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Abstract 

Nowadays, a significant amount of studies are devoted to the discovery of important nodes in graph data. 

Social networks, as graph data, have attracted much attention. There are various purposes for discovering the 

important nodes in social networks such as finding the leaders in them, i.e. the users who play an important 

role in promoting advertising, etc. Different criteria have been proposed in discovering the important nodes 

in graph data. Measuring a node’s importance by a single criterion may be inefficient due to the variety in 

the graph structures. Recently, a combination of criteria has been used in the discovery of the important 

nodes. In this paper, we propose a system for the Discovery of Important Nodes in social networks using 

Genetic Algorithms (DINGA). In our proposed system, the important nodes in social networks are 

discovered by employing a combination of eight informative criteria and their intelligent weighting. We 

compare our results with a manually weighted method that uses random weightings for each criterion in four 

real networks. Our proposed method shows an average of 22% improvement in the accuracy of discovery of 

important nodes. 
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1. Introduction 

Nowadays, discovering the important nodes in 

graph data is of great interest. The relationship 

among the entities of many domains has been 

modeled as graph data [1, 2]. Discovering the 

important nodes in graph domains has been 

employed for various purposes [3-8]. For 

example, in the protein-protein interaction (PPI) 

networks, in which each protein represents a node 

and each physical interaction is an edge, the 

cancer-related proteins are considered as the 

important nodes. The discovery of cancer-related 

proteins can be effective in cancer treatment, in 

preventing its progression, and in improving the 

patient's overall condition [5, 9]. In the terroristic 

network, in which each node represents a person 

and the communications between them are 

modeled as edges, the leaders have important 

roles. Finding the main leaders in these networks 

can be useful in predicting, recognizing, and 

analyzing the occurrence of terrorist attacks [10, 

11].  

Among graph-represented domains, social 

networks with millions of users can provide a lot 

of useful information about human interactions 

[12]. Each user in these networks is considered as 

a node and each relationship among the users is 

considered as an edge [13-15]. There are various 

relationships in social networks such as kin 

relationships, workplace relationships, and 

friendships. The discovery of important nodes in 

these domains is very useful. For example, in the 

social networks that are used for advertisement 

purposes, we are looking for the most influential 

people. The information transfer speed increases 

significantly among the influential people. 

Therefore, by considering these people as the 

starting nodes to advertise, we expect that the 

message propagation is done in a wide range in 

the network. Hence, we select a small fraction of 
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the users as targets for advertisement. Then they 

will inform a large portion of users in the network 

about the advertised products [16, 17]. 

So far, the researchers have proposed many 

methods for discovering the important nodes in 

the graph-related domains [18]. The previous 

methods have been categorized into two main 

categories. 

The first category of methods apply each criterion 

of centrality such as betweenness [9, 19] and 

entropy [20-23], individually. Due to the diversity 

of the graph structures, selecting the best criteria 

in advance is a challenging task. The second 

category of methods, in contrast to the first one, 

proposes that a weighted combination of criteria 

can be used for discovering the important nodes in 

graph data. The weighted vector is determined 

manually [24-28]. Thus the result of using a 

combination of criteria strongly depends on the 

criterion weight vector determined manually by 

the domain expert. 

In this work, we address the challenges and 

drawbacks of the previous methods and propose a 

new method called DINGA. It can discover 

automatically the best weight vector of criteria for 

input graphs with varied structures, and 

accordingly, resolving the challenges of the first 

and second categories simultaneously. DINGA 

employs a weighted combination of eight criteria: 

Degree Centrality (DC) [9], Sub-graph Centrality 

(SC) [29], Eigenvector Centrality (EC) [30], 

Network Centrality (NC) [31], Information 

Centrality (IC) [32], Local Average 

Connectivity(LAC) [32], Betweenness Centrality 

(BC) [9,19] and Closeness Centrality (CC) [9]. 

The combination of these criteria is weighted 

automatically using the genetic algorithm. The 

main contributions of this paper are as follows: 

 DINGA combines the varied ranking 

procedures automatically and proposes a 

better one. 

 DINGA is a very general framework 

(with respect to centrality measure) for 

discovering the important nodes. 

