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Abstract 
In this work, the application of a geostatistical-based modeling approach is presented for 

building up the electrical properties acquired from a geophysical electrical tomography 

survey deployed for the purpose of porphyry Cu exploration at the Takht-e-Gonbad 

deposit in the central domain of Iran. The electrical data is inverted in 2D along several 

profiles across the main favorable zones of Cu-bearing mineralization to image the 

electrical resistivity and chargeability properties. Upon the tight spatial correlation of 

these geophysical properties and Cu mineralization (i.e. Cu grade), the electrical models 

are constructed in 3D through geostatistical interpolation of the 2D inverted data to 

provide insights into the geometry of the probable ore mineralization. The anomalous 

geophysical zone that coincides simultaneously with higher values of electrical 

chargeability and resistivity is in accordance with the main body of high Cu grades 

generated from exploratory drillings. It reveals that the porphyry-type Cu mineralization 

system in this area has strong geophysical footprints mainly controlled by rock types and 

alterations. These physical models supply valuable pieces of information for designing 

the layout of further exploratory drillings, constructing geological characteristics, 

separating non-mineralized zones form the mineralized zones, and resource modeling. 

1. Introduction 
Electrical survey is a part of popular geophysical 

methods employed to measure the electrical 

properties of bodies or rocks, especially to 

determine the measurable differences between 

rocks enriched or depleted by ore-bearing 

mineralization. Electrical geophysics can be used 

to delineate various sources of mineralization via 

measuring their electrical resistivity and 

chargeability [1]. Correct identification of 

contrasts arising from different physical properties 

of sought targets is the cornerstone of any 

geophysical method [2]. In many cases of mineral 

exploration, for amplifying the certainty of the 

acquired results, integration of several geophysical 

methods is genuinely unavoidable [3]. Due to 

optimization in cost and time of mineral 

exploration programs, the application of 

geophysical surveys has recently been increasing 

in the shallow and deep-seated ore-bearing 

investigations. As noted, the integrated 

geophysical methods are commonly used to obtain 

qualified results [4], where prevalent geophysical 

tools are induced polarization (IP) and resistivity 

(Res) for ores located in sulfide-bearing targets [5]. 

The main goal of the IP and Res methods is to 

localize the best drilling points for exploration 

purposes [6, 7].  

A combination of electrical surveys has been 

widely and fruitfully carried out for various 

purposes in ore exploration, water and 

contamination studies, engineering and geological 

investigations, and so on. Among the numerous 

applications, we can mention polymetallic deposit 

delineation [8], waste management in hydrocarbon 

studies [9], porphyry copper mineralization [10, 

11], manganese ore exploration [3], water studies 

[12, 13], Cu-dominated VHMS sulfate [4], Au-Ag 

deposit [14], oil bitumen [15],  pollutant study of a 
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coal washing waste dump [16], delineation of acid 

rock drainage pathways in gold mine [17], Au-Cu 

mine tailings [18], contamination studies  [19, 20], 

mineral alteration detection [21], and geological 

investigations for a landfill site [22, 7].  

In most geoscience studies, interpolation is 

performed when the numerical modeling in a 

sparse-sampled area is required. However, the 

estimation techniques for a range of discrete sets of 

known data are examined. It means that the points 

between and around the available data would be 

estimated through interpolation techniques, 

categorized generally into the two main groups of 

classic statistical and geostatistical methods. The 

superiority of various geostatistical methods over 

the classical ones is that they take into account the 

spatial variability of the desired data to generate 

reliable spatial estimates along with the 

uncertainties arising from such estimates [23]. 

Note that the spatial correlation of data, which is 

controlled by distance and direction, can be 

incorporated in mathematical formulation to 

consider the spatial characteristics of the 

interpolated data. Among the interpolation 

techniques, spatial characteristics are usually 

searched through plotting a variogram model in 

geostatistics [24, 7]. 

Geostatistics was basically developed to estimate 

the sparse variables such as the grade of an ore 

body [25]. The geostatistical techniques have been 

examined in numerous geophysical studies for a 

variety of purposes [23-29], where the main aim 

has been to integrate the geophysical modeling and 

geostatistical interpolation for tackling problems 

arising from geological modeling. For instance, 

Abedi et al. (2015) [30] have incorporated the 

magnetic susceptibility property as a secondary 

soft and dense variable in the Fe-grade estimation 

when a very sparse pattern of drilling exists, the 

point that a remarkable spatial correlation has been 

observed between the first (hard) and second (soft) 

variables. In electrical geophysics, Asghari et al. 

