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Abstract  
In general, all the hybridized evolutionary optimization algorithms use the routine “first diversification and then 

intensification” approach. In other words, these hybridized methods all begin with a global search mode using a 

highly random initial search population, and then switch to an intense local search mode at some stage. The 

population initialization is still a crucial point in the hybridized evolutionary optimization algorithms since it can 

affect the convergence speed and the quality of the final solution. In this work, we introduce a new approach by 

creating a paradigm shift that reverses the “diversification” and then “intensification” routines. Here, instead of 

starting with a random initial population, we first find a unique starting point by conducting an initial exhaustive 

search based on the coordinate exhaustive search local optimization algorithm only for a single-step iteration in 

order to collect a rough but some meaningful knowledge about the nature of the problem. Thus our main assertion 

is that this approach will ameliorate the convergence rate of any evolutionary optimization algorithm. In this work, 

we illustrate how one can use this unique starting point in the initialization of two evolutionary optimization 

algorithms including but not limited to the Big Bang-Big Crunch optimization and the Particle Swarm 

Optimization. The experiments performed on a commonly used benchmark test suite, which consists of mainly 

rotated and shifted functions, show that the proposed initialization procedure leads to a great improvement for the 

above-mentioned two evolutionary optimization algorithms.  

 

Keywords: Coordinate Exhaustive Search, Evolutionary Computation, Big Bang-Big Crunch Optimization 

Algorithm, Particle Swarm Optimization Algorithm, Hybridization, A-priori Knowledge Utilization. 

 

1. Introduction 

There exist numerous optimization methods ranging 

from synthetically invented ones such as [1, 2] to 

nature-inspired complex algorithms [3-5]. Every 

algorithm, either synthetically invented or nature-

inspired, tries to find one unique solution, which can 

be a number or a parameter that minimizes or 

maximizes a given function called the 

objective/cost/fitness function. If the problem 

involves some constraints, then the constrained 

optimization methods are used [6]. It is a well-known 

fact that there is no optimization method available to 

cope with every kind of objective function with the 

highest performance. However, there are algorithms 

that can be considered as “more general” than the 

others since they provide a reasonable computation 

power over a wide set of problems. The power of an 

algorithm is generally tested on a specific set of 

objective functions such as the ones given in the 

Congress on Evolutionary Computation [7], which is 

organized each year, where a vast number of shifted 

rotated functions possessing many local optima are 

used in the given benchmark test function bed.  

It is expected that especially the evolutionary 

optimization algorithms find a global optimal point 

without being trapped by some local optima. A 
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common feature of these global optimization 

algorithms is that they always use some form of 

probabilistic function or operator. These algorithms 

may easily be stuck into the local optima if any 

randomness or probabilistic feature such as cross-

over or mutation in Genetic Algorithms (GAs) or 

heating in Simulated Annealing is not included in the 

procedure. However, the inclusion of randomness or 

probabilistic features may create an extra complexity 

in the algorithms. For instance, the cross-over and 

mutation probability selection induces two extra 

parameters in GAs or the number of new parameters 

that has been adjusted or selected by the designer 

may go up to 20 or more as it is in Covariance Matrix 

Adaptation-Evolutionary Strategies (CMA-ESs) [8, 

9]. In practice, when an algorithm possesses a high 

number of adjusting parameters, it naturally becomes 

more difficult to find a correct set of parameters, and 

thus more debatable favors its success. The algorithm 

must be simple with a low number of adjusting 

parameters, as is the case of Big Bang-Big Crunch 

(BB-BC) optimization and, to a certain extent, in 

Particle Swarm Optimization (PSO) algorithms [10]. 

The BB-BC optimization algorithm and its variants 

give a comparable optimization power in conjunction 

with many “state of art” algorithms requiring at most 

two adjusting parameters, which are the size of the 

universe and convergence rate, respectively [11]. 

Injecting some problem specific features into the 

optimization method will have a doping effect on 

these specific kinds of problems, while deteriorating 

the “general nature” of the algorithm. For example, 

the initial members can be generated according to a 

priori knowledge. If the optimal point is supposed to 

be within a limited region of the entire search space, 

then the members of the new generation are tried to 

be located within this region either at the 

initialization stage or after the application of 

mutation operator [12, 13]. Modifying the specifics 

of an algorithm to a given problem naturally 

increases the expected performance of the algorithm 

for that given problem [14]. Moreover, an algorithm 

for tuning the parameters of the optimization 

algorithm itself has been presented [15]. 

Initialization focused evolutionary algorithm 

performance amelioration techniques have recently 

been well-summarized [16]. However, in general, it 

is hard to automate the modification process while 

preserving the generality.   

