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ADMITTING CENTER MAPS ON MULTIPLICATIVE
METRIC SPACE

M. H. LABBAF GHASEMI ZAVAREH, N. EFTEKHARI∗ AND A. BAYATI
ESHKAFTAKI

Abstract. In this work, we investigate admitting center map on
multiplicative metric space and establish some fixed point theo-
rems for such maps. We modify the Banach contraction principle
and the Caristi’s fixed point theorem for M -contraction admitting
center maps and we prove some useful theorems. Our results on
multiplicative metric space improve and modify some existing fixed
point theorems in the literature.

1. Introduction and Preliminaries

Let (X, ∥.∥) be a Banach space and C be a subset of X. The map
T : C → X is admitting center map, if there exists y0 ∈ X such that
for each x ∈ C, we have

∥Tx− y0∥ ≤ ∥x− y0∥.

The point y0 ∈ X is said to be a center of T.
The fixed point results for admitting center maps are very useful

in the system of equations. In 1972, Michael Grossman and Robert
Katz [14] established a new calculus called non-Newtonian calculus also
termed as multiplicative calculus. Florack and Van Assen [13] obtained
the idea of multiplicative calculus in biomedical image analysis.
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Bashirov et al. [7] showed the efficiency of multiplicative calculus
over the Newtonian calculus. They established that multiplicative cal-
culus is more effective than Newtonian calculus for modeling various
problems. By defining multiplicative distance, they provide the base
of multiplicative metric space. Özavsar and Cevikel [16] introduced
the notion of multiplicative contraction mapping. They proved the
well known Banach contraction principle for such contraction in mul-
tiplicative metric space. The Banach contraction principle has result
in nonlinear analysis. Generalization of the Banach contraction prin-
ciple is one of the important branch of research. The Banach theorem
has many generalizations (see [8, 9, 11, 12]). Rome and Sarwar [18]
established several generalizations of the Banach contraction principle
and proved Cantor intersection theorem in multiplicative metric space.
For various definitions of multiplicative calculus we refer the reader to
[1, 6, 7, 14, 15, 16, 17, 19]. The main ideas of this work is depended on
the references [4, 8, 16].

In this work, we prove some fixed point results in multiplicative
metric space. We introduce the concept of admitting center map on
multiplicative metric space and establish some new fixed point theo-
rems for such maps. Our results improve and modify some existing
fixed point results in the literature.

Definition 1.1. [6] Let X be a non-empty set. A map d : X ×X →
[1,∞) is said to be a multiplicative metric on X if the following con-
ditions are satisfied:

(1) d(x, y) ≥ 1, for all x, y ∈ X,
(2) d(x, y) = 1 if and only if x = y,
(3) d(x, y) = d(y, x), for all x, y ∈ X,
(4) d(x, z) ≤ d(x, y).d(y, z), for all x, y, z ∈ X.

The pair (X, d) is called multiplicative metric space.

In multiplicative metric space, always d(x, y) ≥ 1 and triangle in-
equality is obtained by product instead of adding, indeed, the roles
of subtraction and addition move to division and multiplication. In
multiplicative metric space some proofs become easier, for example
see [6, Section 4]. In [10], Cevik et al. proved completion theorem
for multiplicative metric space. In [2], M. Abbas et al. proved the
fixed point result for mappings satisfying rational contractive condi-
tion in the setup of multiplicative metric space. In [16], Özavsar and
Cevikel considered some topological properties of multiplicative met-
ric space and introduced multiplicative contraction map and obtained
some fixed point results.
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Example 1.2. [6] The mapping d : (0,∞) × (0,∞) → [1,∞) defined
by d(x, y) = |x

y
|∗ where

|a|∗ =
{
a if a ≥ 1,
1
a

if a < 1,

is a multiplicative metric on R+.

In the following, we recall the concepts of multiplicative Cauchy se-
quence, multiplicative convergent sequence and complete multiplicative
space.

