...,2,) € Q. Therefore m = Rad(P; + (21,...,2¢) C
Rad(Q) = @ € mand consequently @ = m. But N, P, = Rad(Ann N)
shows that

N
Rad(Ann N e = m and dimg ———— = 0.
ad(Ann N + (24 xt)) and so dimpg )N
This completes the proof that x1,...,x; is a system of parameters for
N. O

Corollary 2.8. Let (R,m) be a complete Noetherian local ring, M be
a finitely generated R-module and N be a submodule of M which is
a Cohen-Macaulay with dim N = t. If xy,...,x; € m is an m-filter
reqular sequence for M, then x1,...,x; is a N-reqular sequence.
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Proof. By Proposition 2.7, x1,...,x; is a system of parameters for N.

But N is a Maximal Cohen-Macaulay as an -module. Also z;+

nn
On the

R
Ann N, ... z; + Ann N is a system of parameters for .
Ann N

-module is a

other hand every maximal Cohen-Macaulay as an

nn
balaneced big Cohen-Macaulay as an R-module. Set y; = x; + Ann N
for each 1 <7 < t, then y,...,y is an N-regualar sequence and this
follows that xq,...,z; is an N-regular sequence. 0

Theorem 2.9. Let R be a Noetherian ring, I an ideal of R and M #*
M
0 be a finitely generated R-module such that dimm <1 Ift >

1 and xv,...,xy € I is an I-filter reqular sequence for M, then for
each 0 < i <t —1, the R-module H:(M) is (x1,...,x:)-cofinite and

R
Hompg < ,H}(M)) is finitely generated.
(X1, ..., x)

Proof. For each 0 <i <t — 1, we have H!

(@1,05t)

(M) = Hi(M). Then

| M
Supp H{,, . (M) = Supp H;(M) C Supp —

""" IM
and for each 0 <i <¢— 1, dimSupp H{, (M) < 1. By [1], clearly
the R-module Hy, . is (21,...,2,)-cofinite. Since Hy, (M) =
0 for all i > t+ 1, it follows from [15], that H{, (M) is also

(x1,...,x¢)-cofinite. Consequently for each i > 0, the R-module

(1o xt)(M) is (z1,...,x)-Cofinite. Now, let x;.; € I be such that
T1s o Teg is I-filter regular sequence. Since x;,1 € [ and

(M) = H;™'(M) is I-torsion, then Hp,,  (H' (M)) =0.
On the other hand by [17], the following exact sequence is hold: 0 —

Hll%xt+l (Héxll,,xt)(M)) —) HZJ ..... zt+1)(M> —) H%xt+1 (Hfajl ,,,,, xt)(M)) _>
0. But Hi,, . (M) = ( ) and so by the above exact sequence,
Hi(M) = Hp,, ., (H (1o M)). Since Rxyq C I, it follows that
H?(Hfarl ..... ( ) g Hlo%xt (H(txl ..... xt)(M)>
Also, Hy,,. (H{,, . . (M)) = H{(M) is I-torsion and hence
H%xt_;,_l (H(txl ..... zt)<M)) g H? (Hzll‘l ..... It)(M))

Then
Hi(M) = Tg,,, (Hiy,, (M) =Tr(Hf,, .,y (M)).

-----
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Finally from the exact sequence
0 = Hy(M) = H} (Hiy,,...cn(M)) = Higy,...an)(M)

(z1,eeey
and (z1, ..., z;)-cofinitness of H, (M), we conclude that
R

(1, ..., 2¢)

Lemma 2.10. Let M be an R-module and I be an ideal of R such
that Supp M C V(I). Let x € I be such that 0 :py x and M/xM are
I-cominimaz. Then so is M.

Homp < S HY (M )) is finitely generated. O

Proof. The proof is similar to the proof of [15, Corollary 3.4]. O

Theorem 2.11. With the assumption of Theorem 2.9, the R-module
HYM) is (x1,...,x)-cominimaz.

M
Proof. We prove by induction on ¢. If £ = 1, then we set N = T, ()
I
and so x; is an N-regular element and H}(N) = H}(M).
Consider the exact sequence
@ N
0 >y N > N > > 0
l’lN
which implies that the following exact sequence
y HY( N ) y HY(N) —— H}(N) —— H( N )
I ﬁClN I 1 I iClN

Clearly the R-module 0 : 1) 21 Is finitely generated, and Rzq-cominimax.

