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Abstract 

Due to the existing interactions among the variables of a multiple input-multiple output (MIMO) non-linear 

system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln 

(CRK) is a MIMO non-linear system in the cement factory with a complicated mechanism and uncertain 

disturbances. The identification of CRK is very important for different purposes such as prediction, fault 

detection, and control. In the previous works, CRK was identified after decomposing it into several multiple 

input-single output (MISO) systems. In this work, for the first time, the rough-neural network (R-NN) is 

utilized for the identification of CRK without the usage of MISO structures. R-NN is a neural structure 

designed on the basis of the rough set theory to deal with the uncertainty and vagueness. In addition, a 

stochastic gradient descent learning algorithm is proposed for training R-NNs. The simulation results show the 

effectiveness of the proposed methodology. 
 

Keywords: Cement Rotary Kiln, Rough-Neural Network, Stochastic Gradient Descent Learning, System 

Identification, Uncertainty. 

1. Introduction 

Multiple input-multiple output (MIMO) non-linear 

systems have some interactions among their 

outputs. Therefore, the identification and control of 

these systems are difficult tasks [1]. In the presence 

of noises, which commonly exist in all of the real 

systems, these problems are crucial. Recently, the 

problem of identifying and controlling the MIMO 

systems have received much attention [1,2,3]. Due 

to the aforementioned problems, using the multiple 

input-single output (MISO) structures is not 

suitable for these problems [11]. 

Cement rotary kiln (CRK) is the central part of the 

cement factory that produces the cement clinker 

from the input materials. Due to the inherent 

complexities, the automation problem of CRK has 

remained unsolved, and therefore, most CRKs are 

under the control of human operators [5]. In this 

situation, achieving the desired product quality 

with an optimized cost is hard. In order to cope with 

these complexities, one approach is the design of 

intelligent controllers on the basis of human-

machine interactions. In order to design these 

controllers, the identification of CRK is necessary. 

In the literature, some attempts have been made for 

the identification of CRK. Some dynamic and 

thermal models are given for CRK in [6] and [7], 

respectively. Sadeghian and Fatehi have used a 

locally linear neuro-fuzzy technique for the 

identification of CRK [8]. Noshirvani et al. have 

used the multilayer perceptron (MLP), and 

Makaremi et al. have used a locally linear neuro-

fuzzy technique for this purpose [9]. Sharifi et al. 

have used the hierarchical wavelet TS-type fuzzy 

inference system [10]. Ahmadi and Teshnehlab 

have used the sinusoidal rough-neural network 

(SR-NN) for the identification of CRK [11]. 

Recently, Moradkhani and Teshnehlab have used 

the Takagi-Sugeno neuro-fuzzy system for the 

identification of CRK in a noisy condition [12]. In 

these works, CRK is decomposed into some MISO 

systems, and then the identification is done. This 

approach has some drawbacks in achieving an 
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appropriate model. Due to the existing interactions 

among the outputs of CRK, these models are 

usually far from the real system, and this can affect 

the performances of the controllers and other tasks 

such as fault detection and prediction that are done 

on the basis of this model. 

On the other hand, the undeniable noises and 

uncertainties in the real systems that are originated 

from the environment or measurement instruments, 

influence the collected data for the identification. 

This can affect the reliability of the produced 

models. For this reason, during the last years, there 

have been some attempts to cope with the 

uncertainties. In this context, some successful 

theories such as fuzzy sets and rough sets have 

appeared. In the context of neural networks, 

Lingras has proposed the rough-neural network (R-

NN) on the basis of the rough set theory to cope 

with the uncertainties [13]. In the recent years, R-

NNs have been applied to solve different problems 

such as the traffic volume prediction [13], image 

classification [14], medical diagnostic support 

system [15], system identification [11,16,17], 

social networks [18], machine translation [19], 

interval data classification [20], and forecasting 

travel behavior [21]. 

Recently, SR-NN has been used for the 

identification of discrete dynamic non-linear 

systems, and as an example, CRK has been 

identified by the usage of four MISO systems 

corresponding to the system outputs [11]. In [11], 

SR-NN has been trained by a Lyapunov stability 

theory-based (LST-B) learning algorithm. In that 

approach, the learning laws are derived such that 

we have Δ𝑣𝑘 < 0 without using the gradient of 𝑣𝑘, 

where 𝑣𝑘 is the cost function [11,17,22]. 

In this work, to increase the reliability of the 

models and to deal with the uncertainties and 

noises, R-NN was used for the identification of 

CRK without decomposing it into the MISO 

structures. To the best of our knowledge, CRK is 

identified in this manner for the first time. Due to 

the existing interactions among the variables of the 

MIMO system, the reliability of the constructed 

model would be increased. In addition, a learning 

algorithm on the basis of stochastic gradient 

descent (SGD) is proposed for training R-NN, and 

it is proved that the identification error converges 

to zero. SGD is a powerful learning algorithm with 

a good convergence speed. It is usually able to 

escape local minima due to its random behavior 

[23]. 