Whenever the new centrality measure is 

discovered, DINGA could consider that 

as a new gene in the chromosome. If 

calculating one centrality measure is hard 

or impossible in some cases, DINGA 

could simply drop the corresponding 

gene in the GA process. As a conclusion, 

DINGA is very general, and the 

prediction power of DINGA is not 

dependent on the 8 mentioned criteria. 

Section 2 discusses the previous works in the field 

of important nodes of social networks. In Section 

3, we describe the proposed method thoroughly. 

Section 4 discusses the result of the experiments. 

In Section 4, we present the results using DINGA 

and we compare ours with the results of 

randomized weighting as well. Section 5 discusses 

the conclusion and future work. 

  

2. Related Work 

We categorized the previous work on the 

discovery of important nodes in social networks in 

two main categories. The first category uses 

varied centrality criteria individually. The second 

category combines various criteria for discovering 

the important nodes. 

The first category of methods has proposed a 

variety of criteria for discovering the important 

nodes in graph data since the 1950s [33]. Degree 

Centrality (DC) [9] is a simple and efficient 

criterion but it neglects the global structure of the 

network. Wang et al. [34] have proposed the 

degree of nodes and the degree of their 

neighborhoods as a new criterion for discovering 

the important nodes in graph data. Chen et al. [35] 

have proposed a semi-local centrality criterion as 

a new criterion. Newman [36] has applied the 

criteria such as closeness and betweenness for 

discovering the important nodes in graph data. 

Closeness Centrality (CC) [9] and Betweenness 

Centrality (BC) [9, 19] result in a low 

computational complexity, although both of these 

criteria are not efficient in large-scale networks. 

Getoor et al. [37] have utilized the node clustering 

approach for discovering the important nodes. 

Kaur et al. [30] have applied an eigenvector for 

discovering the important nodes. In 2005, Shetty 

et al. [21] employed the entropy criterion of each 

node in the Enron e-mail dataset for this purpose. 

In 2017, Bashiri et al. [23] tried to improve the 

results of the Shetty’s article, using the 

measurement of the entropy of each node. 

The second category of methods was started in 

2010.  In this year, Hu et al. [24] proposed a 

multi-criteria ranking system for discovering the 

important nodes using five intuition-based rules. 

In 2013, Yajing et al. [25] used the Analytic 

Hierarchical Process (AHP) method to calculate 

the weights of a combination of metrics. The AHP 

method was presented by Saaty in 1970 [38]. Also 

in 2017, Bian et al. [26] employed a combination 

of metrics using the AHP method. In 2013, Yu et 

al. [27] used a combination of metrics that 

focused on the structural information of the 

network. They used the Multi-Attribute Decision-

Making method (MADM) to find the weights of a 



Kamali et al./ Journal of AI and Data Mining, Vol 8, No 4, 2020.   
 

547 

 

combination of criteria. In 2014, Dave et al. [28] 

utilized the TOPSIS method. The TOPSIS method 

is a MADM. This method was proposed by Wang 

and Yun in 1981. In order to improve the 

approach presented by Yu et al. [27], in 2016, 

Yang et al. [29] considered a combination of five 

metrics to discover the importance of nodes in the 

network. They used TOPSIS with AHP to find the 

combination of metrics' weight. HyperBall 

accesses the graph in a semi-streaming fashion 

and computes the distance distribution and 

approximates all geometric (i.e. distance-based) 

centralities. One of its main characteristics is the 

small amount of core memory usage [39, 40]. De 

Meo et al. [41, 42] have proposed a novel 

centrality metric called the potential gain, which 

quantifies the easiness at which a target node can 

be reached. The potential gain tries to combine the 

popularity of a node in G with its similarity to all 

other nodes. 

Weskia et al. [43] and Roy et al. [44] have used 

evolutionary algorithms to discover the most 

influential nodes in social networks. They started 

with the initial important seed nodes, and then 

they applied a propagation model to expand the 

influences of seed nodes on the whole network. 

The main drawbacks of the first and second 

categories of the previous methods are selecting 

and applying the best criteria and determining the 

weight vector manually, respectively. The manual 

building of the weight vector is time-consuming 

and error-prone. In the next section, we propose a 

new method to overcome these challenges. 