The crucial role played by the initial population 

in a population-based heuristic optimization 

cannot be neglected. It not only affects the search 

for several iterations but also often has an 

influence on the final solution. If the initial 

population itself has some knowledge about the 

potential regions of the search domain, then it is 

quite likely to accelerate the rate of convergence 

of the optimization algorithm. Therefore, 

population initialization is a crucial task in 

evolutionary algorithms because it can affect the 

convergence speed and the quality of the final 

solution. One of the most interesting methods 

available for generating the initial population has 

been suggested in [17], where the initial population 

has been generated using the opposition-based 

rule. If it exists, knowledge-based initial population 

initialization has been suggested in [18]. 

If no information about the solution is available, then 

random initialization is the most commonly used 

method to generate the candidate solutions. The basic 

idea behind this increase in power is the motto “if an 

optimal point position is not known, some equally 

distributed candidates may have a better chance to 

get located near this optimal point”. Although this 

simple initialization brings amelioration in the 

performance of the algorithms that follow the 

initialization, this cannot be considered as “a priori 

knowledge” utilization; instead, spreading the 

candidates all over the search space can be viewed as 

a proof of the “lack of any a priori knowledge”.  

In the literature, the efforts of using a-priori 

knowledge by the injection of some form of greedy 

and local search procedures are found within the 

evolutionary iterations usually towards the final 

stages of the algorithm but not at the initialization 

stage [19-21]. In the study [22], the authors proposed 

two schemes for the generation o f  the initial 

population f o r  t h e  Differential Evolution (DE) 

algorithm. These schemes are based upon 

Quadratic Interpolation (QI) and Non-linear 

Simplex Method (NSM) in conjugation with 

computer-generated random numbers. There, the 

idea is to construct a population that is biased 

towards the optimum solution right from the very 

beginning of the algorithm. However, initially, a 

random population is still to be assigned in this 

hybridized methodology.  

In this work, we propose a reverse routine to the 

conventional “first diversification and then 

intensification” approach in solving the global 

optimization problems via evolutionary algorithms, 

and in a sense, introduce a paradigm shift. Instead of 

forming a random population, a unique and, in some 

cases, “near or exact optimal starting point” is found 
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out by conducting a simple Coordinate Exhaustive 

Search (CES) optimization algorithm, which is a 

simple discrete version of cyclic coordinate search 

presented in [23] as part of a deterministic local 

optimization strategy. One may still generate a pure 

random initial population or use any initial 

population forming methodology found in the 

literature, and later inject this unique candidate 

solution found using the CES methodology within 

this initial population. We first applied this reverse 

routine to BBBC and presented the results obtained 

in [24] with various CES versions as applied to 

CEC’05 test bed functions presented in the Congress 

on Evolutionary Computation-2005, which is 

composed of rather simpler functions compared to 

the CEC’17 test bed functions formed at the 

Congress on Evolutionary Computation-2017. Here, 

we adopted and modified this idea of the coordinate 

search as an initial step of the proposed methodology 

to PSO algorithm without sacrificing the global 

properties of the method, i.e. we used the point 

obtained via local CES as the “sub- or near-optimal 

starting point” in the initialization step of BB-BC 

optimization algorithm and within the initial random 

population spread of the PSO algorithm.  

In Section 2, we give a brief basic background 

information over the BB-BC optimization and PSO 

algorithms, on which the new initialization approach 

is implemented. The details of the new methodology, 

which may be seen as initialization or hybridization 

of global search optimization algorithms (BB-BC 

and PSO) with a deterministic local search technique 

(CES), is covered in Section 3. In Section 4, we 

present the simulation results of the newly proposed 

exhaustive search initialization method executed on 

a very broad benchmark test functions and the 

statistical analysis of the results. Finally, in Section 

5, we put forward an overall discussion of the 

proposed method and its variants.   

 

2. Background for two evolutionary optimization 

algorithms 

2.1. Basics of Big Bang-Big Crunch (BB-BC) 

optimization algorithm 

The basic BB-BC optimization algorithm [25] is 

inspired by the big bang and big crunch theories on 

the origin of the universe. In the big bang phase, as 

the theory implies, a whole new universe is being 

populated from a unique point. This point is labeled 

as the center point. The basic idea behind this 

algorithm is that searching for the optimal solution 

near the “center of mass” point is beneficial, while 

keeping the chance to look far beyond this point 

preserves the global property of the algorithm. In 

particular, an element of the new population 𝑥𝑖  is 

formed by moving from the center of mass 𝑥𝑐 in a 

random direction 𝑢𝑖 as: 

𝑥𝑖 = 𝑥𝑐 + 𝛾𝑠𝑢𝑖 (1) 
  

We pick 𝑢𝑖 to be distributed according to a Gaussian 

noise with zero mean and unity variance. The term 

𝛾𝑠, here, represents the explosion strength parameter 

that we can pick to tune diversification around the 

center of mass. It is expected that the population 

members will accumulate around the center point 𝑥𝑐. 