In the SGD-based learning algorithm, the gradients 

of loss function are used to derive the learning 

laws. In this algorithm, the examples are randomly 

presented to the neural network one by one and in 

each step and the parameters are updated. In the 

LST-B learning algorithm that has been proposed 

in [11], the terms containing the second order of 

differences of parameters are ignored; in this work, 

they were considered in the mathematical 

computations with fewer words. Therefore, the 

stability proof of SGD is stronger than the stability 

proof of LST-B. 

The organization of this paper is as what follows. 

In Section 2, the structure of R-NN is described. A 

SGD-based algorithm for training R-NN is 

proposed in Section 3. The error convergence is 

proved in Section 4. In Section 5, CRK is identified 

by R-NNs. Finally, the conclusions are drawn in 

Section 6. 

 

2. Rough-neural network (R-NN) 

 R-NN has a great ability in dealing with noises and 

uncertainties. In this structure, the uncertainty is 

modeled as an interval (the lower and upper bounds 

are the inputs of the neural network) and the rough 

neuron is defined as a pair of conventional neurons, 

where the information is exchanged among them. 

R-NN is very flexible in comparison with the 

interval neural networks [24]. 

Consider the R-NN with 𝑛 rough neurons in the 

hidden layer and 𝑞 conventional neurons in the 

output layer, as shown in figure 1. Let �̂� be the 

output vector of R-NN and 𝑥 = [𝑥; 𝑥; 1] be the 

input vector of R-NN, where 𝑥 and 𝑥 are the 

vectors of the lower and upper bounds of inputs, 

respectively, and 1 is the input for the biases of 

hidden neurons. Suppose that 𝑉, 𝑉, 𝑊, and 𝑊 are 

the parameters between all inputs and hidden lower 

bound neurons, and the parameters between all 

inputs and hidden upper bound neurons, the 

parameters between the hidden lower bound 

neurons and output neurons, and the parameters 

between the hidden upper bound neurons and 

output neurons, respectively. In addition, let 𝑂 and 

𝑂 be the outputs of lower and upper bound hidden 

neurons, respectively, and 𝜙 be the activation 

function of the hidden neurons. 

Then the output vector �̂� of R-NN is given by [11]: 

�̂� = 𝑊𝑂 + 𝑊𝑂 

    = 𝑊min (𝜙, 𝜙) + 𝑊max (𝜙, 𝜙)           (1) 

where, 𝜙 = 𝜙(𝑉𝑥) and 𝜙 = 𝜙(𝑉𝑥). To achieve an 

algebraic description of 𝑂 and 𝑂, the vectors 𝛿 and 

𝛿 are introduced such that: 

𝛿 = (𝛿1, ⋯ , 𝛿𝑛), 𝛿 = (𝛿
1

, ⋯ , 𝛿
𝑛

)           (2) 

𝛿𝑗, 𝛿
𝑗

= 0𝑜𝑟1, 𝛿𝑗 + 𝛿
𝑗

= 1, 𝑗 = 1, ⋯ , 𝑛   (3) 

𝛿𝑗𝜙𝑗 + 𝛿
𝑗
𝜙

𝑗
≤ 𝜙𝑗, 𝜙

𝑗
≤ 𝛿

𝑗
𝜙𝑗 + 𝛿𝑗𝜙

𝑗
           (4) 
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 In (4), 𝜙𝑗 denotes the 𝑗th component of 𝜙, and 𝜙
𝑗
 

denotes the 𝑗th component of 𝜙. According to (2)-

(4), we have:  

min (𝜙, 𝜙) = diag(𝛿)𝜙 + diag(𝛿)𝜙           (5) 

max (𝜙, 𝜙) = diag(𝛿)𝜙 + diag(𝛿)𝜙           (6) 

 Then with introducing 𝒞 = 𝑊diag(𝛿) +

𝑊diag(𝛿), 𝒟 = 𝑊diag(𝛿) + 𝑊diag(𝛿), and 

using (1), (5), and (6), we have  

�̂� = 𝒞𝜙 + 𝒟𝜙                                                   (7) 

 

Figure 1. Structure of R-NN. 

 

3. Stochastic gradient descent learning 

Stochastic gradient descent (SGD) is a powerful 

on-line learning algorithm for neural networks. In 

SGD, the examples are randomly presented to the 

neural network one-by-one, and after the 

presentation of each example, the parameters are 

updated. SGD is a fast learning algorithm for large 

datasets, and due to the random behavior, it is 

commonly able to escape local minima [22,25]. In 

this section, a SGD learning algorithm is proposed 

for R-NN.  