 

3. Proposed Method  

Considering the main drawbacks and challenges 

of the previous methods, we propose the DINGA 

system. This system takes the graph of a social 

network as the input, and then returns the 

important nodes in graph data as the output. An 

overview of the proposed method is presented in 

figure 1.  

We discuss each main block of DINGA shown in 

figure 1 in the following sub-sections. 

 

 
Figure 1. The proposed DINGA method to discover the important nodes in social networks. The DINGA system returns the 

list of important people as the output by receiving the social network graph as the input.

3.1. Input Graph 

We represent the social network as a graph 

G <V ,E >, in which each member vÎV  is 

considered as a node and each edge e
u,v

ÎE

indicates a direct communication between the two 

nodes uÎU  and vÎV . 

 

3.2. DINGA 

In this section, we discuss the four main steps of 

the DINGA system. 

 

3.2.1. Advantages and Disadvantages of Each 

Criterion 

In this section, we discuss the four main steps of 

the DINGA system. Graph criteria can be divided 

into two categories of local and global. After 

reviewing the advantages and disadvantages of 

each criterion, at the end, we consider the 

following eight criteria for the graph nodes: 

Degree Centrality (DC), Betweenness Centrality 

(BC), Closeness Centrality (CC), Sub-graph 

Centrality (SC), Network Centrality (NC), 

Eigenvector Centrality (EC), Local Average 

Connectivity (LAC), and Information Centrality 
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(IC). Finally, we compute the values of these 

criteria for all the nodes in the graph. 

 

3.2.2. Description of Each Node based on 8 

Criteria 

In this section, we describe each node of the graph 

based on the 8 selected criteria presented in 3.2.1. 

Matrix CM  is built for this purpose. Each cell 

CM[i, j] indicates the value of criterion 

j( j £ 8) for node i(i £ v ).  

 

3.2.3. Weighting Criteria in Combination 

According to the input graph, different criteria can 

have a varied influence on discovering the 

important nodes. In this section, we use the 

genetic algorithm to determine the weight of each 

criterion automatically. Figure 2 shows the main 

steps of the genetic algorithm. 

 
Figure 2. Genetic algorithm. 

 

Each member of the population P
i
 is represented 

by 8-dimensional chromosome C
i
, in which 

C
( i, j )

 shows the weight of criterion j  [45, 46]. 

Each chromosome is defined as: 

 
C
i
={p(i,1), p(i,2), p(i,3),..,P(i,m)}

p(i,m) = 1
m=1

8

å
  

 

   (1) 

  

We use accuracy for the fitness function of each 

chromosome. 

In a genetic algorithm, a set of chromosomes is 

produced randomly. These chromosomes are 

known as the initial population [47]. In order to 

generate the new population, first, we use a 

tournament selection algorithm [46] to select two 

parents. Secondly, we use blend cross-over [46] 

and uniform mutation [46] to generate new 

offspring. At the end, the chromosomes of the 

individual with the best fitness value are picked 

up from the population to determine the weight of 

the criteria. 

 

3.2.4. Ranking Nodes According to Their 

DINGA's Score 

After training the weights of the 8 criteria, (2) is 

used to calculate the importance of each node in 

the graph. 

 impor tant - score(i) = cm(i, j)w
jj=1

8

å   
(2) 

w
j
 is the result of a genetic algorithm and 

indicates the weight of criterion j  in the discovery 

of the important nodes in graph data. The nodes 

are sorted in a descending order according to their 

important-scores. 
 

4. Empirical Result  

Several experiments were conducted for 

evaluating the performance of the proposed 

method. 

 

4. Dataset  

Several Experiments were conducted for 

evaluating the performance of the proposed 

method. In this section, we discuss, in detail, the 

four main real-world networks that are used to 

evaluate our proposed DINGA system. The basic 

statistical information of each network is 

presented in table 1. 

 

Table 1. Basic statistical information of 4 real-world datasets. 

