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A NEW CHARACTERIZATION OF ABSOLUTELY
PO-PURE AND ABSOLUTELY PURE S-POSETS

R. KHOSRAVI* AND M. ROUEENTAN

ABSTRACT. In this paper, we investigate po-purity using finitely
presented S-posets, and give some equivalent conditions under
which an S-poset is absolutely po-pure. We also introduce strongly
finitely presented S-posets to characterize absolutely pure S-posets.
Similar to the acts, every finitely presented cyclic S-posets is iso-
morphic to a factor S-poset of a pomonoid S by a finitely generated
right congruence on S. Finally, the relationships between regular
injectivity and absolute po-purity are considered.

1. INTRODUCTION

A pomonoid S is a monoid which it is also a poset whose partial order
< is compatible with the binary operation on S. A right S-poset Ag
is a right S-act Ag equipped with a partial order < and, in addition,
for all s,t € S and a,b € Ag, if s < t then as < at, and if a < b
then as < bs. A sub S-poset Bg of a right S-poset Ag is a subposet
of Ag that is closed under the S-action. In this case, Ag is said to
be an extension of Bg. Moreover, S-morphisms are the functions that
preserve both the action and the order. The class of right S-posets and
S-morphisms form a category, denoted by POS-S, which comprises
the main background of this work. For an account on this category
and categorical notions used in this paper, the reader is referred to [3].
An S-morphism ¢ : Ag — By is a regular monomorphism if and only
if it is an order-embedding, i.e., a < a' < 1(a) < o(d’), for all a,a’ € Ag.
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Let S be a pomonoid and I be a nonempty subset of S. Then I is
said top be a right ideal of S, if IS C S (not necessarily ordered right
ideal). A right poideal of a pomonoid S is a nonempty subset I of S
which is both a right ideal (IS C I) and a poset ideal (that is, a < b
and b € I imply a € I).

Let Ag be a right S-poset. An S-poset congruence 6 on A is a right
S-act congruence with the property that the S-act A/f can be made
into an S-poset in such a way that the natural map As — A/6 is an
S-poset map. For an S-act congruence 6 on Ag we write a <y @ if the
so-called 6-chain

a < a1fby < axfby, < ... <a,bb, <d,
from a to a' exists in Ag, where a;,b; € A, 1 < i < n. It can be
shown that an S-act congruence 6 on a right S-poset Ag is an S-
poset congruence if and only if afa’ whenever a <y a’ <y a. Let
H C Ax A Then a <, bif and only if a < b or there exist
n>1(c¢,d;) € Hys; € 5,1 <4 <n such that
a<cis disy <cg8y ... dps, <b.

The relation v(H) given by a v(H) b if and only if a <,m) b <o) a
is the S-poset congruence induced by H. Moreover, [a],(my < [b],(m) if
and only if a <,y b. The relation (H) = v(H U H™') is the S-poset
congruence generated by H. A congruence p on an S-poset Ag is called
finitely induced (finitely generated) if p = v(H) (p = (H)) for some
finite subset H of A x A.

Recall that an S-poset Ag is reqular injective if for each regular
monomorphism g : Bs — Cs and S-morphism f : Bs — Ag, there
exists an S-morphism f : C's — Ag such that fg = f. An S-poset
Ag is weakly regular injective (fg-weakly reqular injective, principally
weakly regular injective) if every S-morphism f : I¢ — Ag from a
(finitely generated, principal) right ideal I of S can be extended to
an S-morphism f : S¢ — Ag. By a retract of Ag, we mean a sub
S-poset Bg of Ag together with an S-morphism from Ag to Bg which
maps Bg identically. Clearly, a retract of a regular injective S-poset
is also regular injective. Moreover, Ag is called an absolute retract if
Ag is a retract of each of its extensions. In [8], it is shown that all
regular injective S-posets are absolute retract. An S-poset E(Ag) is
called a regular injective envelope of an S-poset Ag if F(Ag) is regular
injective and does not contain a proper sub S-poset Bg which is a
regular injective extension of Ag. In [8], it is proved that for each S-
poset there exists a regular injective envelope. In light of [3, Proposition
2.2], the following corollary is clear which will be needed in the sequel.
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Corollary 1.1.  If p is a congruence relation on E(Ag) with p #
Ap(ag), then <, |a #< [a.