Suppose that {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, ⋯ , 𝑁} be a set of 

input-output examples that are randomly presented 

into the neural network one by one.  Let 𝑒𝑖 = 𝑦𝑖 −
�̂�𝑖 be the error of the 𝑖-th observed data. We can 

define the energy function for R-NN as follows 

(using (7)):  

𝐽(𝑊, 𝑊, 𝑉, 𝑉) = min ∑

𝑁

𝑖=1

𝐽(𝑊𝑖 , 𝑊𝑖, 𝑉𝑖, 𝑉𝑖) 

                     = min
1

2
∑𝑁

𝑖=1 ∥ 𝑒𝑖 ∥2           (8) 

Then we have: 

𝐽𝑖 = 𝐽(𝑊𝑖 , 𝑊𝑖, 𝑉𝑖, 𝑉𝑖) 

    =
1

2
∥ 𝑒𝑖 ∥2 

 

 

 

 

    =
1

2
∥ 𝑦𝑖 − �̂�𝑖 ∥2 

    =
1

2
∥ 𝑦𝑖 − 𝒞𝑖𝜙𝑖 − 𝒟𝑖𝜙𝑖 ∥2 

    =
1

2
∥ 𝑦𝑖 − 𝒞𝑖𝜙𝑖 − 𝒟𝑖𝜙𝑖 ∥2 

  =
1

2
(𝑦𝑖 − 𝒞𝑖𝜙𝑖 − 𝒟𝑖𝜙𝑖)

𝑇
(𝑦𝑖 − 𝒞𝑖𝜙𝑖 − 𝒟𝑖𝜙𝑖) 

=
1

2
𝑦𝑖

𝑇𝑦𝑖 − 𝑦𝑖
𝑇𝒞𝑖𝜙𝑖 − 𝑦𝑖

𝑇𝒟𝑖𝜙𝑖 +
1

2
𝜙𝑖𝒞𝑖

𝑇𝒞𝑖𝜙𝑖 

         +𝜙𝑖𝒞𝑖
𝑇𝒟𝑖𝜙𝑖 +

1

2
𝜙𝑖𝒟𝑖

𝑇𝒟𝑖𝜙𝑖                         (9) 

where 𝜙𝑖 = 𝜙(𝑉𝑖𝑥𝑖) and 𝜙𝑖 = 𝜙(𝑉𝑖𝑥𝑖).    

 

Remark 1. For the arbitrary matrices 𝐴1×𝑚 and 

𝐵𝑚×1, we have 𝐴𝐵 = 𝐵𝑇𝐴𝑇. Therefore, if we 

suppose that 𝐴 = 𝑦𝑖
𝑇 and 𝐵 = 𝒞𝑖𝜙𝑖, then we have 

𝑦𝑖
𝑇𝒞𝑖𝜙𝑖 = (𝒞𝑖𝜙𝑖)𝑇𝑦𝑖. This relation has been used 

in (9).   

 

Using (5), we have: 
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∂𝐽𝑖

∂𝑊𝑖
=

∂𝐽𝑖

∂𝒞𝑖

∂𝒞𝑖

∂𝑊𝑖
+

∂𝐽𝑖

∂𝒟𝑖

∂𝒟𝑖

∂𝑊𝑖
 

         = (−𝑦𝑖𝜙𝑖
𝑇 + 𝒞𝑖𝜙𝑖𝜙𝑖

𝑇 + 𝒟𝑖𝜙𝑖𝜙𝑖
𝑇) diag(𝛿𝑖)𝑇 

        + (−𝑦𝑖𝜙𝑖

𝑇
+ 𝒟𝑖𝜙𝑖𝜙𝑖

𝑇
+ 𝒞𝑖𝜙𝑖𝜙𝑖

𝑇
) diag(𝛿𝑖)𝑇    

        = (−𝑦𝑖 + 𝒞𝑖𝜙𝑖 + 𝒟𝑖𝜙𝑖) 𝜙𝑖
𝑇diag(𝛿𝑖)𝑇 

       + (−𝑦𝑖 + 𝒟𝑖𝜙𝑖 + 𝒞𝑖𝜙𝑖) 𝜙𝑖

𝑇
diag(𝛿𝑖)𝑇 

       = −𝑒𝑖 (diag(𝛿𝑖)𝜙𝑖 + diag(𝛿𝑖)𝜙𝑖)
𝑇

 

       = −𝑒𝑖 (min(𝜙𝑖, 𝜙𝑖))
𝑇

                       (10) 

 Using (6) and similar to these relations, we have:  
∂𝐽𝑖

∂𝑊𝑖
= −𝑒𝑖 (max(𝜙𝑖, 𝜙𝑖))

𝑇
                       (11) 

 In addition, we have:  