This “bang phase”, which can be viewed as 

diversification around 𝑥𝑐, implies that the solution is 

near the center point but its exact location is not 

known. The initial center point is arbitrary and 

unknown at the very beginning of the algorithm. If 

the position of the optimal point can somehow be 

guessed or known as a priori, then a point within the 

vicinity of that location can be assigned as the initial 

center point. However, if no such information is 

available, then a random initial center point is 

assigned and the population is tried to be spread over 

the entire universe or the search space.  

The crunching phase can be viewed as the survival of 

the best as in GAs. The superior feature of this step 

is that it generates a new member different from those 

existing in the population. This step is accomplished 

using the weighted average operation given in Eq. 2. 

𝑥𝑐 =
∑ 𝑓𝑖 𝑥𝑖

∑ 𝑓𝑖
 

(2) 

 

where, the weights of the candidate points are their 

respective fitness measures labeled as 𝑓𝑖 . As the 

value for 𝑓𝑖  gets higher, its capability to attract the 

center point increases. The successive calling of the 

“bang” and “crunch” phases will conduct a thorough 

search to find the optimal point and the two equations 

1 and 2 form a maximization operation by nature. 

One “bang phase” together with one “crunch phase” 

forms one step of the iteration. 

A modification to the proposed algorithm can include 

an enforced localization around the center point by 

decreasing the diversification factor. This can be 

done by inserting the term 𝛽 into Equation 1 given 

above, as follows: 

𝑥𝑖 = 𝑥𝑐 +
𝛾𝑠𝑢𝑖 

𝛽
 

(3) 

In this case, as the iterations evolve, the algorithm 

will intensify its search around a specific point at the 

expense of spending more time around this point. 
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2.2 Basics of PSO Algorithm  

PSO is a population-based stochastic optimization 

method introduced in [10], being inspired by the 

study on the bird flocking behavior. In the PSO 

algorithm, the potential solutions called particles are 

flown in the problem hyperspace. A particle changes 

its position with time, and this change of position of 

a particle is called velocity. In PSO, particles update 

their positions with an internal velocity, while 

keeping their own best values so as to use it and share 

it with the other particles. More vividly, PSO is 

initialized with a group of random particles, and then 

it searches for a position with an optimum fitness 

value. In every iteration, each particle updates its 

position based on the best position it has achieved so 

far, i.e. the position with the highest fitness, denoted 

by 𝑝𝑘
𝑖 , and the global best position achieved so far, 

i.e. the position with the highest fitness value among 

all particles, denoted by 𝑝𝑘
𝑔

. After finding the best 

two values, the entire particle updates its velocity and 

positions with the following equation: 

𝑣k+1
𝑖 = w𝑣k

𝑖 + c1𝑢(𝑝𝑘
𝑖  − 𝑥𝑘

𝑖 ) + c2𝑢(𝑝𝑘
𝑔

−  𝑥𝑘
𝑖 )   (4) 

  

Particle i updates its velocity at iteration k+1, 𝑣𝑘+1
𝑖  

as a weighted combination of its past velocity 𝑣𝑘
𝑖 , its 

local best solution 𝑝𝑘
𝑖  and the global best solution 

𝑝𝑘
𝑔

, and 𝑥𝑘
𝑖  being the current position of agent i at 

iteration k. Moreover, the parameters c1and c2  are 

constant weights, and u is a uniform random variable 

between 0 and 1. Larger values of the inertia constant 

w emphasizes on a global search for a particle, and 

smaller values for w mean a more localized search. 

This constant is usually determined by the maximum 

number of iterations or can be adapted with respect 

to the current iteration number. The parameter c1 is 

called the cognitive constant and  c2  is the social 

constant. Note that for the velocity update above, 

each particle needs to measure the fitness value of 

itself and keeps the position that has yielded the best 

fitness value up to iteration k + 1 in its memory. Then 

the velocity of particle at iteration k + 1 determines 

the position p of the particle at iteration k + 1, as 

follows:  

𝑝𝑘+1
𝑖 = 𝑝𝑘

𝑖 + 𝑣𝑘+1
𝑖  (5) 

The initial positions of particles in the problem space 

is random at iteration k = 0. Moreover, there exist 

other versions of PSO algorithms that differ in the 

extent of the social information exchange, namely 

Individual Best Algorithm, Global Best Algorithm, 

and Local Best Algorithm.  