Definition 1.3. [1, 15, 16] A sequence (xn) in a multiplicative metric
space (X, d) is said to be a multiplicative Cauchy sequence if for all
ϵ > 1, there exits a positive integer n0 such that d(xn, xm) < ϵ, for all
n,m ≥ n0.

A sequence (xn) in X is multiplicative Cauchy sequence if and only if
d(xn, xm) → 1 as n,m→ ∞ [16]. A sequence (xn) in X multiplicative
converges to x ∈ X, if for all ϵ > 1 there exists a positive integer n0

such that d(xn, x) < ϵ, for all n ≥ n0.

Definition 1.4. [1, 15, 16] A multiplicative metric space (X, d) is said
to be complete if any multiplicative Cauchy sequence in X converges
to a point of X.

Definition 1.5. Let (X, d) be a multiplicative metric space. A map f :
X → X is called multiplicative Lipschitz if there exists a real constant
λ > 0 such that d(f(x1), f(x2)) ≤ d(x1, x2)

λ, for all x1, x2 ∈ X.

A multiplicative Lipschitz map f is said to be multiplicative contrac-
tion if λ < 1. A map f is called multiplicative nonexpansive if λ = 1.
A map f is said to be multiplicative contractive, if for all x1, x2 ∈ X,
with x1 ̸= x2, we have d(f(x1), f(x2)) < d(x1, x2) [1, 15, 16].

2. Main Results

In this section, we modify the Banach contraction principle and the
Caristi’s fixed point theorem for M-contraction admitting center maps
and we prove some useful theorems.

We extend the definition of multiplicative Lipschitz for admitting
center maps.

Definition 2.1. Let (X, d) be a multiplicative metric space and C ⊆
X. A map f : C → X is called multiplicative Lipschitz admitting center
(abbreviated as M-Lipschitz admitting center) if there exist y0 ∈ X and
λ > 0 such that for all x ∈ C that x ̸= f(x), we have d(f(x), y0) ≤
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d(x, y0)
λ and y0 ∈ X is said to be a multiplicative center (abbreviated

as M-center) of f. A multiplicative Lipschitz admitting center map f
is said to be M -contraction admitting center if 0 < λ < 1. The map f
is called M -nonexpansive admitting center if λ = 1. A map f is said
to be multiplicative contractive admitting center (abbreviated as M-
contractive admitting center) if for all x ∈ C that x ̸= f(x), we have
d(f(x), y0) < d(x, y0).

2.1. Modified of the Banach Contraction Principle. The Banach
contraction principle is one of the earliest and most important results
in fixed point theory [5]. A large number of authors have improved,
generalized and extended this classical result in nonlinear analysis.

In this section, we set N0 for N ∪ {0} and we prove the Banach
contraction principle for the class of all M-contraction admitting center
maps. We recall that T : X → X is a contraction map, if for all
x, y ∈ X, we have

d(Tx, Ty) ≤ kd(x, y), where 0 < k < 1. (2.1)

According to the Banach contraction principle, any map T satisfying
(2.1) has a unique fixed point in complete metric space X.

Let (X, d) be a multiplicative metric space, x ∈ X and ϵ > 1. As
defined in [16], a set

Bϵ(x) = {y ∈ X|d(x, y) < ϵ},

is called multiplicative open ball of radius ϵ with center x.
Let (X, dX) and (Y, dY ) be two multiplicative metric spaces and f :

X → Y be a function. If for any ϵ > 1, there exists δ > 1 such that
f(Bδ(x)) ⊂ Bϵ(f(x)), then f is called M -continuous at x ∈ X [16].

In the next theorem, we modify the Banach contraction principle
[3, Theorem 4.1.5, p.178] for M -contraction admitting center maps in
complete multiplicative metric space..