(2016) [31] have employed multivariate 

geostatistics on electrical properties to estimate 

copper grade with lower amounts of the estimation 

variance and uncertainty. Meanwhile, a sulfide 

factor (as a ratio of the electrical chargeability to 

the electrical resistivity) has been calculated after 

inverse modeling of the electrical data to generate 

a correlated secondary variable for Cu grade 

estimates. The results obtained have verified that 

incorporating soft variable drastically outperforms 

the results over the cases of single variable 

estimates [31].  

Since 3D modeling is more beneficial for designing 

the layout of exploratory drilling, the 3D 

representation of geophysical properties of 

electrical resistivity and chargeability can generate 

valuable pieces of information indirectly related to 

the geometry of a sought ore-bearing target [32]. In 

this research work, at first, the efficiency and 

applicability of the IP and Res surveys were 

investigated at the Takht-e-Gonbad Porphyry Cu 

Deposit (in the central domain of Iran) in detailed 

exploration and mining phase, whereby 

geophysical surveying was deployed along twelve 

2D profiles with a configuration of pole-dipole 

array. For this purpose, 2D cross-sections of the IP 

and Res models were prepared for each profile by 

inverting the data through the approach proposed 

by Loke (2004) [33]. The spatial correlation 

between the electrical properties and Cu 

mineralization was checked out using exploratory 

boreholes, showing a meaningful amount of 

correlation among the physical properties and Cu 

grade. Constructing electrical properties in 3D was 

done by the SGeMS software (an open-source 

program), where the 3D models were interpolated 

from 2D electrical surveying and a sparse pattern 

of exploratory drilling. The results obtained 

indicated that geophysical models could 

appropriately lead to localization of the main body 

of Cu mineralization along with separating non-

mineralized zones form the favorable mineralized 

zones. 

The remainder of this work has been prepared in 

the following sections. The second section presents 

the geological setting of the Takht-e-Gonbad 

Porphyry Cu Deposit. In the third section, the 

electrical geophysics data is inverted in 2D along 

all profiles. In section four, the 3D models of 

electrical properties and Cu grade are constructed 

through geostatistical interpolation. In the fifth 

section, spatial correlation of the constructed 

geophysical models and Cu grade is discussed in 

details. Finally, all achievements are summarized 

in the conclusion section. 

2. Geological setting of Takht-e-Gonbad 

porphyry Cu deposit 

The Takht-e-Gonbad sulfide-content porphyry Cu 

deposit, which is an active mine at the present time, 

is located 80 km NE of Sirjan, Kerman 

Province,central domain of Iran. From the 

geological viewpoint, the Takht-e-Gonbad is a part 

of a wide mineralization belt named the Urmia-

Dokhtar magmatic assemblage (UDMA), shown in 

Figure1. This area is covered by volcanic-

pyroclastic units of Eocene age with dominant NE-
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SW trends (Figure 2a). Volcanic tuff units host the 

Cu mineralization, as reported by the Yugoslavian 

geologists in the 1970s [34]. The mineralization 

and alteration zones are associated with Miocene 

granodiorite intruding the Eocene volcanic-

pyroclastic rocks. The mineralization occurs as 

veins, veinlets, and disseminations in thermally 

metamorphosed and skarnized pyroclastic rocks as 

well as porphyritic intrusions [35, 36]. 

 
Figure 1. Structural Geology map of Iran, where the location of the studied region is presented at the central 

portion over the Central Iran Block zone (reproduced with the permission of Richards et al. 2006). 

Phyllic, propylitic, silicic, and carbonate are the 

most significant alterations in the studied area. 

Phyllic alteration is more widespread and intensive 

over the tuffs and micro-granodiorite intrusions. In 

addition, this alteration is associated with copper 

mineralization in the hypogene zone. The major 

occurred minerals related to the phyllic alteration 

are sericite (muscovite, illite), quartz, subordinate 

chlorite, pyrite, and chalcopyrite [35]. Argillic or 

intermediate argillic alteration is the most 

extensive and the most common type of alteration 

for many porphyry-type Cu-bearing mineralization 

systems (e.g. [37, 38]). This alteration mostly 

occurs due to the alteration of plagioclase with the 

presence of the minerals, namely kaolinite, illite, 

smectite, and montmorillonite. In the studied area, 

the argillic alteration is widespread at the surface 

exposures and at shallow depths. Propylitic 

alteration occurs along the irregular zones 

characterized by variable chlorite, calcite, epidote 

and lower amounts of zeolite, and amphibole in this 

region [35, 36]. 