 

3. Coordinate exhaustive search initialization to 

evolutionary optimization algorithms 

In this section, we first introduce the basic principles 

of the Coordinate Exhaustive Search (CES) 

algorithm, and then provide a perspective of the 

initializing application of CES either as the unique 

starting point in the BB-BC optimization algorithm 

or as a seed in the PSO algorithm.  

 

3.1. Coordinate Exhaustive Search (CES) 

Algorithm  

Coordinate descent algorithms are non-linear 

iterative methods used for minimizing an objective 

function 𝑓: 𝑋 → ℛ . Here, the set 𝑋  is a Cartesian 

product of the sets 𝑋1, … , 𝑋𝑁  and  𝑋 is a set in ℛ𝑁. 

Let x denote a generic point in this set, that is 𝑥 ∈
𝑋 ⊆ ℛ𝑁 . The value for x at its ith coordinate is 

denoted by 𝑥𝑖 ∈ [𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥]   ∀ 𝑖 = 1, …, ; here, 

𝑥𝑖𝑚𝑖𝑛  𝑎𝑛𝑑 𝑥𝑖𝑚𝑎𝑥 are the lower and upper limits of 

the related coordinates, respectively. In these 

algorithms, we fix all of the components of 𝑥 to some 

value, except for the 𝑖𝑡ℎ  component, and then 

minimize 𝑓(𝑥) with respect to 𝑥𝑖. This procedure is 

repeated over all components leading to an iterative 

algorithm.  

There are two types of coordinate descent algorithms. 

In the first type, we minimize each component 

simultaneously, i.e. let 𝑥0 = [𝑥1
0, … , 𝑥𝑁

0 ]  ∈ 𝑋 be the 

initial value, and then the final configuration 𝑥∗ =
[𝑥1

∗, … , 𝑥𝑁
∗ ]  ∈ 𝑋  is given by solving the following 

optimization problems: 

𝑥𝑖
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓(𝑥1

0, … , 𝑥𝑖−1
0 , 𝑥𝑖, 𝑥𝑖+1

0 , … 𝑥𝑁
0 )   

                          ∀ 𝑖 = 1, … , 𝑁        𝑥𝑖 ∈ 𝑋𝑖              

(6) 

 

In the initialization step proposed in this work, we 

first discretize the coordinate space 𝑋  if it is 

continuous and then apply the aforementioned 

algorithm to find the initial point of an evolutionary 

algorithm. The discretization of component 𝑖 
involves dividing the space 𝑋𝑖  into 𝑚 equal points. 

Note that given the finite set of possible values for 

each component, the minimization in the coordinate 

exhaustive search algorithms in Equations 1 and 2 

can simply be done by evaluating the objective 

function 𝑓  for each element of the finite set and 

picking the component value to be the one that yields 

the minimum objective over the m evaluations. The 

illustration of how the final best point is formed for 

initialization approach CES is given in figure 1 in a 

2D Euclidean space for the sake of visualization. 
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Figure 1. Illustration of Coordinate Exhaustive Search 

(CES). 

 

3.2. Application of Coordinate Exhaustive Search 

(CES) Initialization to Plain BB-BC Optimization 

and PSO Algorithms 

In this work, the local and global search preferences 

or diversification and intensification modes are 

reversed. Almost all the evolutionary computation 

techniques start with a highly diversified phase and 

then eventually switch to a local search after a certain 

convergence to the solution point. This switched 

status can be seen as an intensification phase of the 

algorithm. Here, contrary to the conventional or 

routine approach, we start with conducting a certain 

exhaustive search in a very gross manner, then switch 

to the diversification mode, and continue with the 

basic evolutionary algorithm.  

Firstly, we apply the discrete version of simple CES 

algorithm for only one step or one shot to provide a 

base as an initialization seed to the basic BB-BC 

optimization algorithm. The BB-BC optimization 

algorithm is conducive to an initialization from a 

single point as the big-bang phase starts with a single 

point called the "center of mass". That is we select 

the point x* found at the end of one shot coordinate 

exhaustive search as the initial center of mass xc of 

the BB-BC algorithm. Next, we call the algorithm 

CES-BB-BC. When the exhaustive search is 

conducted on standard coordinate axes (the one that 

passes through the origin), the global optimum point 

may be found even at this initialization step without 

much effort since the origin is the solution point for 

some of the test function considered here. Next, we 

have applied CES methodology to another well-

known evolutionary algorithm, which is the PSO 

algorithm, and that algorithm is called CES-PSO. 

The injection of the near optimal point x* to any 

evolutionary search algorithm can be accomplished 

in many different ways. Here, we have assigned the 

near optimal point x* found out at the CES stage to 

be the gbest before launching the PSO algorithm. One 

may also assign this near optimal point x* calculated 

at the CES stage to some percentage of the initial 

population. We present the general flowchart of 

CES-BB-BC and CES-PSO in figure 2.  