Theorem 2.2. Let (X, d) be a complete multiplicative metric space and
let f : X → X be M-continuous, M-contraction admitting center with
M-Lipschitz constant L. Let y0 ∈ X be the M-center of f. Then f has
a fixed point u ∈ X and for some x ∈ X, we have limn→∞ fn(x) = u,
with

d(fn(x), u) ≤ d(y0, f(x))
Ln−1

.

Proof. Let x ∈ X. We first show that (fn(x)) is a Cauchy sequence.
For n ∈ N and y0 ∈ X, we have

d(fn(x), y0) ≤ d(fn−1(x), y0)
L ≤ · · · ≤ d(f(x), y0)

Ln−1

.
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Thus for m > n where n ∈ N,

d(fn(x), fm(x)) ≤ d(fn(x), y0)d(y0, f
m(x))

≤ d(f(x), y0)
Ln−1

d(f(x), y0)
Lm−1

≤ d(f(x), y0)
Ln−1+Lm−1

.

Since f is M -contraction, it follows that 0 < L < 1. Hence for m > n,
as m,n→ ∞, we have

d(fn(x), fm(x)) ≤ d(f(x), y0)
Ln−1+Lm−1 → 1. (2.2)

This shows that (fn(x)) is a Cauchy sequence in X. As X is complete
there exists u ∈ X with lim

n→∞
fn(x) = u. As f is M -continuous, we have

u = lim
n→∞

fn+1(x) = lim
n→∞

f(fn(x)) = f(u). So u is a fixed point of f.
Now, letting m→ ∞ in (2.2) implies d(fn(x), u) ≤ d(y0, f(x))

Ln−1
. □

2.2. Modified of the Caristi’s theorem. Let X be a multiplicative
space and f : X → (−∞,∞] be a function. Then f is said to be proper
if there exists x ∈ X such that f(x) <∞.
Let X be a topological space and f : X → (−∞,∞] be a proper func-
tion. We recall that f is said to be lower semicontinuous (l.s.c.) at
x0 ∈ X if for xn → x0, we have f(x0) ≤ lim infn→∞ f(xn), where (xn)
is a sequence in X tends to x0. Also, f is said to be lower semicontinu-
ous on X if it is lower semicontinuous at each point of X. The Caristi’s
theorem [8] is a modification of the ϵ-variational principle of Ekeland
[12]. We want to modify the Caristi’s fixed point theorem in com-
plete multiplicative metric space. To this end, we need the following
proposition.

In the next proposition, we modify [3, Proposition 4.1.1] and [8] in
complete multiplicative metric space.

Proposition 2.3. Let (X, d) be a complete multiplicative metric space
and φ : X → [1,∞] be a lower semicontinuous function. Suppose that
(xn) is a sequence in X and y0 ∈ X such that

d(xn, y0) ≤
φ(xn−1)

φ(xn)
, for all n ∈ N.

Then the sequence (xn) is M-converge to a point v ∈ X and d(xn, v) ≤[
φ(xn−1)
φ(v)

]2
, moreover φ(v) ≤ φ(xn), for all n ∈ N0.
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Proof. By assumptions, we have 1 ≤ d(xn, y0) ≤ φ(xn−1)
φ(xn)

, it follows that
(φ(xn)) is a decreasing sequence. Moreover, for any m ∈ N, we have
m∏

n=1

d(xn, xn+1) = d(x1, x2)d(x2, x3) · · · d(xm, xm+1)

≤ d(x1, y0)d(y0, x2)d(x2, y0)d(y0, x3) · · · d(xm, y0)d(y0, xm+1)

= d(x1, y0)d(y0, x2)
2d(y0, x3)

2 · · · d(xm, y0)2d(y0, xm+1)

≤ φ(x0)

φ(x1)

[
φ(x1)

φ(x2)

]2
· · ·

[
φ(xm−1)

φ(xm)

]2
φ(xm)

φ(xm+1)

=
φ(x0)φ(x1)

φ(xm)φ(xm+1)

≤ φ(x0)φ(x1)

φ(xm+1)2

≤ φ(x0)φ(x1)

(infn∈N0 φ(xn))
2
.