Chalcopyrite is the main mineral in the hypogene 

ore zone of the Takht -e-Gonbad deposit, 

exhibiting pyrite and minor magnetite along veins, 

and is found spreading over the granodiorite and 

tuff units. The economic grade of the hypogene ore 

has been detected about 150 m below the oxide cap 

[39, 40]. Note that in the oxide zone, chalcopyrite 

was converted to copper carbonate such as 

malachite. In the studied area, some of the 

mineralized parts are developed as transitional 

zones of immature supergene, hypogene, and 

oxide. The thickness of the enriched supergene 

zone is 10-50 m, characterized mainly by 

chalcocite and covellite [39, 41]. The studied area 

lies within an active tectonic setting, where most of 

the lineaments in the Takhte-e- Gonbad deposit are 

of dextral strike-slip type cut by the Nain-Baft and 

Chahar Gonbad faults in the south portions. The 

geological evidences indicate that mineralization 

has occurred mostly with an E-W strike [36, 41]. 
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Figure 2. Location and geology map of the Takht-e-Gonbad porphyry Cu deposit (a) on which 2D electrical 

tomography profiles and drilled boreholes have been superimposed (b). 

3. Geophysical survey 

As noticed above, this work was carried out in 

order to investigate the efficiency of the electrical 

survey in the Takht-e-Gonbad porphyry Cu 

deposit. According to the direction and nature of 

mineralization observed in the outcrops, twelve 

electrical profiles were designed and surveyed 

through an instrument named Scintrex IPR12. 

Figure 2b shows a subset map of the geology on 

which the layout of the electrical survey and 

drillings has been superimposed. The profiles were 

designed along an N-S direction. The pole-dipole 

array configuration was chosen for data acquisition 

according to the depth of mineralization and 

surveying conditions. Such an electrical array can 

access a greater depth of investigation, leading to a 

more efficient field operation and also a high rate 

of data collection. The approach developed by 

Loke (2004) [33] was run to invert all the 2D 

electrical profiles. 

From west to east of the studied area, the electrical 

profiles were named as PD00, PD01, PD02, PD03, 

PD03N, PD04, PD04N, PD05, PD05N, PD06, 

PE01, and PE02, respectively. PD04N was 
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surveyed on the main ore body, while its induced 

polarization (IP) data had an acceptable quality for 

modeling but unfortunately, its low-quality 

resistivity data was excluded from inversion. All 

the other profiles contained high quality Res and IP 

data. The PD00-PD03N profiles had a spacing of 

100 m, PD03N-PE01 were 50 m apart, and finally, 

the spacing between PE01 and PE02 was about 100 

m. The electrode spacing of PD00-PD03, PD04, 

PD05, and PE01-PE02 was about 30 m; PD03N, 

PD05N, and PE06 was 40 m, and finally, PD04N 

was 10 m. The profiles PD00-PD02 did not cross 

the boreholes but the rest of the profiles, less and 

more, covered the boreholes. Figure 3 indicates the 

3D visualization of all the forty drilled holes in the 

area on which a relief topography map had been 

superimposed. The statistical summaries of all 

drillings (last row) were tabulated in Table 1.  

 
Figure 3. Location map of boreholes with topography surface in the studied region, where the sulfide-content Cu 

grade has been inserted along each drilling. 

Table 1. Statistical summary of the drilled boreholes. 

Data set 
Data 

count 
Mean Variance Max. Upper quartile Median 

Lower 

quartile 
Min. 

Res (Ω𝑚) 5690 134.537 22142.9 2649.7 166.85 82.74 47.11 4.8 

IP (ms) 7129 23.104 257.569 152.52 30.28 19.89 11.64 0.0019 

Cu (%) 3340 0.3962 0.1484 2.57 0.54 0.3072 0.1244 0.0014 

 

All the twelve electrical profiles were inverted 

iteratively in 2D through the least-squares method 

proposed by Loke (2004) [33] such that the 

recovered models could closely predict the 

apparent electrical data, i.e. generating an 

appropriate level of data misfit. All profiles were 

stitched together and presented in Figures 4a and 

4b for electrical resistivity and chargeability, 

respectively. For a better interpretation of the 

models, the profile PD05N was chosen as a 

representative of all profiles, where five 

exploratory boreholes had crossed it (Figure 5). As 

it can be seen, the regions with a higher grade of 

Cu mineralization are spatially correlated with high 

values of the electrical resistivity and chargeability, 

respectively. Such geophysical signatures are 

usually common in the disseminated nature of Cu-

bearing mineralization. In the following section, 

these physical properties are propagated in 3D 

through running a geostatistical approach to 

construct the geometry of the main source of 

mineralization. 
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Figure 4. 3D visualization of all 2D inverted profiles of electrical resistivity (a) and chargeability (b). 