In the category of S-acts, absolutely pure acts were first considered
by Normak [7] and then studied by Gould in [1]. Moreover, Gould intro-
duced absolutely 1-pure acts under the name of almost pure acts in [5].
For S-posets, recently in [11], the authors generalized purity on S-acts
into the theory of S-posets and introduced the properties of (1-)pure
and absolutely (1-)pure S-posets regardless of their order. Then in [9],
they introduced po-purity of S-posets and characterized absolutely 1-
po-pure S-posets. In the following, we study strongly finitely presented
cyclic S-posets. In Section 2, some general properties of po-purity and
absolute-po-purity for S-posets are studied. Then, we investigate ab-
solutely po-pure S-posets using finitely presented S-posets. Finally,
the relationships between regular injectivity and absolute po-purity
are discussed.

An S-poset Ag is free on a set X if and only if Ag = [J, x2S
where for all z,y € X and s,t € S, xs < yt if and only if x = y and
s < t. The concept of finitely presented S-poset was introduced in
[2] which we recall it. It was mentioned by the notion of semi-finitely
presented in [9]. An S-poset Ag is said to be finitely presented if it is
isomorphic to a quotient S-poset of a finitely generated free S-poset
by a finitely induced S-poset congruence. In the category of S-acts,
finitely presented S-acts was introduced as a factor S-act of finitely
generated free S-acts by a finitely generated right congruence. Now,
we define it in the category of S-posets as follows.

Definition 1.2. An S-poset Ag is said to be strongly finitely pre-
sented if it is isomorphic to F'/p, where Fg is a finitely generated free
S-poset and p = 0(H) for some finite subset H C F' x F, ie. pis a
finitely generated congruence on Fj.

In the category of S-acts, every finitely presented cyclic S-act is iso-
morphic to a factor S-act of S by a finitely generated right congruence
on S. The following result shows that it is also valid for S-posets,
which is needed to characterize absolutely 1-po-pure S-posets.

Proposition 1.3.  Let Ag be a cyclic S-poset. Then Ag is strongly
finitely presented if and only if it is isomorphic to a factor S-poset of
Ss by a finitely generated right congruence on S.

Proof.  Necessity. Let Fg be a free S-poset generated by {1, ..., z,}
and let p be a congruence on Fs generated by

H = {(xm1817xn1t1)7 SR (xmk5k7xnktk)}7
so that Fg/p is cyclic. Assume that Fs/p = [z1u],S for some u € S.
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Let [x;], = [z1u],2i, 21 € S, 1 < i <n. Set
pi = UZm,;S; My # 1 and g; = { uzp,t; n; # 1
for every 1 < i < k. Consider the right congruence
o =0{(p1,q1), (P2, 42),-- -+ (Prs @) })
on S. We shall prove that Fs/p = S/o, dividing the proof into three
parts:

(a) First, we show that xip;pxiq; for every 1 < i < k. If m; = 1,
clearly x,,,s; = x1p;, otherwise using the equalities [z,,,], = [z1u],2m,,
we get that [Tm,si], = [Tm,]psi = [T10zm, ]850 = [T1]puzm,si = [1],pi-
This means that x,,,s;pr1p;. Analogously one can prove that z,,,t;px1q;.
Since Ty, 5;pTy,t; we have z1p;pz1¢;.

(b) Second, we show that if 215 <, ;¢ for some elements s,t € S,
then s <, t. From z;s <, x;t it follows that either z15 < x;¢ and
therefore s < t or there exist m > 1,¢;,d; € Fg,w; € S,1 <1 < m such
that (c;,d;) € HU H™! and

118 < cqwy diywy < cows ... Ay, < z1t.