We can remark that there exists a natural conformity 

between these proposed coordinate exhaustive 

initialization  algorithms and BB-BC evolutionary 

algorithm by itself since BB-BC algorithm makes its 

start from a unique point, namely “center of mass 

point” between two successive iterations, and the 

initialization stage provides the so-called best 

starting point. Thus if one wants to use this 

methodology with the other evolutionary algorithms, 

then one would have to take certain precautions to 

protect this valuable initial point in order not to get 

lost among the high number of individuals that has 

been formed randomly. A possible implementation 

can be accomplished by setting a portion of the initial 

members within the generation to this valuable point 

found by CES.  

 

4. Simulation results of CES initialization 

approach on plain BBBC and PSO algorithms  

4.1. Benchmark functions of CEC’17 and 

performance measures 

We tested the new initialization approach on the 

basic BBBC and PSO evolutionary optimization 

algorithms using 15 functions selected from CEC’17, 

which are mainly composed of shifted, rotated, and 

hybrid functions. A complete list of these functions 

with their dimension and search space ranges 

together with their respective stopping criteria 

(Value To Reach or VTR) is given in table 1 for 

CEC’17. 
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Figure 2. The flowchart of CES-BB-BC optimization and CES-PSO algorithms. 

 Table 1. List of CEC’17 benchmark functions. 
Code Function name Dimensionality Search Space Value To Reach-VTR value 

f1 Shifted and Rotated Sum of Different Power Function 10 [-100, 100] 200 

f2 Shifted and Rotated Zakharov Function 10 [-100, 100] 300 

f3 Shifted and Rotated Rosenbrock’s Function 10 [-100, 100] 400 

f4 Shifted and Rotated Rastrigin’s Function 10 [-100, 100] 500 

f5 Shifted and Rotated Expanded Schaffer’s F6 Function 10 [-100, 100] 600 

f6 Shifted and Rotated Lunacek Bi_Rastrigin Function 10 [-100, 100] 700 

f7 Shifted and Rotated Non-Continuous Rastrigin’s Function 10 [-100, 100] 800 

f8 Shifted and Rotated Levy Function 10 [-100, 100] 900 

f9 Hybrid Function 1 (N=3) 10 [-100, 100] 1100 

f10 Hybrid Function 4 (N=4) 10 [-100, 100] 1400 

f11 Hybrid Function 5 (N=4) 10 [-100, 100] 1500 

f12 Hybrid Function 6 (N=4) 10 [-100, 100] 1600 

f13 Hybrid Function 6 (N=5) 10 [-100, 100] 1700 

f14 Hybrid Function 6 (N=5) 10 [-100, 100] 1900 

f15 Hybrid Function 6 (N=6) 10 [-100, 100] 2000 

Start 

Select discretization parameter 𝑚 

Assign 𝑥𝑖_𝑚𝑎𝑥  and 𝑥𝑖_𝑚𝑖𝑛 ∀ 𝑖 = 1,2, … , 𝑁 

Discretize intervals ∀ 𝑖 = 1,2, … , 𝑁 

 
𝑥𝑖_𝑚𝑎𝑥 −  𝑥𝑖_𝑚𝑖𝑛

𝑚
 

Assign 𝑥0 to origin for CES 

Algorithm 

Apply Equation 6 

Obtain 𝑥∗ = [𝑥1
∗, 𝑥2

∗, … , 𝑥𝑁
∗ ] 

Set 𝑥𝑐 = 𝑥∗ in BB-BC initial “Big Bang” phase Set 𝑥0
𝑔

= 𝑥∗ in PSO initialization phase 

Run BB-BC Optimization Algorithm Run PSO Algorithm 
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The selected PSO start-up parameters are given in 

table 2. The start-up parameter selection is carried 

on according to the suggestions given in 

MATLAB code. 
 

Table 2. PSO start-up values. 

Parameter Name Value 

Bird  in swarm 15 

Number of quality in Bird Dimension value from Table 1&2 

Min-Max Range Values from Table 1&2 

Food availability Objective function  

Availability type ‘min’ 

Velocity clamping factor  2 

Cognitive constant (c1) 2 

Social constant (c2) 2 

Min Inertia weight 0.4 

Max Inertia weight  0.9 

Max iteration 100,000 

 

The CEC’17 test suite has been run with 50×50 

independent runs and 100 individuals within each 

generation. We run the algorithm for 50 times for 

each function, calculate the number of function 

calls for each run, and repeat this process for 50 

times. Repeating the process for 50 times enables 

us to be more confident about the results. The 

statistical analysis section is devoted for showing 

the robustness of our results. The average of the 

number of function calls is taken at the end of all 

independent runs. The VTR values are the 

stopping criteria for each case, and they are set 

close enough to the respective optimum. We have 

tried to set the parameters of the evolutionary 

optimization methods as they are used in the 

competitions; however, this is not a limiting 

factor. Here, our main concern is about how the 

CES intrusion to the evolutionary optimization 

algorithms affects the convergence. We first 

compare the “plain” evolutionary optimization 

algorithm and CES-induced version of it.  