 
∂𝐽𝑖

∂𝑉𝑖
= (𝜙′𝑖)𝑇𝒞𝑖

𝑇𝑦𝑖𝑥𝑖
𝑇 + (𝜙′𝑖)𝑇𝒞𝑖

𝑇𝒞𝑖𝜙𝑖𝑥𝑖
𝑇 

           +(𝜙′𝑖)𝑇𝒞𝑖
𝑇𝒟𝑖𝜙𝑖𝑥𝑖

𝑇 

       = −(𝜙′𝑖)𝑇𝒞𝑖
𝑇 (−𝑦𝑖 + 𝒟𝑖𝜙𝑖 + 𝒞𝑖𝜙𝑖) 𝑥𝑖

𝑇 

       = −(𝜙′𝑖)𝑇𝒞𝑖
𝑇𝑒𝑖𝑥𝑖

𝑇                                    (12) 

where 𝜙′𝑖 = diag(𝜙′(𝑉𝑖𝑥𝑖)), and similar to these 

relations,  
∂𝐽𝑖

∂𝑉𝑖
= −(𝜙′𝑖)𝑇𝒟𝑖

𝑇𝑒𝑖𝑥𝑖
𝑇                                    (13) 

where 𝜙′𝑖 = diag(𝜙′(𝑉𝑖𝑥𝑖)). 

From (10)-(13), we can conclude that: 

Δ𝑊𝑖 = −Γ1𝑒𝑖 (min(𝜙𝑖, 𝜙𝑖))
𝑇

                       (14) 

Δ𝑊𝑖 = −Γ2𝑒𝑖 (max(𝜙𝑖, 𝜙𝑖))
𝑇
                       (15) 

Δ𝑉𝑖 = −Γ3(𝜙′𝑖)𝑇𝒞𝑖
𝑇𝑒𝑖𝑥𝑖

𝑇                       (16) 

Δ𝑉𝑖 = −Γ4(𝜙′𝑖)𝑇𝒟𝑖
𝑇𝑒𝑖𝑥𝑖

𝑇                       (17) 

where the matrices Γ1, Γ2, Γ3, and Γ4 are the learning 

gains. 
 

4. Error convergence 

Assume that R-NN can model the system output 𝑦𝑖 

using the ideal parameters 𝒞∗, 𝒟∗, 𝑉∗, and 𝑉∗:  

𝑦𝑖 = 𝒞∗𝜙(𝑉∗𝑥𝑖) + 𝒟∗𝜙(𝑉∗𝑥𝑖)                       (18) 

Using the Taylor’s expansion for the terms in (18), 

we have:  

 𝑦𝑖 = 𝒞𝑖𝜙𝑖 + �̃�𝑖𝜙𝑖 + 𝒞𝑖𝜙′𝑖�̃�𝑖𝑥𝑖 + 𝑅2 

         +𝒟𝑖𝜙𝑖�̃�𝑖𝜙𝑖 + 𝒟𝑖𝜙′𝑖�̃�𝑖𝑥𝑖 + 𝑅2         (19) 

where 𝑅2 and 𝑅2 are the Taylor’s series reminders, 

and:  

 �̃�𝑖 = 𝒞∗ − 𝒞𝑖, �̃�𝑖 = 𝒟∗ − 𝒟𝑖 

�̃�𝑖 = 𝑉∗ − 𝑉𝑖, �̃�𝑖 = 𝑉∗ − 𝑉𝑖                       (20) 

Then the neural network error can be computed as 

follows:  

 𝑒𝑖 = 𝑦𝑖 − 𝒞𝑖𝜙𝑖 − 𝒟𝑖𝜙𝑖
 

     = �̃�𝑖𝜙𝑖 + 𝒞𝑖𝜙′𝑖�̃�𝑖𝑥𝑖 + �̃�𝑖𝜙𝑖
+ 𝒟𝑖𝜙′𝑖�̃�𝑖𝑥𝑖 + 𝜁𝑖    (21) 

where 𝜁𝑖 = 𝑅2 + 𝑅2, which is supposed to be 

bounded. 

 

Theorem 1. Suppose that the parameters of R-NN 

are adjusted according to (14)-(17), and:  

2𝑒𝑖
𝑇𝜁𝑖 ≤ (2 − 𝛽)||𝑒𝑖||2                                    (22) 

where Γ1, Γ2, Γ3, and Γ4 are the positive definite 

matrices, and  

 𝛽 = 𝜆max(Γ1)𝜅1 + 𝜆max(Γ2)𝜅2 + 𝜆max(Γ3)𝜅3 

      +𝜆max(Γ4)𝜅4                                    (23) 

𝜅1 = max ∥ min (𝜙𝑖, 𝜙𝑖) ∥2                            (24) 

𝜅2 = max ∥ max(𝜙𝑖, 𝜙𝑖) ∥2                                   (25) 

𝜅3 = max ∥ 𝒞𝑖𝜙′𝑖 ∥2∥ 𝑥𝑖 ∥2                              (26) 

𝜅4 = max ∥ 𝒟𝑖𝜙′𝑖 ∥2∥ 𝑥𝑖 ∥2                       (27) 

Then the error 𝑒𝑖 converges to zero as 𝑖 tends to 

infinity.   
 