Set
R

T = {P € Supp H}(N) | dim — = 1}.
Then (H}(N)),, for all P € T is Artinian and Ra-cofinite. Also 7' C
Assh 2L and so is finite. B t in [1, Theorem 2.6], L)
ssh — and so is e. a e eorem 2.6], ————
T 0 is fini y argument in [1, rem T HIN)
H(N)

x1 Hp(N)
hence H;(N) is also Rzi-cominimax.
Now, let t > 2. Clearly x4, ..., z; is I-filter regular sequence over the

R-module . Now H}(M) = H(

is minimax. Also and 0 :y1(n) 21 are Rap-cominimax and

) and M a finitel
aln 1S a 1nnite
T, (M) T, (M) T, (M) Y

generated [-torsion free R-module. We therefore assume in addition
that F[(M) = 0. Since =1 & UPeAssM\V(I)P = UPEASS(M)Pa it follows
that (l’l, e ,ZEt) g UPEASSMP-
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Set T := {P € Supp H} ' (M) U Supp H:(M) | dim% = 1}. Hence

T C Asshp %, and so T' is a finite set. Let T'= {Py,..., P,}. Then
for each 7 > 0, SuppH}RPk(Mpk) C {P.Rp,}, where k = 1,2,...,n.
By [l], for each t — 1 < k < ¢, H}Rpk(Mpk) is Rp.-Artinian and
(21,...,2)Rp, -cofinite. Also

V((21,...,2)Rp,) N Attg, H}Rpk(Mpk) C V(P:Rp,).
Set
U:=U_, U, {q€Spec(R) | qRp, € Attr,, <H}RPk (Mp,))}.
Therefore UNV (x4, ...,2;) C T. Since (z1,...,2) € (Ugerr\v(ng) Y

(Upeassm P), it follows that there exists an element z; € (z1,...,2;)
such that 1 4 21 & (Ugernv(nq) U (Upeass i P).
Assume that y; = 1 + 21, then (z1,...,2¢) = (y1,22,...,2¢) and

y1 € I is an [-filter regular sequence.
Now if (z1,...,2) = (y1,22,...,2) C UPe(AssyliR>\V(1
exists P € (Ass yl%)\\/([) such that (x1,...,24) C P.
Since I ¢ P, it follows that %,...,%
sequence and so grade <(%,...,%,RP)) = t. On the other hand

R

PRp € Ass " and (y1,za,...,2)Rp C PRp.
U1

Then grade ((yl,xg, . ,xt)Rp,Rp) =1if ¢t > 2, and so

(Y1,%2,...,2) € Upcpesr P. Hence there exists an element z, €
y1 Rt

)P, then there

€ PRp is a Rp-reguler

(y1, T2, ..., x;) such that zo+29 & UPEASSMLRP‘ Again, we put y, = 9+
29, then (yi,xa,...,2¢) = (Y1, Y2, T3, ..., 2). By the similer argument
in the above, we see that there exist elements vy, ...,y € I such that
(x1,...,2) = (Y1,---,y) and yq, ...,y is an [-filter regular sequene
for M.

The exact sequence

M

0 s M —2 5 M ,
M

e}

induces a short exact sequence of local cohomology modules

0 y H;il(M> y Ht—l(
y Hy (M) !

— 0 gt — 0
ylM) HY(M) Y1
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HLN (M)

= is a minimax R-
yi (M)

By a similar proof in [1], we see that

module.
Now, by induction hypothesis and since y»,...,y; is an I-filter reg-

ular sequence for ——, we conclude that the R-module H!™! is
nM ! <y1M )
(y2, - . ., y¢)-cominimax. Also, we note that (yo,...,y:) € (y1,---, %)
M M
d also Supp H; '(——) € V(y1,...,y). Therefore Hi ' (—

and also Supp H; (ylM) C V(yr, .- u) erefore H; (ylM)
is (y1,...,y:)-cominimax. Consequently by the above exact sequence
0 gty b1 is also (yu, ..., y:)-cominimax. On the other hand by ar-
. Hi(M)
gument in [1, Theorem 2.6}, the R-module ————"~ is minimax and
y1 Hj (M)

hence is (y1,. .., y:)-cominimax.

Finally, 11 € (y1,...,%) = (21,...,2¢) and the R-modules 0 LY (M)
Hi(M)
y1Hp (M)
the R-module H}(M) is also (z1,...,x;)-cominimax. O

y; and are both (x1, ..., z;)-cominimax. Thus by lemma 2.9,
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