Therefore, we do not need to search for “optimal” 

setup parameters. Moreover, we do not make any 

change in the setup parameters between the 

“plain” and “CES-induced” versions of the 

evolutionary optimization algorithm in order to 

make a fair comparison. 

It is obvious that small numbers for function calls 

(or Average Number of Function Call–ANFC) 

indicate a faster convergence; hence, it provides a 

measure for the success of the related algorithm. 

In that respect, the “winner” algorithm is the one 

that acquires the smallest value for the function 

calls for every test function. The “winner” of 

ANFCs and the AR/AAR are all highlighted in 

boldface. At the last row, AAR is given, which is 

calculated as the average of all AR’s. This value 

gives us a rough idea about the overall 

improvement of the CES algorithm. For clarity, 

Amelioration Rates higher than 1 denote 

improvements over the plain methods. In all of the 

comparison tables, we have also used two other 

performance measures defined as “Amelioration 

Rate-AR” and “Average Amelioration Rate-

AAR”, which provide a more compact 

interpretation on the number function calls in 

comparing the plain and CES-induced versions of 

the evolutionary optimization methods. These are 

defined in Eqs. 7 and 8, respectively, as follow, 

where Nf denotes the number of functions for the 

selected testbed: 

AR=   
𝐴𝑁𝐹𝐶 𝑜𝑓 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝑒𝑡ℎ𝑜𝑑𝑜𝑙𝑜𝑔𝑦

𝐴𝑁𝐹𝐶 𝑜𝑓 𝐶𝐸𝑆 𝐼𝑛𝑑𝑢𝑐𝑒𝑑 𝑀𝑒𝑡ℎ𝑜𝑑𝑜𝑙𝑜𝑔𝑦 
 

(7) 

AAR=  
∑ 𝐴𝑅𝑖

𝑁𝑓
𝑖=1  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 
 

(8) 

 

4.1. Simulation Results and Statistical Analysis  

Next, the simulation results given in table 3 

provide us a comparison of the basic BB-BC and 

CES-BB-BC optimization algorithms on the test 

suite of CEC’17. It can easily be deduced from the 

examination of Table 3 that the CES-BB-BC 

optimization algorithm is more efficient in 12 

cases out of 15 when compared to the plain-

BBBC. This can be seen from the number of 

functions with Amelioration Rates higher than 1. 

However, since the overall success of the 

approach is more important for all the test 

function bed, one should consider the overall 

amelioration rate that is AAR. This shows us that 

overall, we have around 8% speed gain by 

incorporating CES into the design. 

The net effect of using CES methodology on PSO 

algorithm on 15 test functions can be seen in 

Table 4. Note that PSO is limited to 100,000 

function evaluation counts due to memory 

limitations. For the overall reduction of function 

calls, we again consider the AR values for each 

function, and AAR appears to be 1.14. This means 

that overall, reduction in function calls for PSO is 

14% and even higher compared to the basic PSO.  

Evaluation of the improvement in the 

performance of the BB-BC and PSO optimization 

algorithms with CES initialization would be more 

accurate and righteous over the functions that 

PSO algorithm has “success”, i.e. the solution 
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points that were obtained before reaching the 

function evaluation count limit of 100,000. For 

this reason, we have decided to choose 15 

functions for which the algorithm terminates in 

both cases before reaching the upper bound. 

 

Table 3. Comparison of plain BB-BC algorithm and CES-BB-BC on CEC’17 test suite. 

 

Function 

Code 

Average Number of Function Calls- 

ANFCs 

Relative Standard 

Deviations 

CES-BBBC Amelioration 

Rate-AR 

BB-BC CES-BBBC BBBC CES-BBBC BB-BC/CES-BBBC 

f1 55372 56979 0.02 0.02 0,9718 

f2 43238 43230 0.02 0.02 1,0002 

f3 7804 7661 0.06 0.05 1,0188 

f4 42333 41189 0.12 0.12 1,0278 

f5 3115 2437 0.16 0.04 1,2783 

f6 78079 81599 0.05 0.04 0,9569 

f7 16385 16302 0.13 0.15 1,0051 

f8 10187 10206 0.04 0.02 0,9981 

f9 30119 28586 0.12 0.15 1,0543 

f10 81031 73102 0.05 0.06 1,1085 

f11 98387 96913 0.01 0.02 1,0152 

f12 53138 51003 0.14 0.14 1,0419 

f13 50685 49796 0.12 0.13 1,0178 

f14 31916 24806 0.11 0.12 1,2866 

f15 44483 32201 0.15 0.20 1,3814 

AAR - - - - 1.08 

 
 

Table 4. Comparison of CES-PSO with classical PSO algorithm on CEC’17 test suite. 