Proof. Consider the following Lyapunov function:  

 𝑣𝑖 = tr(�̃�𝑖
𝑇Γ1

−1�̃�𝑖) + tr (�̃�𝑖

𝑇

Γ2
−1�̃�𝑖) 

           +tr(�̃�𝑖
𝑇Γ3

−1�̃�𝑖) + tr (�̃�𝑖

𝑇

Γ4
−1�̃�𝑖) 

where �̃�𝑖 = 𝑊∗ − 𝑊𝑖 , �̃�𝑖 = 𝑊∗ − 𝑊𝑖. At first, we 

notice that:  

 tr(�̃�𝑖+1
𝑇 Γ1

−1�̃�𝑖+1) − tr(�̃�𝑖
𝑇Γ1

−1�̃�𝑖) 

 = tr((�̃�𝑖 + Δ�̃�𝑖)
𝑇Γ1

−1(�̃�𝑖 + Δ�̃�𝑖)) − tr(�̃�𝑖
𝑇Γ1

−1�̃�𝑖) 

 = tr(�̃�𝑖
𝑇Γ1

−1�̃�𝑖) + tr(Δ�̃�𝑖
𝑇Γ1

−1�̃�𝑖) + tr(�̃�𝑖
𝑇Γ1

−1Δ�̃�𝑖) 

     +tr(Δ�̃�𝑖
𝑇Γ1

−1Δ�̃�𝑖) − tr(�̃�𝑖
𝑇Γ1

−1�̃�𝑖) 

= 2tr(�̃�𝑖
𝑇Γ1

−1Δ�̃�𝑖) + tr(Δ�̃�𝑖
𝑇Γ1

−1Δ�̃�𝑖)           (28) 

Similar to (26), the other terms of Δ𝑣𝑖 can be 

simplified. Therefore, we have:  
 Δ𝑣𝑖 = 𝑣𝑖+1 − 𝑣𝑖  

 = 2tr(�̃�𝑖
𝑇Γ1

−1Δ�̃�𝑖) + 2tr (�̃�𝑖

𝑇

Γ2
−1Δ𝑊𝑖) 

     +2tr(�̃�𝑖
𝑇Γ3

−1Δ�̃�𝑖) + 2tr (�̃�𝑖

𝑇

Γ4
−1Δ�̃�𝑖) 

    +tr(Δ�̃�𝑖
𝑇Γ1

−1Δ�̃�𝑖) + tr (Δ�̃�𝑖

𝑇

Γ2
−1Δ�̃�𝑖) 

     +tr(Δ�̃�𝑖
𝑇Γ3

−1Δ�̃�𝑖) + tr (Δ�̃�𝑖

𝑇

Γ4
−1Δ�̃�𝑖) 

 = −2tr (�̃�𝑖
𝑇𝑒𝑖min(𝜙𝑖 , 𝜙

𝑖
)𝑇) 

    −2tr (𝑊𝑖

𝑇

𝑒𝑖max(𝜙𝑖, 𝜙
𝑖
)𝑇) 

     −2tr (�̃�𝑖
𝑇(𝜙′𝑖)𝑇𝒞𝑖

𝑇𝑒𝑖𝑥𝑖
𝑇) − 2tr (�̃�𝑖

𝑇

(𝜙′𝑖)𝑇𝒟𝑖
𝑇𝑒𝑖𝑥𝑖

𝑇) 

     +tr (min(𝜙𝑖 , 𝜙
𝑖
)𝑒𝑖

𝑇Γ1𝑒𝑖min(𝜙𝑖 , 𝜙
𝑖
)𝑇) 

     +tr (max(𝜙𝑖 , 𝜙
𝑖
)𝑒𝑖

𝑇Γ2𝑒𝑖max(𝜙𝑖 , 𝜙
𝑖
)𝑇) 

     +tr (𝑥𝑖𝑒𝑖
𝑇𝒞𝑖𝜙′𝑖Γ3(𝜙′𝑖)

𝑇𝒞𝑖
𝑇𝑒𝑖𝑥𝑖

𝑇) 

     +tr(𝑥𝑖𝑒𝑖
𝑇𝒟𝑖𝜙′𝑖Γ4(𝜙′𝑖)𝑇𝒟𝑖

𝑇𝑒𝑖𝑥𝑖
𝑇) 