Dataset Number of 

nodes in the largest 

connected component 

Number of 

important nodes in 

the graph 

Clustering 

coefficient 

Average degree Label 

         Enron [21] 146 33 0.539 23.685 Labeled 

 

Karate [48, 49] 
 
34 

 
6 

 
0.088 

 
1.941 

 
Not labeled 

 

AIDS (HIV) [50] 
 

 

40 
 

 

8 
 

 

0 
 

 

1.85 
 

 

Not labeled 
 

Protein-protein 
interaction networks 

[51] 

        8755 124 0.153 10.632 Labeled 
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4.1. Enron 

The Enron E-mail dataset contains 150 users and 

also contains 517.431 internal E-mails. The E-

mail represents the interactions between the 

employees of the company. In this dataset, the 

employees are considered as the nodes and are 

sent E-mails between them as edges [22]. The 

number of nodes in the largest connected 

component of the graph is 146 nodes. In order to 

implement the proposed method in the training 

phase of the genetic algorithm, 33 members of the 

company are considered to be the important nodes 

with positions of the president, vice president, 

chief operating officer, CEO, and government 

relative executive [52,53]. 
 

4.2. Zachary’s Karate Club  
In this network, 34 members of a karate club are 

considered as the nodes, and their friendships are 

considered as the edges [49]. Figure 3 shows the 

graph of the karate club. 

 
Figure 3. Zachary’s Karate Club. 

 

4.3. AIDS (HIV) 

The dataset includes 40 AIDS patients who are in 

relation to each other. In the study of this dataset, 

the nodes represent the patients and the edges 

indicate the relationships between the patients. 

Figure 4 shows the graph of the AIDS dataset. 

In the performance evaluation of the DINGA 

system, generally, two approaches are considered. 

In one approach, the dataset includes the 

importance label of each node. For this purpose, 

we use the Enron dataset, where the employee 

position is known for the training phase of the 

genetic algorithm. In the second approach, the 

nodes in graph data are not labeled (Karate [48], 

AIDS [50] datasets). For the latter case, the graph 

nodes are labeled according to Yang et al. [29]. 

 

Figure 4. AIDS(HIV) network. Evaluation. 

 

4.4. Essential Proteins in Protein-Protein 

Interaction Networks 

We used the same PPI dataset as Rahmani et al. 

[51], which contains 45, 353 interactions among 

9, 591 proteins. This dataset was generated by the 

union of three human PPI datasets HPRD [54], 

BIOGRID [55], and the dataset used by Radivojac 

et al. [56]. Additionally, we used the OGEE [57] 

database to evaluate the important proteins labeled 

by EMDIP. We collected a list of the essential 

genes from the OGEE database, in which all 

genes were grouped into three categories: 

essential, non-essential, and conditionally 

essential. According to OGEE, there are 124 

essential, 4430 conditional, and 4910 non-

essential proteins in our PPI network. We 

considered all the essential and conditional 

proteins as the important proteins. 

 

5.1. DINGA System 

We generated one hundred 8-dimensional vectors 

randomly as the initial population. The cross-over 

probability was 0.9 and the mutation probability 

was 0.14. We generated offspring until the 

deviation in the fitness function of the population 

became zero. The accuracies of the final 

population in Enron, Karate, and AIDS were 81%, 

80%, 80%, respectively.  

Figure 5 shows the average weighting of each 

criterion in the calculation of the important-score 

criterion by performing a 10-fold cross-validation 

on the DINGA system in the Enron dataset.
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Figure 5. The average weighting of each criterion in the calculation of the important-score criterion by performing a 10-fold 

cross-validation on the DINGA system in the Enron dataset. 

 

According to the Enron e-mail network structure, 

the LAC and network centralities are more 

important than the other criteria. Also the 

eigenvector and closeness centralities are less 

important than the other criteria for discovering 

the important nodes in the Enron network. 

Figure 6 shows the average weighting of each 

criterion in the calculation of the important-score 

criterion by performing a 10-fold cross-validation 

on the DINGA system in the Karate dataset.  

 
Figure 6. The average weighting of each criterion in the calculation of the important-score criterion by performing a 10-fold 

cross-validation on the DINGA system in the karate dataset. 
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According to the structure of the karate network, 

as shown in figure 6, the criteria of the network 

and eigenvector are more important than the other 

criteria. Also the betweenness and information 

centralities are less important in comparison with 

the other criteria for discovering the importance of 

graph nodes. 