Letting m→ ∞, we have
∞∏
n=1

d(xn, xn+1) <∞.

Since all numbers in this multiplication are greater than or equal one,
they are convergent to one, this implies that (xn) is a Cauchy sequence
in X. Since X is complete, there exists v ∈ X such that lim

n→∞
xn = v.

Let m,n ∈ N with m > n. Then

d(xn, xm) ≤d(xn, xn+1)d(xn+1, xn+2) . . . d(xm−1, xm)

≤d(xn, y0)d(y0, xn+1)d(xn+1, y0)d(y0, xn+2)

. . . d(xm−1, y0)d(y0, xm)

=d(xn, y0)d(y0, xn+1)
2d(y0, xn+2)

2 . . . d(xm−1, y0)
2d(y0, xm)

≤φ(xn−1)

φ(xn)

[
φ(xn)

φ(xn+1)

]2
· · ·

[
φ(xm−2)

φ(xm−1)

]2 [
φ(xm−1)

φ(xm)

]
=
φ(xn−1)φ(xn)

φ(xm−1)φ(xm)

≤
[
φ(xn−1)

φ(xm)

]2
.
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Let m tends to infinity, we have

d(xn, v) ≤
[
φ(xn−1)

φ(v)

]2
, for all n ∈ N.

□
In the next theorem, we modify [3, Theorem 4.1.2] and [8] in com-

plete multiplicative metric space. We apply Proposition 2.3 in the next
theorem.

Theorem 2.4. Let (X, d) be a complete multiplicative metric space and
φ : X → [1,∞] be a proper and lower semicontinuous function. Let
y0 ∈ X such that for any u ∈ X that inf

x∈X
φ(x) < φ(u), there is v ∈ X

such that
y0 ̸= v and d(y0, v) ≤

φ(u)

φ(v)
.

Then there is an x0 ∈ X, with φ(x0) = inf
x∈X

φ(x).

Proof. By assumption there is u0 ∈ X with φ(u0) < ∞. If inf
x∈X

φ(x) =

φ(u0), then we are done. So we suppose contrary to our claim, that
inf
x∈X

φ(x) < φ(y), for any y ∈ X. So inf
x∈X

φ(x) < φ(u0) and by as-

sumption there is u1 ∈ X such that u1 ̸= y0 and d(y0, u1) ≤ φ(u0)
φ(u1)

.

Inductively, we define a sequence (un) in X, starting with u0. Suppose
that we choose un−1 ∈ X. Put

En :=

{
t ∈ X : d(y0, t) ≤

φ(un−1)

φ(t)

}
.

As inf
x∈X

φ(x) < φ(un−1), then there is t0 ∈ X such that t0 ̸= y0 and

1 < d(y0, t0) ≤
φ(un−1)

φ(t0)
,

so t0 ∈ En and En ̸= ∅. Also, we have
φ(un−1)

φ(t0)
≤ φ(un−1)

inf
t∈En

φ(t)
.

Therefore, 1 < φ(un−1)
inf

t∈En
φ(t)

. Hence, there is un ∈ En such that

φ(un) < inf
t∈En

φ(t)

 φ(un−1)

inf
t∈En

φ(t)

 1
2

=

[
inf
t∈En

φ(t)φ(un−1)

] 1
2

. (2.3)
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Since un ∈ En, so we have

d(y0, un) ≤
φ(un−1)

φ(un)
.

Proposition 2.3 implies that un → v ∈ X, and d(un, v) ≤ [φ(un−1)
φ(v)

]2. By
assumption, since inf

x∈X
φ(x) < φ(v), there is a z ∈ X such that z ̸= y0

and 1 < d(y0, z) ≤ φ(v)
φ(z)

. So we have

φ(z) ≤ φ(v)

d(y0, z)

≤ φ(v)

d(y0, z)
.
φ(un−1)

φ(v)

=
φ(un−1)

d(y0, z)
.