 

Function 

Code 

Average Number of Function Calls- 

ANFCs 

Relative Standard 

Deviations 

CES-PSO Amelioration 

Rate-AR 

PSO CES-PSO PSO CES-PSO PSO/CES-PSO 

f1 66671 58714 0.02 0.02 1.1355 

f2 64986 65170 0.01 0.01 0.9972 

f3 16818 16223 0.04 0.07 1.0367 

f4 40260 39997 0.04 0.04 1.0066 

f5 1504 865 0.11 0.11 1.7379 

f6 55198 56844 0.02 0.02 0.9711 

f7 27148 27503 0.04 0.06 0.9871 

f8 27990 27985 0.02 0.02 1.0002 

f9 20333 19347 0.03 0.03 1.0510 

f10 41541 45013 0.05 0.04 0.9229 

f11 66294 56661 0.04 0.03 1.1700 

f12 31747 54941 0.09 0.14 0.5778 

f13 19150 12041 0.10 0.08 1.5904 

f14 49340 44286 0.05 0.05 1.1141 

f15 10964 5903 0.10 0.13 1.8574 

AAR - - - - 1.1437 

   

We have selected the stopping criteria as being in 

the 5% vicinity of VTR. Thus the algorithm 

terminates once it gets a value between the range 

[0.95×VTR, 1.05×VTR]. Here, one should keep 

in mind that only the relative convergence 

improvement in the related evolutionary 

optimization algorithm is tried to be noted 

because our main concern is to provide an 

amelioration for every evolutionary search 

algorithm at the start-up phase by imposing an 

initial knowledge by the proposed approach. 

Here, what we introduce is a new methodology 

that is a hybridization of the local and global 

search approaches in the operation of any 

evolutionary global optimization method. 

Therefore, we have not adopted the official 

CEC’17 stopping criterion, and we are not in need 

of comparing this methodology with any other 

global evolutionary optimization algorithm. We 

may easily conclude that this simple local search 
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initialization step for the basic evolutionary BB-

BC optimization algorithm leads to about 8% 

reduction in the total number of function calls on 

the test bed of CEC’17, whereas the performance 

amelioration was about 20% for the CEC’05 test 

bed functions (Erol and Eksin 2017). Moreover, 

the results related to the CES initialization 

procedure applied to the basic PSO algorithm 

reveals that the total number of function calls 

reduce by 30% and 14% for the CEC’05 (Erol and 

Eksin 2017) and CEC’17 benchmark functions, 

respectively. 

 

Figures 3(a) and 3(b) illustrate the ameliorations 

obtained for each function after applying the CES 

algorithm. Graphs are scaled around 0 instead of 

1 so that the positive values indicate 

improvements and the negative values correspond 

to a deterioration. 

Figure 3(a). Illustration of the amelioration rate values 

related to BBBC for each function shifted to 0. 

 

 
Figure 3(b). Illustration of the amelioration rate values 

related to PSO for each function shifted to 0. 

 

To be confident about these results, we run the 

experiment for 50 times, where each run itself 

consisted of 50 independent trials of each 

function. Tables 3 and 4 show the statistical data 

associated with each function for BBBC and PSO, 

respectively. The relative standard deviation 

represents the deviation of each trial from the 

mean for each function. Thus lower values for 

relative standard deviation are preferable. The 

tables show that the RSTD values are quite low 

for all functions.  

 

5. Discussion and conclusion 

Almost all the evolutionary algorithms use the 

“first diversification and then intensification 

routine” approach, i.e. there exists a switch to a 

local search mode from a global search mode after 

a certain convergence limit is achieved for the 

optimum solution point. Here, we mainly propose 

a paradigm shift by introducing a reversed mode 

to this conventional approach. In other words, we 

first execute a rough “intensification” or a local 

optimization algorithm over the search space in 

order to get an insight and a-priori information 

about the function to be optimized, and then 

switch to the basic “diversification” or global 

evolutionary search phase. That is, what we 

propose here, is not a new evolutionary algorithm 

to compete with the existing ones but a new 

methodology beginning with a simple “one-shot 

local search” followed by a global search, and it 

is applicable to any evolutionary global 

optimization algorithm. Therefore, we only make 

a relative comparison between the pure global 

evolutionary search method and the one that uses 

a-priori deterministic search method, namely 

Coordinate Exhaustive Search (CES) as an initial 

hybridization step embedded to it. 