 
Figure 5. A cross-section view of 2D inverted models of the electrical resistivity (a) and the induced chargeability 

(b) along profile PD05N, where the Cu grade along the drilled boreholes in adjacency to the electrical survey was 

superimposed on the section. 
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4. Geostatistical models 

In geostatistics, a spatial structure is essential for 

implementing the methods. The variogram is a 

fundamental tool in geostatistics for investigating 

the spatial structure. As it provides critical 

parameters for various Kriging estimators, the 

accuracy of the proposed parameters for the 

variogram is of crucial importance, and it can have 

a significant positive or negative influence on the 

estimated blocks [24]. The variogram provides a 

lot of information about the variables under study 

that are essential for all geostatistical calculations. 

One of the possible (and perhaps most important) 

uses of the variogram is the estimation of the 

variable value at the unsampled location and/or 

estimation of the average over a certain area [42]. 

The variogram is used to determine the spatial 

relationship between the regional variables, and is 

particularly attractive for geoscience engineering 

because the spatial characteristics of the studied 

region (e.g. range, anisotropy, and continuity) can 

be calculated [7].  

 
Figure 6. The statistical charts that are histogram plot, box-plot, and q-q plot for the electrical resistivity (left 

column), chargeability (middle column), and Cu grade (right column). 

In order to prepare a 3D model in the first stage, 

variography was done for the Res, IP, and Cu data. 

The statistical summaries of these variables are 

listed in Table 1. Figure 6 presents those statistical 

characteristics by plotting the histogram, boxplot, 

and quantile-quantal (q-q) plots of each variable, 

all indicating non-normal distributions in the 

studied region. According to the above factors and 

applying the related software such as SGeMS 

(Stanford Geostatistical Modeling Software) [43], 

the experimental variograms for data were 

calculated and examined for various parameters 

such as different azimuths and dip angles. The 

appropriate theoretical models based on the least 

square differences were fitted to the variogram. For 

geostatistical estimation, we need to search for 

three variograms perpendicular to each other that 

construct an ellipsoid for calculating the directional 

covariance models. The search radius in the x, y, 

and z directions is used based on the range of 
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variograms. Thus the theoretical and empirical 

models of the directional variograms for the 

maximum, median, and minimum ranges are 

presented in Figures 7, 8, and 9 for the three 

variables Res, IP, and Cu, respectively. The 

number of pairs was also superimposed on these 

plots for each lag distance. Assuming a spherical 

model, the main characteristics of all fitted 

variogram models are listed in Tables 2, 3, and 4, 

respectively, for the three variables [7]. 

 

 
Figure 7. Experimental directional semi-variogram, model, and number of pairs for the electrical resistivity 

along tri-axial with (a) minimum, (b) median, and (c) maximum range. 
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Figure 8. Experimental directional semi-variogram, model, and number of pairs for the electrical chargability 

along tri-axial with (a) minimum, (b) median, and (c) maximum range. 
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Figure 9. Experimental directional semi-variogram, model, and number of pairs for the Cu distribution along 

tri-axial with (a) minimum, (b) median, and (c) maximum range. 

Table 2. Parameters obtained for the variogram model of the electrical resistivity. 

Major/Minor Azimuth Dip Range Sill Nugget Model 

Maximum 0 10 600.7 22391.7 2214.287 Spherical 

Median 90 0 528.4 22391.7 2214.287 Spherical 

Minimum 180 80 135.1 22391.7 2214.287 Spherical 
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Table 3. Parameters obtained for the variogram model of the electrical chargeability. 

Major/Minor Azimuth Dip Range Sill Nugget Model 

Maximum 0 10 716.1 260 25.757 Spherical 

Median 90 0 495.7 260 25.757 Spherical 

Minimum 180 80 175.7 260 25.757 Spherical 

Table 4. Parameters obtained for the variogram model of the Cu grade. 