 = −2tr (�̃�𝑖
𝑇min(𝜙𝑖 , 𝜙

𝑖
)𝑒𝑖

𝑇 + 𝑊𝑖

𝑇

max(𝜙𝑖 , 𝜙
𝑖
)𝑒𝑖

𝑇 

     +�̃�𝑖
𝑇(𝜙′𝑖)

𝑇𝒞𝑇𝑥𝑖𝑒𝑖
𝑇 +�̃�𝑖

𝑇

(𝜙′𝑖)
𝑇𝒟𝑇𝑥𝑖𝑒𝑖

𝑇) 
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    +𝑒𝑖
𝑇Γ1𝑒𝑖min(𝜙𝑖 , 𝜙

𝑖
)𝑇min(𝜙𝑖, 𝜙

𝑖
) 

    +𝑒𝑖
𝑇Γ2𝑒𝑖max(𝜙𝑖 , 𝜙

𝑖
)𝑇max(𝜙𝑖 , 𝜙

𝑖
) 

     +𝑒𝑖
𝑇𝒞𝑖𝜙′𝑖Γ3(𝜙′𝑖)

𝑇𝒞𝑖
𝑇𝑒𝑖𝑥𝑖

𝑇𝑥𝑖 

    +𝑒𝑖
𝑇𝒟𝑖𝜙′𝑖Γ4(𝜙′𝑖)

𝑇𝒟𝑖
𝑇𝑒𝑖𝑥𝑖

𝑇𝑥𝑖 

= −2tr(𝑒𝑖𝑒𝑖
𝑇) + 2tr(𝜁𝑖𝑒𝑖

𝑇) + 𝑒𝑖
𝑇Γ1𝑒𝑖 ∥ min(𝜙𝑖 , 𝜙

𝑖
) ∥2 

    +𝑒𝑖
𝑇Γ2𝑒𝑖 ∥ max(𝜙𝑖 , 𝜙

𝑖
) ∥2 

    +𝑒𝑖
𝑇𝒞𝑖𝜙′𝑖Γ3(𝜙′𝑖)

𝑇𝒞𝑖
𝑇𝑒𝑖 ∥ 𝑥𝑖 ∥2 

    +𝑒𝑖
𝑇𝒟𝑖𝜙′𝑖Γ4(𝜙′𝑖)

𝑇𝒟𝑖
𝑇𝑒𝑖 ∥ 𝑥𝑖 ∥2  

 ≤ −2 ∥ 𝑒𝑖 ∥2+ 2𝑒𝑖
𝑇𝜁𝑖  

     +𝜆max(Γ1) ∥ 𝑒𝑖 ∥2∥ min(𝜙𝑖 , 𝜙
𝑖
) ∥2 

     +𝜆max(Γ2) ∥ 𝑒𝑖 ∥2∥ max(𝜙𝑖, 𝜙
𝑖
) ∥2 

     +𝜆max(Γ3) ∥ 𝑒𝑖
𝑇𝒞𝑖𝜙′𝑖 ∥2∥ 𝑥𝑖 ∥2 

     +𝜆max(Γ4) ∥ 𝑒𝑖
𝑇𝒟𝑖𝜙′𝑖 ∥2∥ 𝑥𝑖 ∥2 

 ≤ −2 ∥ 𝑒𝑖 ∥2+ 2𝑒𝑖
𝑇𝜁𝑖 + (𝜆max(Γ1)𝜅1 + 𝜆max(Γ2)𝜅2 

     +𝜆max(Γ3)𝜅3 + 𝜆max(Γ4)𝜅4) ∥ 𝑒𝑖 ∥2 

= (𝛽 − 2) ∥ 𝑒𝑖 ∥2+ 2𝑒𝑖
𝑇𝜁𝑖                                        (29) 

According to (22), we have: Δ𝑣𝑖 < 0. As a result, 

the sequence (𝑣𝑖) is decreasing and bounded 

below. Therefore, (𝑣𝑖) is convergent:  

lim
𝑖→∞

𝑣𝑖 = 𝑣∞ < ∞                                        (30) 

According to (27), we have:  

 0 < (2 − 𝛽) ∑∞
𝑖=0 ||𝑒𝑖||2 − 2 ∑∞

𝑖=0 𝑒𝑖
𝑇𝜁𝑖 

    = − ∑∞
𝑖=0 Δ𝑣𝑖 

    = 𝑣0 − 𝑣∞ < ∞                                        (31) 

Thus (𝑒𝑖) ∈ 𝑙2, and according to the Barbalat’s 

lemma in discrete case, we have [26]:  

lim
𝑖→∞

𝑒𝑖 = 0                                                      (32) 

 

Remark 2. Since the Lyapunov function 𝑣𝑖 is 

positive definite, the learning gains Γ1, Γ2, Γ3, and 

Γ4 are necessarily some positive definite matrices. 

