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ω-NARROWNESS AND RESOLVABILITY OF
TOPOLOGICAL GENERALIZED GROUPS

M. R. AHMADI ZAND∗ AND S. ROSTAMI

Abstract. A topological group H is called ω-narrow if for every
neighbourhood V of it’s identity element there exists a countable
set A such that V A = H = AV . A semigroup G is called a general-
ized group if for any x ∈ G there exists a unique element e(x) ∈ G
such that xe(x) = e(x)x = x and for every x ∈ G, there exists
x−1 ∈ G such that x−1x = xx−1 = e(x). Also, let G be a topologi-
cal space and the operation and inversion mapping are continuous,
then G is called a topological generalized group. If {e(x) | x ∈ G}
is countable and for any a ∈ G, {x ∈ G|e(x) = e(a)} is an ω-narrow
topological group, then G is called an ω-narrow topological gener-
alized group. In this paper, ω-narrow and resolvable topological
generalized groups are introduced and studied.

1. Introduction and preliminaries

Generalized groups are an interesting extension of groups. This no-
tion was first introduced by Molaei in [8]. A generalized group is a
non-empty set G admitting an operation called multiplication, which
satisfies the following conditions:

1. (xy)z = x(yz) for all x, y, z ∈ G.
2. For each x ∈ G there exists a unique element z ∈ G such that

zx = xz = x (we denote z by e(x)).
3. For each x ∈ G there exists an element y ∈ G called inverse of

x such that xy = yx = e(x).
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It is well known that each x in G has a unique inverse in G, and the
inverse of x is denoted by x−1 [8]. Moreover, for a given x ∈ G, we
have e(e(x)) = e(x), (x−1)

−1
= x and e(x−1) = e(x).

Definition 1.1. [7] If G and H are two generalized groups, then a
map f : G → H is called a homomorphism if f(ab) = f(a)f(b) for all
a, b ∈ G.
Theorem 1.2. [7] Let f : G → H be a homomorphism where G and
H are two generalized groups. Then

1. f(e(a)) = e(f(a)),
2. f(a−1) = (f(a))−1,

for all a ∈ G.
Recall that a non-empty subset H of a generalized group G is called

a generalized subgroup if H is a generalized group under the multipli-
cation on G [7].
Theorem 1.3. [7] Let H be a non-empty subset of a generalized group
G. Then, H is a generalized subgroup of G if and only if ab ∈ H and
a−1 ∈ H for all a, b ∈ H.

We recall that a paratopological generalized group is a generalized
group G endowed with a Hausdorff topology such that the multiplica-
tive mapping m : G × G → G defined by (x, y) 7→ x.y is continuous
[12]. A paratopological generalized group with continuous inversion
I : G → G defined by x 7→ x−1 is called a topological generalized
group [9]. Moreover, if a ∈ G then Ge(a) = {g ∈ G | e(g) = e(a)}
is closed in G [12, Theorem 3], Ge(a) is a topological group with the
operation on G, and G is the disjoint union of such topological groups,
i.e., G =

∪̇
a∈GGe(a) [10]. The first infinite ordinal is denoted by ω.

Theorem 1.4. [2] Let G be a paratopological generalized group such
that the family F = {Ge(a)}a∈G is locally finite. Then every Ge(a) is
closed and open in G.
Proposition 1.5. [2] Let H be a dense generalized subgroup of a topo-
logical generalized group G such that the family F = {Ge(a)}a∈G is
locally finite. Then He(a) is dense in Ge(a) for every a ∈ G.

2. Main results
We start our main results with the following proposition.

Proposition 2.1. Let G be a compact paratopological generalized group
with the locally finite family F = {Ge(a)}a∈G. Then the inverse function
I from G to G is continuous, and so G is a topological generalized group.
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Proof. Let a ∈ G. Then Ge(a) is compact, since Ge(a) is closed. Thus,
the restriction of I to Ge(a) is continuous by [3, Proposition 2.3.3]. Since
the family F is locally finite, the inverse function I is continuous on
G =

