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Abstract 

Surface gravity data is inversed to recover subsurface 3D density distribution with two strategies. In the first 

strategy, we assumed wide density model bound to invert gravity data, and in the second strategy we carried 

out the inversion procedure by band limited density. We discretized the earth model into rectangular cells of 

constant and unidentified density. The number of cells was often greater than the number of observation 

points. Thus we have an underdetermined inverse problem. The densities were estimated by minimizing a 

cost function subject to fitting the observed data. The synthetic results show that the recovered model from 

the first strategy is characterized by broad density distribution around the true model, but the recovered 

model from the second strategy is closer to true models. To estimate the subsurface density distribution, we 

carried out inversion of gravity data taken over chromite deposit located at southern part of Iran. The 

recovered model obtained from the second strategy has appropriate agreement with previous studies. 
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1. Introduction 

Potential field data have been widely used in 

investigations of oil and gas explorations [10], 

mineral explorations [13] and in engineering 

studies [5, 16]. The inversion is the most essential 

step in the quantitative interpretation of potential 

filed data. This step of interpretation of potential 

filed data suffers from the non-unique 

determination of the source parameters [2]. In 

other words, the potential field data is acquired on 

the surface of the earth; there are many equivalent 

3D density distributions below the surface that 

will reproduce the same field data. 

Previous papers tried to overcome the inherent 

non-uniqueness in potential field inverse 

problems. Some researchers suggested the density 

variation and attempted to invert the unknown 

geometrical parameters [4, 11, 14]. Another group 

of researchers introduced more qualitative prior 

information. Last and Kubik (1983) minimized 

the total volume of the source of anomaly and 

Guillen and Menichetti (1984) used the moment 

of inertia of causative body. Barbosa and Silva 

(1994) introduced the method based on compact 

gravity inversion technique to allow compactness 

along the several axis using Tikhonov’s 

regularization method. 

In this paper, the model objective function is 

minimized based on a priori information via 

positivity density constraints. Firstly, the earth 

model is divided into rectangular prism with 

constant and unknown density. The unknown 

densities are determined by minimizing a model 

objective function. Positivity density constrain are 

used to overcome the non-uniqueness problem. 

The algorithm is tested on both synthetic and field 

examples. 

2. Methodology 

The vertical attraction of gravity, g , in Cartesian 

coordinates for a 3D model such as Figure 1 can 

be obtained as Equation 1. 
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where, , ,x y z  is the density distribution,  

is the Newton’s gravitational constant, and r  can 

be computed as Equation 2. 
2 2 2

r x x y y z z  (2) 

 

 

Figure 1. A three-dimensional body with density 

distribution. Usually, the region to be investigated is 

subdivided into a set of homogeneities [1]. 

It is required to discretize the problem for 

obtaining a numerical solution to the inverse 

problem of gravity field data. The forward 

modeling of gravity data defined as Equation 1 

can be rewritten as the following matrix equation 

by dividing the source region into the 3D prism 

[15]. 

g G  (3) 

 

where, G is the kernel matrix which has elements 

that compute at i th data point of a unit density in 

j th prism as Equation 4. 
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The data misfit function is given by Equation 5. 
2
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Where, 
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g g g  is the field data 

vector, g  is the predicted data, 

1
diag 1 , ,1

g N
W  and 

i
is the 

standard deviation error related with the i th data 

point.  

The model objective function is given by 

Equation 6. 
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where, V  is the volume of the causative body, 
s
w

, 
x
w , 

y
w  and 

z
w are spatially dependent 

weighting function while 
s

, 
x

, 
y

 and 
z

are 

coefficients that defined the relative importance of 

each components in objective function. w z
 
is the 

depth weighting function and 
0

 is the reference 

model and W  is the total weight of model 

parameters [7]. w z
 
is defined by Equation 7. 

/2

0

1

( )
w z

z z
 (7) 

 

In Equation 7,   is usually equal to 2.0 [8] and 

0
z depends upon the cell size of the model 

discretization. The reference model 
0

 can be 

obtained from previous studies or it can be 

considered as the zero models. The function
s
w  

controlled the relative similarity of the inverted 

model to 
0

 at any position. The weighting 

functions
x
w , 

y
w  and 

z
w can be used to enhance 

or attenuate structures in various regions in the 

model domain [8]. The inverse problem is solved 

by finding a model that minimizes 
m  

and 

misfit data function 
g

simultaneously. The 
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inversion process can be done by subspace 

minimization method [7]. 

Let  denote the perturbation of model 

parameter. It can be represented as Equation 8. 

n
V  (8) 

where, the vector V  are generated mainly from 

the gradient of data and model objective function 

[12] and  is the coefficient obtained from 

Equation 9. 

0

,
T T T T T

g g

nT T T T obs
g g

nT T T T

L l

L V F G W WG W W FV

l V F G W W g g

V F G W W

        (9) 

Where, F  is the Jacobean matrix of model 

parameters,  is the Lagrangian multipliers and 

n  is the number of iterations. The final model 

parameters computed as Equation 10. 

0

n
                          (10) 

3. Synthetic example 
As a first example the gravity data shown in 

Figure 2 is inverted. It is produced by two 

rectangle block model at depth 25m, 50m and 

150m, 250m on side respectively.  Density 

contrast of two rectangle block set to 
21.0 g/cm . The data is free noise and data 

grid spacing is 50m. A model consisting of 1600 

cells of 25 m in each depth level is used and the 

model extends from 0 to 500m (40*40*20). 