This follows that z ∈ En. The inequality (2.3) implies that
φ(un)

2

φ(un−1)
≤ inf

t∈En

φ(t) ≤ φ(z).

Thus φ(z) < φ(v) ≤ limn→∞ φ(un) ≤ φ(z), which is a contradiction.
Thus, there is x0 ∈ X such that φ(x0) = inf

x∈X
φ(x). □

In [8], Caristi proved the following theorem.

Theorem 2.5. Let (X, d) be complete metric space and φ : X →
(−∞,∞] be proper bounded below and lower semicontinuous function.
Let T : X → X be a map such that

d(x, Tx) ≤ φ(x)− φ(Tx), for all x ∈ X,

then there exists a point v ∈ X such that v = Tv and φ(v) <∞.

Now we are in a position to obtain a modified version of the Caristi’s
fixed point theorem in multiplicative metric space.

Theorem 2.6. (Modified of the Caristi’s fixed point theorem)
Let (X, d) be complete multiplicative metric space and φ : X → [1,∞]
be a proper and lower semicontinuous function. If T : X → X is a
map and y0 ∈ X such that for all x ∈ X

x ̸= Tx =⇒ 1 < d(y0, Tx) ≤
φ(x)

φ(Tx)
, (2.4)

then there exists v ∈ X such that v = Tv.
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Proof. On the contrary, suppose that v ̸= Tv for all v ∈ X. Since φ is
proper, there exists u ∈ X such that φ(u) <∞. Let

K :=

{
x ∈ X : d(y0, x) ≤

φ(u)

φ(x)

}
.

Then by hypothesis Tu ∈ K and so K is a non-empty closed subset
of X. We show that K is invariant under T. For any x ∈ K, we have
x ̸= Tx and

1 ≤ d(y0, x) ≤
φ(u)

φ(x)
,

and hence (2.4) implies

φ(Tx) ≤ φ(x)

d(y0, Tx)

≤ φ(x)

d(y0, Tx)
.
φ(u)

φ(x)

=
φ(u)

d(y0, Tx)
,

which follows that Tx ∈ K. Hence for any x ∈ K we have
(i) inf

y∈K
φ(y) ≤ φ(Tx) < φ(x),

(ii) there exists w ∈ K such that

w ̸= y0 and d(y0, w) ≤
φ(x)

φ(w)
.

Then by Theorem 2.4, there exists an x0 ∈ K with φ(x0) = inf
x∈K

φ(x).

Which contradicts (i). This proves the existence of a fixed point for
T. □

In the following, we modify the Banach contraction principle ( [16,
Theorem 3.2] and [3, Theorem 4.1.5]) in multiplicative metric space.

Theorem 2.7. (Modified of the Banach contraction principle)
Let (X, d) be complete multiplicative metric space, K be a closed subset
of X and T : K → K be continuous M-contraction admitting center
map at y0 ∈ X. Then for arbitrary x0 ∈ K, the Picard iteration process
defined by

xn+1 = Txn, for n ∈ N0,

converges to a fixed point v ∈ K of T.
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Proof. Let λ be an M-contraction constant with 0 < λ < 1. Define
φ : K → [1,∞) by φ(x) = d(y0, Tx)

1
1−λ , for x ∈ K. Hence φ is a

continuous function. Let x0 ∈ K. We define a sequence (xn) in K by
xn = T nx0, for n ∈ N.

If there exists n ∈ N0, such that xn+1 = xn, then xn is a fixed point of T.
Therefore the result trivially holds. So we can assume that xn+1 ̸= xn,
for all n ∈ N0. As T is an M -contraction admitting center map, we
have

d(y0, xn+1) ≤ d(y0, xn)
λ, for all n ∈ N,

which implies that
d(y0, xn)

d(y0, xn)λ
≤ d(y0, xn)

d(y0, xn+1)
.

Hence

d(y0, xn) ≤
[
d(y0, xn)

d(y0, xn+1)

] 1
1−λ

=
φ(xn−1)

φ(xn)
.