From the inequality z1s < cjw; we obtain that ¢; € x1S. Then
(c1,d1) = (2,85, Tn;tj) OF (Ty,t5, T, s5) . In the first case, m; = 1
and so s < sjw;. The second case implies n; = 1, and so s < gjw;.
If dy = T, from the inequality djw; < cows we get that co € ZL“an ,
and if di = x,,,s;, then ¢3 € z,,;,S. Now we have again two cases,
(co,ds) = (:Emj,sj/,xn],,tj/) or (:L‘nj,tj/, Tom, s;) for some 1 < j" < k. Four
cases may OoCcur:

(i) If di = zn,t; and ¢2 = @y, sy, then my = n;. Then we have
tjwy < sjwy. Multiplying the last inequality from the left by
uz,, we get the inequality gjw; < pjrws. So s < pjw; gjw; <
pj/U)Q.

(ii) If dy = zm,s; and c; = Ty St then m; = m;. Then we obtain
sjwy < sjwg, and so w; < wy. Thus s < gwy pjw; < pjws.

(iii) If di = xp,t; and c; = T, ty, then ny = n;. Hence tjw; <
tywsy, and so ny = n;. We get t;w; < tjws, and so w; < ws.
Consequently, s < pjw; gjw; < gjws.

(iv) If di = zp,;8; and ¢y = Tt then n;; = m;. So s;wy < tjrws.
Multiplying the last inequality from the left by uz,,, we get the
inequality pjw; < gyw,. Thus s < gywy pjw; < gjrws.

Continuing in this process we reach to the sequence of inequalities
s < dwy dywy < dyws ... d w, <t
where for every 1 < ¢ < m, (d,d}) = (pj,q;) or (¢;,p;) for some

1 < 5 < k which means that s <, t.
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(c) Finally, we will prove that Sg/o = Fs/p. Since [21], = [z1u],%
using part (b) we have [1], = [u],2; which means that Sg/o = [u],S.
Define a mapping f : Sg/o0 — Fs/p by f([ulss) = [z1u],s for every
s € S. Suppose [u|,s < [u],t for s,t € S, i.e. us <, ut. Then either
us < ut and therefore (zius) <, (zjut) or

us < cowy dywy < cows ... dpwy, < ut,
where for every 1 < ¢ < m, (¢,d;) = (pj,q;) or (¢j,p;) for some
1 < j < k. Consider elements (c¢;,d;) = (p;,q;) or (g;,p;), it follows
from part (a) that c;w; <, dyw;. We get
rius < ziewy <, Bidiwy < Trcows <y - <) Trdp W < Tyl

This means that f is well-defined. Clearly, f is a surjective S-morphism.
Suppose f([ul,s) < f([ul,t), s,t € S, i.e. [z1u],s < [z1u],t or zqus <,
zqut. By part (b), [u],s < [u],t. Hence f is order-embedding and
therefore an isomorphism.

Sufficiency is obvious. 0

2. ABSOLUTELY PURE AND (1-)PO-PURE

In this section, we investigate (po-)pure properties. First we give
some general properties of S-posets satisfying such properties. Then,
we use finitely presented S-posets to give a necessary and sufficient
condition for a right S-poset to be absolutely pure or absolutely po-
pure. We say that two elements x,y of an S-poset Ag are comparable
if x <y or y < x and denote this relation by x Jt y. Let us recall from
[9] and [11] the notions related to (1-) po-purity and purity.

Definition 2.1. Let Ag be an S-poset.

(i) Consider the system ¥ consisting of inequations of the following

four forms
zs <uxt, zs < yt, xs < a, a < x8,
where s,t € S and a € Ag and z,y € X, where X is a set. We
call x,y variables, s,t coefficients, a a constant and ¥ a system
of inequations with constants from Ag. We briefly use zs }f a
for two last inequations. Systems of inequations will be written
as
Y={xs;ffa;| s; €95, a,€ A, 1<i<n}.
If we can map the variables of ¥ onto a subset of an S-poset

Bg such that the inequations turn into inequalities in Bg then
such subset of By is called a solution of the system ¥ in Bg. In
this case, X is called solvable in Bg.