Figure 7 shows the average weighting of each 

criterion in the calculation of the important-score 

criterion by performing a 10-fold cross-validation 

on the DINGA system in the AIDS network.

  

 
Figure 7. The average weighting of each criterion in the calculation of the important-score criterion by performing a 10-fold 

cross-validation on the DINGA system in the AIDS dataset. 

 

According to the structure of the AIDS network, 

as shown in figure 7, the degree centrality and 

information centrality are more important than the 

other criteria. Also the eigenvector centrality and 

LAC have the lowest importance in discovering 

the important graph nodes in relation to the other 

criteria.  

 

 
Figure 8. The average weighting of each criterion in the calculation of the important-score criterion by performing a 10-fold 

cross-validation on the DINGA system in the protein-protein interaction networks dataset. 
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According to the structure of the PPI network, as 

shown in figure 8, the closeness centrality and 

information centrality and sub-graph centrality are 

the more important features compared to the rest 

of our features. 

Table 2 shows the most effective criterion for 

each of the considered datasets to discover the 

important nodes while using the DINGA system. 

As shown in table 2, the most discriminative 

criterion in each graph depends strongly on the 

graph structure. 

Table 2. Discovery of the most efficient graph criteria in each graph by the DINGA system. 

Dataset  Most important criterion discovered by DINGA 

Enron [21] Local Average Connectivity (LAC) 

Karate [48,49] Network Centrality (NC) 

AIDS (HIV) [50] Degree Centrality (DC) 

Protein-protein interaction networks [51] Closeness Centrality (CC) 

  

The results of table 2 approve our initial 

hypothesis that most discriminative network 

centrality criteria is varied in different domains 

and networks and are strongly related to each 

specific network's structure. 

 

5.2. Randomized Weighting 

Instead of applying the genetic algorithm, we 

might consider determining the weight of each 

criterion completely at random [58]. For this 

purpose, we weighted the criteria for one hundred 

times arbitrarily. Then we computed the average 

accuracy of all for 100 times using randomized 

weighting. The accuracies of the average in 

Enron, Karate, AIDS, and protein-protein 

interaction networks are 60%, 51%, 62%, and 

43%, respectively. Comparing the DINGA 

system's results with randomized weighting 

indicates 21%, 30%, 18%, and 17% accuracy 

improvement in Enron, Karate, AIDS, and 

protein-protein interaction networks datasets, 

respectively. 

 

5.3. Conclusions and Future Work 

Recently, discovering the important nodes in 

graph data has attracted much attention. In the 

previous research work, important nodes have 

been discovered using a single criterion. As a 

result of the inefficiency caused by the use of 

individual criteria in some cases, the researchers 

tend to employ a combination of criteria. In all the 

research work that exploit a combination of 

criteria, the weighting is done manually.  

In this paper, we proposed a novel system called 

DINGA, which is a genetic-based algorithm that 

is capable of automatically discovering the weight 

of each criterion in the input graph. We evaluated 

DINGA in 4 real-world datasets, and we found 

that Local Average Connectivity, Network 

Centrality, Degree Centrality, and Closeness 

Centrality are discovered to be discriminative in 

the 4 datasets Enron, Karate, AIDS, and protein-

protein interaction network, respectively. 

Additionally, our proposed method outperforms a 

randomized weighting method 22% with respect 

to accuracy. As it has been indicated in Section 

4.4, our proposed method is easily able to 

discover the important nodes in the PPI network 

with 45000 edges among around 10000 nodes. In 

the case of a very large network, our method 

could become more scalable by either of the 

following ways: 

1- Sampling: Instead of applying DINGA to 

the whole graph, we applied it to different 

samples of the data. 

2- Graph Similarity: We indicated the most 

informative network features in 4 

datasets. For a new large network, we 

could find the most similar network with 

smaller and reasonable sizes, and then we 

used the same network criteria as a most 

similar ones for discovering the important 

nodes in a new large network.  

As a future work, we could extend DINGA in the 

following directions: 

 In addition to the genetic algorithm (GA), 

we could use other machine learning 

methods (such as linear regression) to 

discover the best combination of weights 

plus some regularization term to discard 

the irrelevant metrics. 