∪
a∈GGe(a) [11], and so G is a topological generalized group. □

Proposition 2.2. Suppose that G is a paratopological generalized group
with locally finite family F = {Ge(a)}a∈G. Then for each compact subset
F of G, the set F−1 is closed in G.
Proof. If a ∈ G, then Fe(a) = F ∩Ge(a) is closed and so Fe(a) is compact.
Now by [3, Lemma 2.3.5], F−1

e(a) is closed in Ge(a), and so it is closed in
G. Since the family F is locally finite, F−1 =

∪
a∈G F−1

e(a) is closed in
G. □

Recall that a semitopological group G is said to be ω-narrow if for
every open neighbourhood V of the neutral element in G there exists a
countable set A ⊂ G such that V A = G = AV and if A is a finite set,
then the semitopological group G is called precompact. A topological
generalized group G is called precompact [1] if Ga is a precompact topo-
logical group for all a ∈ e(G) and card(e(G)) < ∞. If we substitute
G in Example 2.13 of this section with the closed unit interval [0, 1]
of R, then we observe that a compact topological generalized group
need not be precompact. Also, we note that every compact topological
generalized group G in which the family {Ge(a)}a∈G is locally finite is
precompact.
Proposition 2.3. Every precompact topological generalized group G
which is locally compact is compact.
Proof. Since G is precompact, e(G) is finite and Ga is a precompact
topological group for all a ∈ e(G). On the other hand, since every
Ga is closed, it is locally compact too. By using [3, Theorem 3.7.22],
we observe that every topological group Ga is compact and so G is
compact. □

Recall that a topological space X is called extremally disconnected
[5], if X is Hausdorff and for every open subset U the closure U is open
in X.
Proposition 2.4. Suppose that G is an extremally disconnected topo-
logical generalized group, such that the family F = {Ge(a)}a∈G is locally
finite. Then, every precompact subset of G is finite.
Proof. Let B be a precompact subset of G and a ∈ B. Then card(e(B)) <
∞ and Be(a) is precompact. Proposition 1.4 implies that Ge(a) is open
in G and so it is extremally disconnected. By [3, Theorem 3.7.28],
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Be(a) is finite in Ge(a). Since card(e(B)) is finite, B =
∪

a∈B Be(a) is
finite. □
Corollary 2.5. Every precompact extremally disconnected topological
generalized group is finite.

In the following definition, we will extend the notion of ω-narrowness
to topological generalized groups.
Definition 2.6. An ω-narrow topological generalized group is a topo-
logical generalized group G such that e(G) is a countable set and for
any a ∈ e(G), Ga is an ω-narrow topological group.

It is clear from the above definition that every precompact topolog-
ical generalized group is ω-narrow.
Proposition 2.7. Every continuous homomorphic image H of an ω-
narrow topological generalized group G is ω-narrow.
Proof. Let f : G → H be a generalized group homomorphism which is
surjective. We claim that the following conditions hold.

(i) e(H) is a countable set.
(ii) ∀h ∈ e(H), Hh is an ω-narrow topological group.

H = f(G) =
∪

a∈G f(Ge(a)) and by Theorem 1.2, f(e(a)) = e(f(a)).
Thus, f(Ga) ⊂ Hf(a), and so card(e(H)) ≤ card(e(G)) since f is onto.
Therefore (i) holds.

To prove (ii), let U be an open neighbourhood of f(x) = h ∈ e(H) in
Hh. Since h ∈ e(H), e(h) = h and so e(x) ∈ f−1(h). Therefore, f−1(U)
is an open neighbourhood of e(x) in G and it follows that, f−1(U) ∩
Ge(x) is an open neighbourhood of e(x) in the ω-narrow topological
group Ge(x). So, there exists a countable set Ae(x) ⊂ Ge(x) such that
Ae(x)(Ge(x)∩f−1(U)) = Ge(x) = (Ge(x)∩f−1(U))Ae(x). Since x ∈ f−1(h)
is arbitrary, we have

Hh =
∪

x∈f−1(h)

f(Ge(x)) =
∪

x∈f−1(h)

f((f−1(U) ∩Ge(x))Ae(x))

⊆
∪

x∈f−1(h)

(U ∩ f(Ge(x)))f(Ae(x))

⊆
∪

x∈f−1(h)

(U ∩Hh)f(Ae(x))

=
∪

x∈f−1(h)

Uf(Ae(x))

= U
∪

x∈f−1(h)

f(Ae(x)).
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Since f−1(h)∩e(G) is countable,
∪

x∈f−1(h) f(Ae(x)) is a countable subset
of Hh. Now, we define A =

∪
x∈f−1(h) f(Ae(x)) that is a countable set in

Hh. Therefore, Hh = UA and by asimilar argument we have Hh = AU .
Thus, Hh is an ω-narrow topological group and this completes the
proof. □

Proposition 2.8. The topological product of a finite family of ω-narrow
topological generalized groups is an ω-narrow topological generalized
group.