In this work, they are chosen empirically for the 

simulations.    

 

Remark 3. In contrast to the recent paper [11], the 

proposed stability proof of SGD in the training of 

R-NN, is stronger than the stability proof of LST-

B. In [11], the terms containing the second order of 

differences of parameters are ignored, where as in 

this work, they are considered in the mathematical 

computations with fewer words. 

 

5. Identification of Cement Rotary Kiln 

The discussed algorithm in the previous section 

was utilized for modeling of the complex MIMO 

non-linear system CRK. The schematic 

representation of cement rotary kiln is shown in 

figure 2. The identification process is done on the 

sensory data gathered from the Saveh white cement 

factory during several weeks. This system contains 

five inputs and four outputs that are shown in table 

1. The outputs of CRK for some seconds are shown 

in figure 3.  

In this work, the behavior of CRK is modeled using 

the non-linear auto-regressive with exogenous 

input (NARX):  
 �̂�𝑖 =

𝑓 (𝑢𝑖−1, 𝑦𝑖−1, 𝑦
𝑖−1

, 𝑦𝑖−2, 𝑦
𝑖−2

, 𝑦𝑖−3, 𝑦
𝑖−3

)       (33) 

where, 𝑢𝑖 ∈ ℝ5 represent the inputs of CRK, 

𝑦𝑙 , 𝑦𝑙 ∈ ℝ4 (𝑙 = 𝑖 − 1, 𝑖 − 2, 𝑖 − 3) represent the 

lower and upper bounds of the outputs of CRK for 

each minutes, respectively, and �̂�𝑖 ∈ ℝ4 represents 

the model output, and 𝑓 represents the non-linear 

function characterized by the model. The orders of 

lags in 31 are chosen empirically. 

Here, the available data is gathered for each second 

where the smallest time constant is three minutes. 

According to the results in [1], the resampling time 

would be one minute. In this work, to increase the 

usage of the available data and to cope with the 

uncertainties and noises, for each minute, the 

minimum and maximum values of the inputs and 

outputs are used to achieve some intervals for use 

in the rough-neural identifiers. 

 

Figure 2. Schematic representation of CRK. 

Before the usage of the available data in the 

identification, they are filtered by a Butterworth 

filter of order three with a cut-off frequency of 

0.025. In modeling CRK, all the inputs and outputs 

of the system are available, and therefore, the 

supervised learning can be employed. The behavior 

of this dynamic non-linear system can be identified 

using a series-parallel model. 
 

Table 1. The input and output variables of CRK. 

Input variables Output variables 

Material feed Kiln Amper (KA) 

Fuel feed CO content (CO) 

Kiln speed Pre-heater temperature (Pre) 

ID fan speed Back-end temperature (BE) 

Air pressure  
  

The identification of CRK is done by MLP, 

sinusoidal neural networks (SNN), rough MLP 

(RMLP), and SR-NN, where the activation 
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function of the hidden neurons of MLP and RMLP 

is a hyperbolic tangent and the activation function 

of the hidden neurons in SNN and SR-NN is 

sinusoidal. These models are trained by LST-B, 

which has been proposed in [11], and SGD, which 

is proposed in this work. The datasets of sizes 8000 

and 1000 are used for training and testing, 

respectively. 

The initial values of the weights 𝑉 and 𝑉 are the 

uniformly distributed pseudorandom numbers 

between -0.05 and 0.05. The initial values of the 

pseudorandom numbers between -0.5 and 0.5. The  

weights 𝑊 and 𝑊 are the uniformly distributed 

design parameters of the proposed algorithm for 

SNN and MLP were chosen as follow:  
Γ1 = Γ2 = 400𝐼19×19, 400𝐼31×31, 𝑛ℎ = 19,31     (34) 

 

 

Figure 3. Outputs of CRK for seconds (collected data).

Table 2. Normalized MSE of MLP, SNN, RMLP, and SR-NN in the identification of CRK. 𝒏𝒉 denotes the number of hidden 

(rough) neurons. 

Model Learning 𝒏𝒉 Para. Train MSE Test MSE 

MLP LST-B 19 418 0.0063 0.0014 

MLP LST-B 31 682 0.0035 8.8(-4) 

SNN LST-B 19 418 0.0062 0.0014 

SNN LST-B 31 682 0.0035 8.8(-4) 

RMLP LST-B 6 408 0.0062 6.0(-4) 

RMLP LST-B 10 680 0.0046 6.9(-4) 

SR-NN LST-B 6 408 0.0060 5.5(-4) 

SR-NN LST-B 10 680 0.0045 7.2(-4) 

MLP SGD 19 418 0.0067 8.0(-4) 

MLP SGD 31 682 0.0036 4.4(-4) 

SNN SGD 19 418 0.0066 7.7(-4) 