In this respect, the idea of CES, which is a 

primitive local search algorithm, is adopted and 

modified as an initial step of the plain BB-BC 

evolutionary optimization method without 

sacrificing the global property of BB-BC 

methodology. In fact, there exists a natural 

conformity between the proposed coordinate 

exhaustive initialization algorithms and BB-BC 

optimization algorithm because the BB-BC 

optimization algorithm makes its start with a 

unique point called the “center of mass”, and 

single shot CES algorithm provides this particular 

“best” starting point at the initialization stage. The 

plain BB-BC optimization method combined and 

enhanced by CES hybridization is tested on a vast 

number of test functions with distinct 

characteristics, which are taken from a widely 
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accepted benchmark test bed, namely CEC’17 

functions. The overall number of function calls 

decreased up to 8% on the average when 

compared to the plain BB-BC optimization 

algorithm.   

The same local CES hybridization approach is 

adapted to the well-known and widely used PSO 

algorithm. The results related to the CES 

hybridization procedure applied to the plain PSO 

algorithm has revealed that the total number of 

function calls has been reduced by 14% compared 

to the basic PSO algorithm for the same 

benchmark test functions.  

Even for these heavily shifted, rotated, and 

compound functions of CEC’17, the proposed 

local CES hybridization approach as applied to 

two evolutionary optimization algorithms, 

namely BBBC and PSO has shown an average 

performance gain by a factor of more than 8% and 

14%, respectively, including the initial search 

phase. As a final comment, we can say that this 

reverse mode approach can easily be adapted and 

applied to all evolutionary optimization 

algorithms with some slight modifications, and an 

improvement in the related algorithm is almost 

inevitable. 
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 یتکامل یسازنهیبه یهاتمیالگور ونیداسیبریهتقویت جامع و  یجستجو یهماهنگ
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 چکیده:

، گریعبارت د به نند.کیاستفاده م "و سپس شدت گرفتن یاول متنوع ساز"معمول  کردیاز رو یبیترک یتکامل یسازنهیبه یهاتمی، همه الگوریطور کل به

 یاشوند و سپس در مرحلهیشروع م یتصادف اریبس هیاول یجستجو تیجمع کیبا استفاده از  یجهان یحالت جستجو کیهمه با  یبیترک یهاروش نیا

تواند یم رایست زا یبیترک یتکامل یسازنهیبه یهاتمیدر الگور ینکته اساس کیهنوز  تیجمع یساز هیاول کنند.یم رییتغ دیشد یمحل یبه حالت جستجو

 کی،  است "دیتشد" و سپس "تنوع"روال معکوس که  میپارادا رییتغ کی جادی، با اکار نیدر ا بگذارد. ریتأث ییراه حل نها تیفیو ک ییبر سرعت همگرا

 یازسنهیبه تمیجامع بر اساس الگور یجستجو کی، ابتدا با انجام یتصادف هیاول تیجمع کیشروع با  ی، به جانجایدر ا .میکنیم یرا معرف دیجد کردیرو

 دانش معنی داری در مورد ماهیت مسئله میتا بتوان میابیینقطه شروع منحصر به فرد را م کی، یاتکرار تک مرحله کی ی، فقط براحلی جامعم یجستجو

، ما نشان کار نیدر ا .بخشدیرا بهبود م یتکامل یسازنهیبه تمیهر الگور ییروش سرعت همگرا نیاست که ا نیما ا یاصل یادعا نیبنابرا بدست آوریم.

 Big Bang-Big یسازنهیبه به استفاده کنیم که یتکامل یسازنهیبه تمینقطه شروع منحصر به فرد در آغاز دو الگور نیتوان از ایکه چگونه م میدهیم

Crunch رییو تغ یچرخش عمدتا، که از توابع مجموعه تست استاندارد کی یانجام شده بر رو یهاشیآزما .شوندمیمحدود نذرات ازدحام  یسازنهیو به 

 شود.یوق مف یتکامل یسازنهیبه تمیدو الگور یبرا یبزرگ شرفتیمنجر به پ یشنهادیپ یساز هیدهد که روش اولی، نشان مشده است لیتشک افتهی

، ازدحام ذرات یسازنهیبه تمی، الگورBig Bang-Big بحران یسازنهیبه تمی، الگوری، محاسبات تکاملجستجوی جامعهماهنگی  :کلمات کلیدی

 .A-Priori، استفاده از دانش ونیداسیبریه

 