(ii) If ¥ has a solution in an S-poset Bg containing Ag then ¥ is
called a consistent system of inequations.
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(iii) A sub S-poset Ag of an S-poset Bg is called po-pure in Bg
if every finite system of inequations with constants from Ag
which has a solution in Bg has a solution in Ag. An S-poset
Ag is called absolutely po-pure if every finite consistent system
of inequations with constants from Ag has a solution in Ag.

(iv) A sub S-poset Ag of an S-poset Bg is called 1-po-pure in Bg if
every finite system of inequations in one variable with constants
from Ag which has a solution in Bg has a solution in Ag. An S-
poset Ag is called absolutely 1-po-pure if every finite consistent
system of inequations in one variable with constants from Ag
has a solution in Ag.

Replacing the term inequations by equations in the foregoing defini-
tion the concept of pure, absolutely pure and absolutely 1-pure can be
defined, as [11, Definitions 6,7,8]. In our opinion the term extension
po-pure would be more appropriate in the ordered case, and we first
study some properties of po-purity.

By [9, Proposition 2.1], we deduce the following corollary.

Corollary 2.2.  If an S-poset Ag is po-pure (1-po-pure) in its reqular
injective envelope E(Ag), then Ag is absolutely po-pure (1-po-pure).

By [I1, Proposition 16], we get the following result is.

Lemma 2.3. If an S-poset Ag is absolutely 1-po-pure, then for any
S1y...,8, €S there exists a € Ag such that a = asy = - -+ = as,.

Definition 2.4. We say that a pomonoid S has local left zeros if for
any si,...,S, € S there exists s € S such that s = ss; = -+ = ss,,.

The following lemma is a direct consequence of Lemma 2.3.
Lemma 2.5. If S is absolutely 1 -po-pure then S has local left zeros.

Lemma 2.6.  The following hold for a pomonoid S.

(i) © s absolutely (1-) po-pure.
(ii) A retract of an absolutely (1-) po-pure S-poset is absolutely (1-)
po-pure.

Proof. (i) is obvious. (ii). Let Bg be a retract of Ag by an S-
morphism g : A — Bg and Ag is absolutely po-pure. Clearly E(Bg)
is a sub S-poset of E(Ag). Suppose that ¥ is a finite system of inequa-
tions with constants from Bg which has a solution in E(Bg). So ¥ has
a solution in F(Ag). Since Ag is absolutely po-pure, ¥ has a solution
in Ag. If {a1,...a,} is a solution of ¥ in Ag, then {g(a;),...,g(a,)} is a
solution of ¥ in Bg. Therefore, By is absolutely po-pure.

O
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Now, we consider the relationship between po-purity and tensor
products.

Proposition 2.7. [9, Proposition 2.20] If Ag is a po-pure sub S-
poset of an S-poset Bg, then the mapping As ®s C — Bs ®gs C' is a
reqular monomorphism for every left S-poset sC'.

Using the previous proposition we get the following corollary.

Corollary 2.8.  If all right S-posets are absolutely po-pure, then all
left S-posets are po-flat.

To give an equivalent condition for absolutely po-purity, we need the
conditions over which an S-poset is po-pure in its extensions.

Proposition 2.9.  An S-poset Ag is a po-pure sub S-poset of Bg if
and only if for every finitely presented S-poset Cs, every S-morphism
¢ : Cs —> Bg and every finite subset {ci,...,c,| ©(c;) }f a; € A} of
Cs there exists an S-morphism i) : Cs — Ag such that ¥(c;) it a; for
1=1,...,n.