Proof. Let F be a finite set and {Gi}i∈F be a family of ω-narrow topo-
logical generalized groups. Since Gi =

∪
a∈e(Gi) G

i
a for every i ∈ F, we

have
G =

∏
i

[Gi =
∪

a∈e(Gi)

Gi
a] =

∪
a∈e(Gi)

(
∏
i

Gi
a).

Every
∏

i∈FG
i
ai

is an ω-narrow topological group by [3, Proposition
3.4.3], and so G is the disjoint union of ω-narrow topological groups.
Moreover, since e(Gi) is countable for all i ∈ F, e(G) =

∏
i∈F e(G

i) is
countable and this completes the proof. □

Proposition 2.9. Every generalized subgroup H of an ω-narrow topo-
logical generalized group G is ω-narrow.

Proof. Since card(e(H)) ≤ card(e(G)), our hypothesis implies that
card(e(H)) is countable. Let h ∈ e(H), then Gh is an ω-narrow group
and Hh is it’s subgroup. Thus, Hh is an ω-narrow topological group by
[3, Theorem 3.4.4]. Therefore, H is an ω-narrow topological generalized
group. □

Proposition 2.10. Let G be an ω-narrow topological generalized group.
Then G is first-countable if and only if G is second-countable.

Proof. Let G be a first-countable ω-narrow topological generalized group.
So, for every a in the countable set e(G), Ga is a first-countable ω-
narrow topological group. From [3, Proposition 3.4.5] it follows that
Ga has a countable base. From G =

∪̇
a∈e(G)Ga we infer that G has

a countable base. Thus, G is second-countable. The converse is obvi-
ous. □

Since every second countable space is separable and Lindelöf, we
have the following result.

Corollary 2.11. Every first-countable ω-narrow topological generalized
group is separable and Lindelöf.
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Proposition 2.12. Let G be a Lindelöf topological generalized group,
such that the family F = {Ga}a∈e(G) is locally finite. Then G is ω-
narrow.
Proof. Let b be an arbitrary element of e(G), then by Theorem 1.4 Gb

is open and closed in G and so Gb is Lindelöf. Thus, Gb is an ω-narrow
topological group by [3, Proposition 3.4.6]. Since G =

∪̇
a∈e(G)Ga and

every Ga is open, e(G) must be countable. Thus, G is ω-narrow. □
Being locally finite is necessary in Proposition 2.12 as it is illustrated

in the following example.
Example 2.13. Let G = R \ {0} be a subspace of the real line. Then
G with the multiplication x.y = x is a Lindelöf topological generalized
group such that for every a ∈ G, e(a) = a−1 = a. Since Ge(a) = {a} for
every a ∈ G, {Ge(a)}a∈G is not locally finite. Moreover, Since e(G) =
G = R\{0}, the set e(G) is not countable set, and so G is not ω-narrow.

The smallest cardinal number c such that every family of pairwise
disjoint non-empty open subsets of X has cardinility less than or equal
to c, is called Souslin number [5], or cellularity of the space X and it
is denoted by c(X). If c(X) is countable, then we say that X has the
Souslin property.
Proposition 2.14. Let G be a topological generalized group that has
the Souslin property and the family F = {Ga}a∈e(G) is locally finite.
Then G is ω-narrow.
Proof. Let a ∈ e(G). Since the family F is locally finite, Ga is open
in G by Proposition 1.4. Thus, c(Ga) ≤ c(G), and so Ga has the
Souslin property. Now [3, Theorem 3.4.7] implies that Ga is ω-narrow.
Moreover, Since F is the family of pairwise disjoint non-empty open
subsets of G, we have card(e(G)) ≤ c(G). Therefore, card(e(G)) is
countable and this completes the proof. □

Clearly, every separable space has the Souslin property. Thus, we
have the following result.
Corollary 2.15. Let G be a separable topological generalized group,
such that the family {Ga}a∈e(G) is locally finite. Then G is ω-narrow.
Proposition 2.16. If a topological generalized group G contains an ω-
narrow dense generalized subgroup, such that the family F = {Ga}a∈e(G)

is locally finite, then G is ω-narrow.
Proof. This follows from [3, Theorem 3.4.9] and Proposition 1.5.

