CLASSICAL 2-ABSORBING SECONDARY SUBMODULES | ||
Journal of Algebraic Systems | ||
مقاله 2، دوره 8، شماره 1، آذر 2020، صفحه 7-15 اصل مقاله (144.11 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2019.7287.1359 | ||
نویسنده | ||
F. Farshadifar* | ||
Department of Mathematics, Farhangian University, Tehran, Iran. | ||
چکیده | ||
In this work, we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules. Let $R$ be a commutative ring with identity. We say that a non-zero submodule $N$ of an $R$-module $M$ is a \emph{classical 2-absorbing secondary submodule} of $M$ if whenever $a, b \in R$, $K$ is a submodule of $M$ and $abN\subseteq K$, then $aN \subseteq K$ or $bN \subseteq K$ or $ab \in \sqrt{Ann_R(N)}$. This can be regarded as a dual notion of the 2-absorbing primary submodule. | ||
کلیدواژهها | ||
Secondary module؛ 2-absorbing primary ideal؛ classical 2-absorbing secondary module | ||
مراجع | ||
1. H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., 19 (2012), 1109–1116. 2. H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime radicals of submodules, Asian Eur. J. Math., 6 (2013), Article ID: 1350024 (11 pages). 3. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11 (2007), 1189–1201. 4. H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math., 25 (2008), 57–66. 5. H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396–2416. 6. H. Ansari-Toroghy and F. Farshadifar, Some generalizations of second submodules, Palestine J. Math., 8 (2019), 1–10. 7. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417–429. 8. A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51 (2014), 1163–1173. 9. A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174–178. 10. M. P. Brodmann and R. Y. Sharp, Local cohomology an algebraic introduction with geometric applications, Cambridge Univercity Press, 1998. 11. S. Ceken, M. Alkan and P. F. Smith, The dual notion of the prime radical of a module, J. Algebra, 392 (2013), 265–275. 12. A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math., 9 (2011), 577–584. 13. J. Dauns, Prime submodules, J. Reine Angew. Math., 298 (1978), 156–181. 14. M. K. Dubey and P. Aggarwal, On 2-absorbing primary submodules of modules over commutative ring with unity, Asian Eur. J. Math., 8 (2015), Article ID: 1550064 (12 pages). 15. L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in: Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249 (2006), 121–145. 16. Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Collq., 19 (2012), 913–920. 17. D. W. Sharpe and P. Vamos, Injective modules, Cambridge University Press, 1972. 18. S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273–278. | ||
آمار تعداد مشاهده مقاله: 597 تعداد دریافت فایل اصل مقاله: 748 |