Major/Minor Azimuth Dip Range Sill Nugget Model 

Maximum 135 30 349.7 0.15 0.015 Spherical 

Median 45 0 199.9 0.15 0.015 Spherical 

Minimum 315 60 150.9 0.15 0.015 Spherical 

After variogram fitting and obtaining the 

variogram parameters, determining the 

uncertainties of the fitted models is required. By 

the jackknife Kriging method [44], the variogram 

parameters are obtained and the uncertainties are 

determined. In the Jackknife analysis, the 

estimated data is compared against the measured 

values for a set of locations different from those 

used as the input data. The calculation of the 

difference between the measured values 

(experimental) and the estimated values in the 

same points by the Kriging method is introduced as 

the jackknife error. The average of this error should 

be zero, and the standard deviation of this error 

should be minimum [44]. The diagrams of the 

actual values against the estimated values for the 

three variables (i.e. Res, IP, and Cu) are presented 

in Figure 10 [7]. On the basis of the fitted linear 

curve between the actual and estimated values, 

acceptable Pearson’s correlation coefficients were 

acquired. They were equal to 0.9021, 09689, and 

0.8120 for Res, IP, and Cu, respectively. Since the 

drillings are a bit sparser compared to the electrical 

data, the correlation coefficient between the leave-

out data and the actual ones is a bit lesser. 

Therefore, it can be deduced that the variogram 

parameters have a sufficient accuracy for 3D 

modeling of these variables. 

 
Figure 10. Scatter plots of the actual values against the estimated leave-out data for the electrical resistivity (a), 

chargeability (b), and Cu sulfide (c). 
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The electrical properties and Cu grade were 

interpolated in 3D by an ordinary Kriging 

algorithm, assuming the block sizes in the x, y, and 

z directions to be equal to 10, 10, and 5 m, 

respectively. Since various rock types and 

alterations often occur in the porphyry-type 

systems, we assumed a constant unknown mean 

only over the search neighborhood to deduce the 

ordinary Kriging system for the assumptions of the 

model. Figure 11 presents the volumes rendering 

these models by assuming the threshold values of 

500 Ωm, 50 ms, and 0.4% of the Cu grade. These 

thresholds were determined by a trial-and-error test 

to find out the anomalous zones of the electrical 

models in association with the Cu mineralization. 

Notice that these geophysical models visually have 

a strong consistency in localizing Cu 

mineralization. There is a dominant anomaly in the 

studied area with an almost W-E strike. The depth 

of mineralization in the northern part is more than 

that in the southern part. The average thickness of 

the mineral body is about 80 m as well.  

 
Figure 11. 3D models of the electrical resistivity (a), chargeability (b), and Cu grade in the studied region for cut-

off values of 500 Ωm, 50 ms, and 0.4%, respectively. 

The Kriging estimation variance (EV) is a measure 

of uncertainty in predictions, and is a function of 

the variogram, sample structure, and sample 

support (the area in which an observation is made, 

which may be estimated as a point or may be an 

area) [45]. Evaluating EV in each point, which is 

not dependent on the data value, is one of the main 

strengths of the geostatistical methods. Moreover, 

Kriging gives an error distribution as well. The 

estimation variances of the Res, IP and Cu data 

were calculated and presented in 3D block models 

in Figures 12a, 12b, and 12c, respectively. Due to 

the normalization of data, the estimation variance 

value lies between 0 and 1. The minimum value for 

the EV indicates that the error of estimation is 

minimum, and with an increase in the amount of 

the EV error, the value of estimation and modeling 

increase. The results obtained show that the 

minimum variance is in the profile location, and 

away from the profiles, the estimation variance is 

increased [7]. 
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Figure 12. 3D uncertainty visualization of the electrical resistivity (a), chargeability (b), and Cu grade models 

acquired from the ordinary Kriging.

5. Discussion 

Field surveying and data acquisition were done 

successfully. The data obtained was revised, the 

accuracy was checked, and then processing was 

carried out. In the first stage, 2D imaging of the 

electrical properties along twelve profiles was 

generated through running a 2D inversion 

algorithm. Therefore, the 3D models of the desired 

variables (i.e. physical properties and Cu grade) 

were prepared based on a geostatistical method. 

The results of 3D modeling were successfully 

checked by the geostatistical methods and the 

drilling results.  