Proof. Necessity. Suppose that Ag is a po-pure sub S-poset of
Bg. Let Cg be finitely presented and ¢ : Cs — Bg be such that
Cly.y0q € Cand o(c;) ) a; € As. Without loss of generality assume
that Cs = F/p where F' is a free S-poset generated by {fi,..., fm}
and
p=v{{(firs1, futr)s -, (frosr, i tr)})-

Let ¢; = [fy]pi for 1 < i < n, and ¢(c;) } a; € A. If o([f;]) = b;
for j = 1,...,m, then bys; = ©([fx,])s; < o([fi,])t; = by,t; and
ai i p(ci) = o([fa]pi) = by, pi- Hence there exist af € Ag, 1 < j < m,
such that a;jsj < a;jtj for 1 <j<randal afh_pl- for 1 <7 <n. Now
define a mapping ¢ : Cs — Ag by ¥([f;s]) = a;s. It is easily checked
that ¢ is an S-morphism such that ¥ (c;) = ¥([fg,lp:) = al,pi ¥ a; for
1=1,...,n.

Sufficiency. Suppose that ¥ = {zy;s; < wtj,a §f zepi| 1 <
i <n, 1< j<r}isa system of inequations which has a solution
{b1,...,bn}. Let Fs be a free S-posets generated by {fi,..., fm}, and

p= V({(fk1817 fllt1)7 T (fkrSTv fl'rtr})'

So C' = F/p is finitely presented. Define ¢ : Cs — Bg by ¢([f;s]) =
bjs. It is clear that ¢ is an S-morphism and ¢(c;) ff a; € Ag where
¢; = [fg]pi for 1 <i < n. By assumption there exists an S-morphism
Y Cg —> Ag such that ¥(c¢;) K a; for i = 1,... ,n. Therefore,
{O([f1]), -, ¥([fim])} is a solution of ¥ in Ag, as desired. O

Replacing v(H) and Jf by 0(H) and =, respectively, in the proof of
the previous proposition, one can prove the following proposition.
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Proposition 2.10.  An S-poset Ag is a pure sub S-poset of Bs if and
only if for every Cs = Fs/p where Fg is a finitely generated free S-poset
and p is a finitely generated congruence on Fg, for every S-morphism
¢ : Cs — Bg and for every finite subset {c1,...,c,| v(c;) = a; € Ag}
of Cs there exists an S-morphism ¢ : Cs — Ag such that ¥ (¢;) =
o(c;) fori=1,... ,n.

The following two theorems give some equivalent conditions for ab-
solute purity and absolute po-purity

Theorem 2.11.  The following statements are equivalent for any
S-poset Ag:
(i) Ag is absolutely pure;
(ii) for every strongly finitely presented S-poset Mg = Fs/p, every
finitely generated S-poset Ng, every reqular monomorphism v :
Ng — Mg, and every S-morphism f: Ng — Ag there exists
an S-morphism g : Mg — Ag such that g. = f.

Proof. (i)= (ii). Suppose that Mg, Ng, ¢t : Ng — Mg, and f :
Ng — Ag are as stated in the assumption of part (ii). Consider Ag as
a sub S-poset of E(Ag), we have f : Ng — E(Ag). Regular injectivity
of F(Ag) implies the existence of h : Mg — E(Ag) such that ht = f.
Assume that Ng is generated by {b1,...,b,}. So h(b;) € Ag for each
1 <7 < n. Now, applying Proposition 2.10, we get g : Mg — Ag such
that g(b;) = h(b;) for each 1 <i < n. Hence gt = f and we have done.

(i)= (ii). It suffices to show that Ag is pure in E(Ag). Using
Proposition 2.10, suppose that Cs = Fg/p where Fs is a finitely gen-
erated free S-poset and p is a finitely generated congruence on Fg,
¢ : Cs — E(Ag) is an S-morphism and {cy,...,c,| ©(¢;) € A} C Cs.
Let Ng be generated by {ci,...,¢,}. Then f = ¢|y : Ng — Ag and
by assumption there exists an S-morphism ¢g : C's — Ag such that
gt = f. Thus g(¢;) = f(¢;) = ¢(¢;) for i = 1,...,n, and the result

follows. O
Theorem 2.12.  The following statements are equivalent for any
S-poset Ag:

(i) Ag is absolutely po-pure;

(ii) for every finitely presented S-poset Mg, every finitely generated
sub S-poset Ng C Mg and every S-morphism f : Ng — E(Ag)
such that Tm(f) C {c| ¢ }f a € A} there exists an S-morphism
g: Mg — Ag such that for each b € N we have g(b) }f a }f f(b)
for some a € Ag.