□
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Recall that ω is the first infinite ordinal. The invariance number
inv(Ga) [3] of a topological group Ga is countable, i.e., inv(Ga) ≤ ω,
if for each open neighbourhood U of the neutral element e(a) in Ga,
there exists a countable family γ of open neighbourhoods of e(a) such
that for each x ∈ Ga, there exists V ∈ γ satisfying xV x−1 ⊂ U .

Definition 2.17. Let G be a topological generalized group. Then
inv(G) = max{inv(Ga) | a ∈ e(G)} is called the invariance number of
G and if inv(G) is countable, then G is called ω-balanced.

Clearly, every generalized subgroup of an ω-balanced topological gen-
eralized group is ω-balanced.

Proposition 2.18. Let G be an ω-narrow topological generalized group,
then G is ω-balanced.

Proof. Let a be an arbitrary element of e(G). Since G is ω-narrow,
Ga is an ω-narrow group. By [3, Proposition 3.4.10], the invariance
number of Ga is countable and so G is ω-balanced. □

The converse of Proposition 2.18 need not be true. Indeed, a topo-
logical generalized group G with multiplication a ∗ b = a and discrete
topology is ω-balanced, while it is ω-narrow if and only if e(G) = G is
countable.

Proposition 2.19. The invariance number of a first-countable topo-
logical generalized group G is countable.

Proof. Let a be an arbitrary element of e(G). Then, Ga is a first-
countable topological group. By [3, Theorem 3.4.11] we have inv(Ga) ≤
ω. Thus, the invariance number of G is countable. □

3. Resolvability of topological generalized groups
A topological space X is called irresolvable if each pair of dense sub-

sets of X has non-empty intersection; otherwise, X is called resolvable
[6]. X is called hereditarily irresolvable if every non-empty subspace of
X is irresolvable [6].

Hewitt studied resolvable and irresolvable spaces in [6]. The follow-
ing theorem is needed in the sequel.

Theorem 3.1. [6] Every topological space X can be represented as a
disjoint union X = F ∪ E, where F is closed and resolvable and E is
open and hereditarily irresolvable.

It is easily seen that the representation of X in Theorem 3.1 is unique.
It will henceforth be called “Hewitt representation” of X. The next
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proposition is an immediate consequence of [4, Lemma 3.1] and Theo-
rem 1.4.

Proposition 3.2. Suppose that G is a topological generalized group
such that the family F = {Ga}a∈e(G) is locally finite. Then G is resolv-
able if and only if Ga is resolvable for every a ∈ e(G).

The assumption that the family F = {Ga}a∈e(G) is locally finite is
essential in the proof of Proposition 3.2. For example, the real line R
is resolvable and R with the multiplication x.y = x is a topological
generalized group such that the family {Ra}a∈e(R) is not locally finite
and if a ∈ e(R), then Ra = {a} is irresolvable.

Proposition 3.3. Let G be a topological generalized group and let the
family F = {Ga}a∈e(G) be locally finite. If for every a ∈ e(G), Ea is a
hereditarily irresolvable subspace of Ga, then

∪
a∈e(G) Ea is hereditarily

irresolvable subspace of G.

Proof. Suppose to the contrary that
∪

a∈e(G) Ea is not hereditarily ir-
resolvable. So there is a resolvable subspace A in

∪
a∈e(G) Ea. Now it

follows that for some a ∈ e(G), Aa = A ∩ Ga is a non-empty open
subspace of A and so, it is resolvable. Therefore, Aa is a resolvable
subspace of Ea, which is a contradiction. □
Proposition 3.4. Let G be a topological generalized group such that
the family F = {Ga}a∈e(G) is locally finite. Then, F ∪ E is the Hewitt
representation of G if and only if for any a ∈ e(G), Fa ∪ Ea is the
Hewitt representation of Ga, where Fa = F ∩Ga and Ea = E ∩Ga.