Figure 13 shows the pairwise correlation of each 

model versus the others, where a positive 

coefficient exists in all plots. According to the 

results obtained from the geophysical study and the 

one from the drilling data, we can say that the Res 

and IP sections and the mineralized zones have a 

rather well agreement with each other. Location of 

the Cu mineralization is traced with an acceptable 

accuracy by high values of both the Res and IP 

properties. In resource modeling, the importance of 

the non-mineralized zone separation is as much as 

those mineralized zones, where the employed 2D 

electrical profiles have surveyed all of these 

regions (i.e. non-mineralized and mineralized) to 

localized favorable zones of mineralization in 

adjacency to the non-mineralized zones. Note that 

the geophysical properties are indirectly correlated 

to the Cu grade, and lots of ambient factors and 

data modeling can affect the geophysical results, 

which lead to the partial correlation of these 

variables. We believe that those acquired 

correlation coefficients are genuinely meaningful 

between the physical properties and the Cu grade 

(i.e. 0.41 and 0.49, respectively, for the Res and IP 

values versus the Cu grade). The importance of 

these scatter plots can be projected in Figure 11, 

where the geometry of Cu-bearing zones is closely 

in association with those arising from the electrical 

survey. 
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A combination of the drilling and inversion results 

leads to reveal two main lithology types including 

the sedimentary and igneous units. The 

sedimentary units include sandstone and limestone 

with marl and shale, detected by a low Res value 

(less than 300 Ωm). The igneous rock includes 

tracchy-andesite and porphyritic andesite, 

determined by a high Res value (more than 300 

Ωm) that have been considered as the host-rocks of 

the mineralization. The copper mineralization is 

related to the high IP values. The efficiency of the 

IP and Res models in the Takht-e-Gonbad 

Porphyry Cu Deposit is rather high, and using this 

investigation can reduce and optimize the drilling 

operation for resource estimation. 

 
Figure 13. Scatter plots between (a) RS-IP, (b) RS-Cu, and (c) IP-Cu. Pearson’s correlation coefficient between 

each model has been calculated. 

6. Conclusions 
The time-domain induced polarization (IP) and 

DC-resistivity (Res) have been successfully used in 

order to delineate the mineralized zones in the 

Takht-e-Gonbad Porphyry-Cu Deposit. The 2D 

models of the electrical resistivity and 

chargeability along twelve profiles were generated 

to be interpolated in 3D through a geostatistical 

approach. The anomalous geophysical zone 

extracted from the 3D models of the electrical 

properties had a good conformity with the E-W 

strike of copper mineralization in the region, where 

tracchy-andesite and porphyritic andesite hosted 

the main body of mineralization. Note that higher 

values of both electrical models were in association 

with a higher grade of Cu mineralization, proving 

a dominant disseminated nature of copper 

mineralization in the area. Such correlated 

geophysical models could generate valuable 

insights into the second phase of exploration 

program for designing the layout of further 

exploratory drillings and constructing the geometry 

of the Cu deposit for resource estimation when a 

sparse pattern of drilling exists. 
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 چکیده:

 های الکتریکی منتج از برداشت ژئوفیزیکی توموگرافی الکتریکی جهت اکتشافساختن ویژگیآمار برای سازی مبتنی بر زمیندر این تحقیق، کاربرد یک رهیافت مدل

الای های با پتانسیل بهای الکتریکی به صورت دوبعدی در امتداد چند پروفیل بر روی زونشود. دادهنهشته مس پورفیری تخت گنبد در ایران مرکزی تشریح می

زایی یکی و کانههای ژئوفیزدلیل همبستگی بالای فضائی ویژگید. بهژه و بارپذیری الکتریکی تصویر شوویهای مقاومتتا ویژگیشوند سازی میزایی مس، وارون کانه

 شوند تا شمای کلی در مورد هندسههای وارون شده دوبعدی ساخته میآماری دادهیابی زمینبعدی از روی درونهای الکتریکی به صورت سهمس )عیار مس(، مدل

ای مس حاصله زایی با عیار بالویژه و بارپذیری الکتریکی منطبق با توده اصلی کانههنجاری ژئوفیزیکی با مقادیر بالای مقاومتزایی احتمالی تهیه شود. زون بیکانه

ها و نوع که توسط دگرسانی استیزیکی قوی زایی مس پورفیری در این ناحیه دارای شواهد ژئوف. نتایج حاکی از این است که سیستم کانهاستاز حفاری اکتشافی 

ایش شناسی، جدهای زمینهای بیشتر اکتشافی، ساختن ویژگیهای فیزیکی اطلاعات با ارزشی جهت طراحی جانمایی حفاریشوند. چنین مدلها کنترل میسنگ

 نمایند. سازی منبع تهیه میزایی و مدلزایی از کانههای غیر کانهزون

 سازی، مس پورفیری.آمار، وارونالکتریکی، بارپذیری الکتریکی، زمین مقاومت کلمات کلیدی:

 