Proof. (i) = (ii). Let Mg be a finitely presented S-poset, Ng be its
finitely generated sub S-poset and f : Ng — E(Ag) an S-morphism
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such that Im(f) C {c| ¢ }f a € A}. Regular injectivity of E(Ag) implies
the existence of h : Mg — E(Ag) such that h|y = f. Let L =
{b1,...,b,} be a finite set of generating elements of Ng. Now h(b;) K
a; € Ag and Proposition 2.9 implies the existence of an S-morphism
g: Mg — Ag with g(b;) }f a; for any 1 < ¢ < n. So for each b;s € N
we have g(b;s) )t a;s } f(b;)s.

(ii)= (i). By assumption and using Proposition 2.9, Ag is po-pure
in £(Ag), and so Ag is absolutely po-pure. O

We conclude this section by considering the relationship between
regular injectivity and absolute po-purity. In [9], the authors gave
another characterization of regular injective S-posets.

Proposition 2.13.  [9, Theorem 2.5] An S-poset is reqular injective
if and only if any consistent system of inequations with constants from
Ag has a solution in Ag.

In view of the previous proposition we deduce that every regular in-
jective S-poset is absolutely po-pure. Recall from [10] that a pomonoid
S is called right (po-) Noetherian if it satisfies the ascending chain con-
dition on right (po)ideals. Equivalently, all right (po)ideals of S are
finitely generated.

In [9] it is shown that if every absolutely po-pure S-poset is weakly
regular injective, then the pomonoid S is right po-Noetherian.

Proposition 2.14.  Every absolutely 1-po-pure S-poset over a right
po-Noetherian pomonid is reqular injective.

Proof. Let S be a po-Noetherian pomonid and Ag be absolutely
po-pure. To reach the contrary, suppose that b € F(Ag) \ As. Let
I ={s e S|(3ae€ A)(bs <a)}. I =10, then <,, [4 =< |a
where B = [bS], is the convex ideal generated by b, and pp is a Rees
congruence on B, which is contradiction to Corollary 1.1. Now, suppose
that I # (). Clearly, I is a poideal of S. Since S is po-Noetherian, we
may assume that I is generated by the set {s1,...,$,}. Now, consider
the finite system X = {xs; < bs;| 1 <7 < n} of inequations which has
a solution b in F(Ag). So the system > has a solution a € A. Take
o =wv(a,b). Let aj,as € A such that a; <, as. Then
a S at1 btl S CLtQ btz S atg Ce btm S as,

where t; € S for 1 < i < m. It is obvious that ¢; € I which implies
that at; < bt;, and so a3 < ay. Thus <, |4 =< |4, which is again
a contradiction by Corollary 1.1. Therefore, Ag = E(Ag) is regular
injective. 0
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In [9, Corollary 2.5], it is shown that absolute 1-purity implies fg-
weakly regular injectivity.

The following examples illustrate that weak regular injectivity does
not imply absolute 1-po-purity and also absolute po-purity does not
imply weak regular injectivity.

Example 2.15. Weak regular injectivity does not imply absolute 1-
po-purity. Similar to [0, Example 3.6.17], let S = T, where T' = {x,y}
is the two-element right zero semigroup with trivial order, then S is
weakly regular injective. But since S does not have any local left zeros,
S cannot be absolutely 1-po-pure.

Example 2.16.  Absolute po-purity does not imply weak regular
injectivity. Indeed, let S = (N, min)Ue, where ¢ denotes the externally
adjoined identity with the order 1 < 2 < 3 < ... < e. Then Kg =
S\ {e} is a right ideal of S which is absolutely po-pure, but K is not
weakly regular injective.

The following relations exist between absolute purity properties and
regular injectivity of S-posets.

reqgular injective = abs. po — pure = abs. 1 — po — pure

U 4

abs. pure = abs. 1 — pure

4

fg —w. regular injective
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