SNN SGD 31 682 0.0036 4.4(-4) 

RMLP SGD 6 408 0.0071 3.7(-4) 

RMLP SGD 10 680 0.0050 2.5(-4) 

SR-NN SGD 6 408 0.0068 3.2(-4) 

SR-NN SGD 10 680 0.0049 2.4(-4) 
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and the design parameters of the proposed 

algorithm for SR-NN and RMLP were chosen as 

follow:  
 Γ1 = Γ2 = Γ3 = Γ4 = 400𝐼6×6, 400𝐼10×10 
 𝑛ℎ = 6,10                                                                      (35) 

where 𝑛ℎ for MLP and SNN denotes the number of 

hidden neurons, and for RMLP and SR-NN, 

denotes the number of hidden rough neurons. The 

number of hidden (rough) neurons are chosen such 

that the number of adjustable parameters of the 

models is equal or near to each other. 

The normalized MSEs of MLP, SNN, RMLP, and 

SR-NN in the identification of CRK are listed in 

table 2, and for a better illustration, the actual 

outputs of CRK, the estimated outputs, and the test 

MSEs of SGD-based MLP with nineteen hidden 

neurons and SGD-based RMLP with six hidden 

rough neurons are shown in figures 4 and 5, 

respectively. The column "Para." in table 2 shows 

the number of parameters in the model.

Figure 4. Actual and estimated outputs and errors of the outputs of CRK in the identification by SGD-based MLP. 

 

The following results can be concluded from table 

2:   

    • By paying attention to the number of 

parameters, the rough-neural models with six and 

ten hidden rough neurons are comparable with the 

conventional models with nineteen and thirty-one 

hidden neurons, respectively. Therefore, the test 

MSEs of RMLP and SR-NN are less than MLP and 

SNN.  

    • The test MSEs of models with SGD learning 

are less than their test MSEs when they are trained 

by LST-B.  

    • Since the examples are randomly presented to 

the neural network in SGD, the train MSEs of 

models with SGD learning are a bit more than their 

train MSEs when they are trained by LST-B.  
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 • With increase in the number of hidden (rough) 

neurons, the MSEs of SGD-based models are 

decreased.  

    • The MSEs of SNN and SR-NN are a bit less 

than MLP and RMLP, respectively, and therefore, 

the behavior of CRK may be periodic. 

 

6. Conclusion 

In this work, the uncertain complex MIMO non-

linear system CRK was identified using the SGD-

based R-NNs. Unlike the previous works, this was 

done without the usage of the MISO systems. Due 

to the existing interactions among the variables of 

CRK and the ability of R-NN in dealing with 

uncertainties, a more reliable model was obtained. 

The proposed SGD learning algorithm was fast for 

large datasets and it could usually escape local 

minima. The error convergence to zero was proved 

and the efficiency of the proposed method was 

shown. Our future work focuses on designing the 

rough-neural controllers for CRK, and to increase 

the efficiency, we try to combine the proposed 

methodology with the other efficient approaches 

such as fuzzy systems and extreme learning 

machines.

 

Figure 5. Actual and estimated outputs and errors of the outputs of CRK in the identification by SGD-based RMLP. 
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 چکیده:

ها دشوار است. کوره    قطعیتدر حضور عدم ویژه ، به، شناسایی آن  چند خروجی-سیستم غیرخطی چند ورودی  ملات موجود بین متغیرهای با توجه به تعا

سیمان یک   ستم غیرخطی چند ورودی  دوار  سازوکار ب چند خروجی-سی سیمان برای اهداف        ا  سایی کوره دوار  شنا ست.  پیچیده و اختلالات غیرقطعی ا

سیار مهم است. در کارهای قبلی   متفاوتی مانند پیش یستم چند   س ن پس از تجزیه به چندین ، شناسایی کوره دوار سیما   بینی، تشخیص خطا و کنترل ب

ست.   صورت گرفته  خروجی یک-ورودی شبکه راف در این ا ص -کار، برای اولین بار،  س  بی بدونع ساختارهای چند ورودی ا یک خروجی، برای  -تفاده از 

اف برای  های ری نظریه مجموعهصبی یک ساختار عصبی، طراحی شده بر مبنا    ع-شناسایی سیستم کوره دوار سیمان به کار گرفته شده است. شبکه راف        

عصتتبی ارا ه شتتده استتت. نتای     -های رافیک الگوریتم گرادیان نزولی تصتتادفی برای آموزش شتتبکه قطعیت و ابهام استتت. علاوه بر این، غلبه بر عدم

  دهند. سازی کارآمدی رویکرد ارا ه شده را نشان میشبیه

 قطعیت.یادگیری گرادیان نزولی تصادفی، شناسایی سیستم، عدمعصبی، -کوره دوار سیمان، شبکه راف :کلمات کلیدی

 