 We could extend the current GA method 

by considering more centrality criteria and 

applying varied fitness functions.  
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 نشریه هوش مصنوعی و داده کاوی
 

 

 

DINGA  :ُّای اجتواعی ّای هْن در شبکِ رٍشی هبتٌی بر الگَریتن ژًتیک جْت شٌاسایی گر 

 

 1حسیٌی حاهد شاٍُ  ،*2حسیي رحواًی، 1ّستی کوالی

 .ایراى، تْراى، تْراى، برق ٍ کاهپیَتر ،هکاًیکداًشکدُ ، ٍاحد علَم ٍ تحقیقات ،داًشگاُ آزاد اسلاهی 1

 .ایراى، تْراى، تْراى، کاهپیَترهٌْدسی داًشکدُ ، داًشگاُ علن ٍ صٌعت ایراى 2

 03/04/2012 پذیزش؛ 22/12/2012 ببسًگزی؛ 21/10/2012 ارسبل

 چکیدُ:

ّب، اس اّویت ببلایی بزخَردار است. اّداف هتٌَػی  ّبی هْن در ایي ضبکِ ّبی اجتوبػی، هسئلِ ضٌبسبیی گزُ افشٍى کبربزد ضبکِ  رٍس اهزٍسُ بب افشایص

در  گذار تأثیزّب ٍ افزاد  گزٍُ در   تَاى بِ ضٌبسبیی رّبزاى ّبی اجتوبػی ٍجَد دارد. اس جولِ ایي اّداف هی ّبی هْن در ضبکِ جْت ضٌبسبیی گزُ

ّبی هتفبٍتی  ّب، تبکٌَى هؼیبر ّبی اجتوبػی، بِ هٌظَر اًتطبر سزیغ اخببر، تبلیغبت ٍ غیزُ اضبرُ کزد. بب تَجِ بِ ٍجَد سبختبر گزافی در ایي ضبکِ بکِض

ّبی  ضٌبسبیی گزُ ی،ّبی هتٌَع گزاف بدیْی است کِ بب تَجِ بِ سبختبرّبی هْن هؼزفی ضدُ است.  کبٍی، جْت ضٌبسبیی گزُ گیزی اس ػلن گزاف بب بْزُ

ًبکبفی ٍ ًبکبرآهد است. در راستبی  ،ًظز گزفتي سبختبر گزاف، در بسیبری اس هَارد بِ کبرگیزی ّز هؼیبر بِ تٌْبیی ٍ بدٍى در بب ّبی گزافی، دادُ در هْن

ایي هقبلِ سیستوی َّضوٌد بب ػٌَاى  طزح ضدُ است. درگزافی ّبی هْن  لِ، در تحقیقبت اخیز بِ کبرگیزی چٌد هؼیبر در ضٌبسبیی گزُسئحل ایي ه

 DINGA ُکبرگیزی الگَریتن  ّبی اجتوبػی پیطٌْبد ضدُ است. ایي سیستن بب بِ  ّبی گزافی هزبَط بِ ضبکِ ّبی هْن در دادُ بِ هٌظَر ضٌبسبیی گز

هتٌبسب بب سبختبر گزاف  ّبی هْن  بیی گزُهؼیبر گزافی ٍ ضٌبس ۸دّی َّضوٌد  هؼلَم، بِ ٍسى کبٍی در گزاف بب سبختبری ًب صًیتیک ٍ ػلَم گزاف

دّی تصبدفی، بِ طَر  در چْبر ضبکِ ٍاقؼی، در هقبیسِ بب ًتبیج حبصل اس بِ کبرگیزی ٍسى DINGAکبرگیزی سیستن  پزداسد. ًتبیج حبصل اس بِ  هی

 ّبی اجتوبػی است. ّبی هْن در ضبکِ درصد بْبَد دقت در ضٌبسبیی گزُ 22هیبًگیي، بیبًگز 

 .ّبی گزافی دادُ ،کبٍی گزاف ،الگَریتن صًتیک ،ّبی هْن گزُ ،ّبی اجتوبػی ضبکِ :کلیدی کلوات

 