Now, Proposition 2.3 implies that there exists v ∈ K such that
lim
n→∞

xn = v.

Since T is continuous and xn+1 = Txn, it follows that v = Tv. □
In the next theorem, we obtain a modified of the Boyd and Wong’s

fixed point theorem [3, Theorem 4.1.12] in multiplicative metric space.

Theorem 2.8. (Modified of the Boyd and Wong’s fixed point
theorem) Let (X, d) be complete multiplicative metric space, y0 ∈ X
and T : X → X be a continuous map that satisfies

d(Tx, y0) ≤ ψ(d(x, y0)), for all x ∈ X, x ̸= y0. (2.5)
where ψ : [1,+∞) → [1,+∞) is the upper semicontinuous function
from the right ( i.e., λi ↓ λ ≥ 1 ⇒ lim sup

i→∞
ψ(λi) ≤ ψ(λ) ) such that

ψ(t) < t for each t > 1. Then T has a unique fixed point v ∈ X.
Moreover, for each x ∈ X, lim

n→∞
T nx = v.

Proof. Fix x, y0 ∈ X and define a sequence (xn) in X by xn = T nx,
n ∈ N0. Set dn := d(xn, y0). We divide the proof into three parts:

Part 1. lim
n→∞

dn = 1.

Note that
dn+1 = d(xn+1, y0) = d(Txn, y0) ≤ ψ(dn) < dn, n ∈ N0.



ADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE 49

Hence (dn) is a decreasing sequence and bounded below. Hence lim
n→∞

dn

exists. Let lim
n→∞

dn = δ ≥ 1. Assume that δ > 1. By the right continuity
of ψ,

δ = lim
n→∞

dn+1 ≤ lim sup
n→∞

ψ(dn) ≤ ψ(δ) < δ,

which is impossible, so δ = 1.

Part 2. The sequence (xn) is a Cauchy sequence.
Assume that (xn) is not Cauchy. Then there exists ϵ > 1 such that for
any k ∈ N, there are integers mk, nk ∈ N such that mk > nk ≥ k and

d(xnk
, xmk

) ≥ ϵ.

Now letting k → ∞, Part 1 implies that

ϵ ≤ d(xnk
, xmk

) ≤ d(xnk
, y0)d(y0, xmk

) = dnk
dmk

→ 1,

so we have ϵ ≤ 1, which contradicts ϵ > 1. Therefore (xn) is a Cauchy
sequence in X.

Part 3. The existence and uniqueness of fixed point.
As (xn) is a Cauchy sequence and X is complete, then there is v ∈ X,
such that limn→∞ xn = v. By continuity of T and xn = T nx, we have
v = Tv. For the uniqueness of fixed point, we show that v = y0. Suppose
that v is a fixed point of T and v ̸= y0. Then by (2.5) and assumption,
we have

d(v, y0) = d(Tv, y0)

≤ ψ(d(v, y0))

< d(v, y0).

That is a contradiction. □
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ضربی متریک فضای روی مرکزپذیر های نگاشت

اشکفتکی بیاتی علی و افتخاری نها قاسمی، لباف محمدحسین
ایران شهرکرد، شهرکرد، دانشگاه ریاضی، علوم دانشکده

را ثابت نقطه قضایای برخی و کرده بررسی را ضربی متریک فضای روی مرکزپذیر نگاشت مقاله، این در
نگاشت های برای را کریستی ثابت نقطه قضیه و باناخ انقباض اصل می کنیم. ثابت نگاشت ها چنین برای
ضربی، متریک فضای در مقاله، این در آمده دست به نتایج کنیم. می ثابت و بیان انقباض M- مرکزپذیر

می بخشد. ارتقا را معمولی ثابت نقطه قضایای برخی

M-انقباض مرکزپذیر نگاشت ضربی، متریک فضای مرکزپذیر، نگاشت کلیدی: کلمات

۵
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