Proof. Let Fa∪Ea be the Hewitt representation of Ga, where a ∈ e(G).
We claim that (∪a∈e(G)Fa)∪(∪a∈e(G)Ea) is the Hewitt representation of
G. ∪a∈e(G)Fa is resolvable and it is closed since the family {Ga}a∈e(G) is
locally finite. On the other hand, ∪a∈e(G)Ea is an open subspace of G
which is hereditarily irresolvable by the above proposition. It is clear
that (∪a∈e(G)Fa) ∩ (∪a∈e(G)Ea) = ∅. Thus, our claim is proved.

Conversely, let F∪E be the Hewitt representation of G. By Theorem
1.4, Fa = F ∩Ga is an open subset of F and so it is resolvable. It is also
clear that Fa is a closed subset of Ga. On the other hand, since every
subspace of a hereditarily irresolvable space is hereditarily irresolvable,
then Ea = E ∩Ga is an open and hereditarily irresolvable subspace of
Ga. Now we can see Fa ∩ Ea = ∅ and so, Ga = Fa ∪ Ea is the Hewitt
representation of Ga. □
Proposition 3.5. Let G be a topological generalized group and let H
be a dense generalized subgroup of G. If the family F = {Ga}a∈e(G) is



ω-NARROW AND RESOLVABLE GENERALIZED GROUPS 25

locally finite and H ̸= G, then Ga is a resolvable topological group for
some a ∈ e(G).

Proof. By hypothesis H is a proper dense generalized subgroup of G =∪̇
a∈e(G)Ga. Thus, there exists a ∈ e(G) such that Ha = H ∩ Ga is a

proper subgroup of Ga. On the other hand, by Proposition 1.5 Ha is
dense in Ga. Therefore, Ha is a proper dense subgroup of Ga and so
by [4, Lemma 3.3], Ga is resolvable. □
Proposition 3.6. Let G be a resolvable topological generalized group
and a ∈ e(G). If int(Ga) ̸= ∅, then Ga is resolvable.

Proof. Since G is resolvable, int(Ga) is resolvable and the topological
group Ga is a homogeneous space containing int(Ga). Thus, Ga is
resolvable. □

Note that Proposition 3.6 implies that if for some a ∈ e(G), int(Ga) ̸=
∅ and Ga is irresolvable, then G is irresolvable.
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تعمیم یافته ی توپولوژیک گروه های بودن حل پذیر و ω-باریک

رستمی سلیمه و احمدی زند محمدرضا
ایران یزد، یزد، دانشگاه ریاضی، دانشکده

شمارای مجموعه ی آن، همانی عضو از V همسایگی هر برای هرگاه گویند ω-باریک را H توپولوژیک گروه
اگر می شود نامیده تعمیم یافته گروهی G نیم گروه .V A = H = AV به طوری که باشد داشته وجود A
و xe(x) = x = e(x)x به طوری که، باشد داشته وجود e(x) ∈ G یکتای عضو ،x ∈ G هر برای
هم چنین .xx−١ = e(x) = x−١x به طوری که، باشد داشته وجود x−١ ∈ G عضو ،x ∈ G هر برای
آن روی معکوس نگاشت و دوتایی عمل نگاشت به طوری که باشد نیز توپولوژیک فضای G کنید فرض
{e(x) | x ∈ G} اگر می شود. نامیده توپولوژیک تعمیم یافته ی گروه G این صورت در باشند، پیوسته
باشد، ω-باریک توپولوژیک گروه {x ∈ G | e(x) = e(a)} مجموعه ی a ∈ G هر برای و باشد شمارا
تعمیم یافته ی گروه های مقاله، این در می شود. نامیده ω-باریک توپولوژیک تعمیم یافته ی گروه G آنگاه

می دهیم. قرار مطالعه مورد و می کنیم معرفی را حل پذیر و ω-باریک توپولوژیک

عدد حل پذیر، توپولوژیک تعمیم یافته ی گروه ω-باریک، توپولوژیک تعمیم یافته ی گروه کلیدی: کلمات
پیش فشرده. توپولوژیک تعمیم یافته ی گروه پایداری،

٣
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