We invert the gravity data by considering a wide 

density model bound between 
3 33.0 g/cm  and 3.0 g/cm  for studying 

effect of density constrains to recover synthetic 

model. The model objective function defined in 

Equation 6 is minimized in which 0.0001
s

 

and 1.0
x y z

. 3-D weighting 

functions are set to 1.0 because, there is no 

preferred density distribution in each direction of 

synthetic model and the depth weighting 

parameters are considered with 2.0   in 

Equation 7. The recovered model data is shown in 

Figure 3 [8]. 

The recovered model shown in Figure (3) is 

characterized by broad density distribution around 

the true model (shown as white rectangle blocks). 

The range of inverted density model is obtained 

between -0.18 to 0.99 
3/g cm  . Root mean square 

error between model gravity data and predicted 

data is 0.01 mGal . 
Next we inverted same data with positivity 

density constraint. Maximum density contrast was 

equal to 1.0
3/g cm . It’s useful when a reliable 

estimate of maximum density contrast is 

available. Imposition of such a bound can often 

improve density distribution in recovered model. 

The result is shown in Figure (4). 

 

 
Figure 2. Gravity data was produced by two rectangle model having density of 21.0 g/cm  and uniform 

background. The color scale indicated the gravity data in mGal. 
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Figure 3. Recovered density model of free noise gravity data. The color scale indicates the density distribution in

3/g cm  . Synthetic models are shown with white rectangle blocks. 

 

Considering density constraint, synthetic model 

has been recovered well and density distribution 

concentrates at the location of true model. Root 

mean square error between synthetic gravity data 

and predicted data is 0.01 mGal . The maximum 

density value is slightly less than 1.0 3/g cm , 

which is in fact very close to the true maximum 

density value in this case. Overall, we have a 

reasonably recovered model that delineates the 

essential structure of the true model. 

Figure 5 shows the same data contaminated with 

2% independent Gaussian white noise. Recovered 

density distributions are characterized by broad 

tails at depth like Figure 3 and focus on the top of 

synthetic model. Root mean square error between 

model gravity data and predicted data is 0.069 

mGal .  
We invert the noisy data with limited band of 

density between 0.0 and 1.0
3/g cm . Root mean 

square error between model gravity data and 

predicted data is 0.063 mGal . The Result is 

shown in Figure 6. The recovered anomalies also 

appear at the depth that corresponds well with the 

true depth of the rectangle model. Results shows 

that the density constrains are effective in placing 

the recovered anomaly at depth of the true 

causative body. 

4. Real data 

As a final example, field data taken over a 

chromite deposit located at southern part of Iran is 

inverted. The host rocks of deposit are Serpantine. 

The chromite veins may extend into fractured 

Serpantine rocks. The gravity data are acquired in 

the study area (shown in Figure 7) with 10m 

spacing along 8 lines in the north-east direction 

and spaced 10 m apart. Our study of the data set 

has focused on a part of data shown in Figure 8. Y 

axis indicates north direction. In study area 

experimental methods are used to determine the 

mean density. The average density of host rocks is 

2.79 
3/g cm  and the average density in a 

relatively pure sample of chromite is measured 4.0 
3/g cm approximately. The depth model 

parameterization is extended to 40 m. Root mean 

square error between real gravity data and 

predicted data is 0.015 mGal .  
According to Figure 8, maximum density 

distribution is concentrated at depth 20 m 

approximately. Nejati et. al. (2005) showed that 

most volume of chromite mineralization in 

prospected area located at the depth of 20 m by 

3D compact inversion of gravity data [9]. 

5. Conclusions  

In this paper, 3D density distribution was obtained 

by Li and Oldenburg (1998) method with two 

strategies. In the first strategy, wide density model 

bound was assumed to invert synthetic and real 

gravity data. The results show that the recovered 

model is characterized by broad density 

distribution around the true model. In the second 

strategy, the inversion procedure was carried out 
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by band limited density. When the reliable 

estimation of maximum density contrast was 

available from geological and geophysical prior 

investigation, the results of second strategy were 

closer to true models. We carried out the inversion 

of gravity data taken over chromite deposit 

located at south part of Iran to estimate subsurface 

density distribution. The recovered model 

obtained from second strategy has appropriate 

agreement with previous studies.  

 

 

 
Figure 4. Recovered density model of free noise gravity data with density constrain between 0.0 to 1.0 3/g cm . 

The color scale indicates the density distribution in 3/g cm . Synthetic models are shown with white rectangle 

blocks. 

 

 

Figure 5. Data contaminated with 2% independent Gaussian white noise. The color scale indicates the density 

distribution in 3/g cm  . Synthetic models are shown with white rectangle blocks. 
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Figure 6. Noisy data and inverted density distribution. The color scale indicates the density distribution in 3/g cm

Synthetic models are shown with white rectangle blocks. 

 

 

 
 

Figure 7. Location map of study area 
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Figure 8. Real data and inverted density distribution. The color scale indicates the density distribution in
3/g cm . Y- axis is north direction. a) Y- axis out of the page and b) Y- axis in the right direction. 
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