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Abstract 

In this work, a hierarchical ensemble of projected clustering algorithm is proposed for high-dimensional data. 

The basic concept of this algorithm is based on the active learning method which is a fuzzy learning scheme, 

inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active 

learning method is a clustering algorithm, which blurs the data points as 1D ink drop patterns in order to 

summarize the effects of all data points, and then applies a threshold to the resulting vectors. It is based on an 

ensemble clustering method that performs 1D density partitioning to produce ensemble of clustering solutions. 

Then it assigns a unique prime number to the data points that exist in each partition as their labels. 

Consequently, a combination is performed by multiplying the labels of every data point in order to produce 

the absolute labels. The data points with identical absolute labels are fallen into the same cluster. The 

hierarchical property of the algorithm is intended to cluster complex data by zooming in each already formed 

cluster to find further sub-clusters. The algorithm is verified using several synthetic and real-world datasets. 

The results obtained show that the proposed method has a promising performance, compared to some well-

known high-dimensional data clustering algorithms. 

 

Keywords: Ensemble Clustering, High-Dimensional Clustering, Hierarchical Clustering, Unsupervised 

Active Learning Method. 

1. Introduction 

Soft computing algorithms that were originally 

developed for simulation of a human inference 

system are now widely used to solve complex 

problems in various fields of sciences such as 

system control, modeling, function approximation, 

prediction, decision-making process, 

classification, and clustering. One of the major 

fields of soft computing is fuzzy logic. The term 

"fuzzy logic" was introduced in 1965 by Lotfi A. 

Zadeh in his proposal on the fuzzy set theory [1, 2]. 

Fuzzy logic has many applications in the control 

theory, system modeling, machine learning and 

data mining. 

Active learning method (ALM) was originally 

proposed by Shouraki et al. as one of the most 

effective algorithms in the fuzzy logic field [3]. 

ALM was developed based on the capability of the 

human brain in confronting with complex 

problems. It breaks a complex problem into several 

simplex problems, and then aggregates the results 

of these sub-problems. ALM is a powerful 

recursive fuzzy modeling without a considerable 

computational complexity, which has been used in 

many applications such as function modeling [4, 

5], classification [6, 7], clustering [8-10] and 

control [11-13], with outstanding performance 

reports. In this paper, a high-dimensional clustering 

algorithm is introduced based on the concept of 

ALM. 

Clustering is a data mining tool to uncover the 

existed but previously unknown patterns in a large 

dataset by grouping similar objects into the same 

cluster. Various clustering algorithms with 

different capabilities and different structures have 

been designed: full-dimensional versus sub-space 

high-dimensional, hierarchical versus non-

hierarchical, crisp versus fuzzy, density-based 

versus grid-based, and methods based on 

partitioning [14-18]. 

http://dx.doi.org/10.22044/jadm.2018.6311.1746
http://en.wikipedia.org/wiki/Lotfi_A._Zadeh
http://en.wikipedia.org/wiki/Lotfi_A._Zadeh
http://en.wikipedia.org/wiki/Fuzzy_set_theory
http://en.wikipedia.org/wiki/Fuzzy_logic#cite_note-3
http://en.wikipedia.org/wiki/Fuzzy_logic#cite_note-4
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Artificial_intelligence
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 Many clustering applications are subjected to 

high-dimensional data, in which each object is 

described by a large number of attributes. 

Examples of these data types can be found in the 

areas of computer vision applications, pattern 

recognition, and molecular biology [19]. 

Conventional clustering algorithms face many 

problems with high-dimensional datasets, and they 

do not scale well for efficient clustering [16, 20, 

21]. The most prominent problem comes up when 

the distance between any two data points becomes 

almost the same, due to the natural sparsity of this 

type of data. Therefore, it is difficult to distinguish 

similar data points from the dissimilar ones. The 

time- and space-complexity of these algorithms to 

cluster high-dimensional datasets is another 

bottleneck, which usually results in failing to 

cluster such types of datasets. Apart from these two 

problems, high-dimensional data contains many 

irrelevant attributes, meaning that clusters are 

embedded in the sub-spaces of data space. As a 

result, high-dimensional specific clustering 

algorithms are essential to overcome these 

problems. 

The difficulty that conventional clustering 

algorithms encounter in dealing with high-

dimensional datasets motivates the concept of sub-

space clustering and projected clustering [22-24], 

where the main goal is to find clusters ingrained 

within sub-spaces of the entire feature space, each 

with their own associated features. Sub-space 

clustering is the task of detecting all clusters in all 

sub-spaces. This means that a point may belong to 

multiple clusters, each of which exists in a different 

sub-space [25, 26]. This task results in overlapping 

clusters. Projected clustering, on the other hand, 

tries to assign each point to a unique cluster, 

resulting in non-overlapping clusters. Each 

algorithm has its own drawbacks. The 

interpretation of sub-space clustering algorithm 

results is hard due to the overlapping clusters and a 

large number of produced clusters. Projected 

clustering algorithm that produces non-

overlapping clusters generally suffers from two 

common limitations. First of all, they usually have 

problems with sub-space clusters of significantly 

different dimensionality. Secondly, they cannot 

find clusters of different shapes and densities [27]. 

In addition, some of these algorithms suffer from 

time complexity, which grows dramatically by 

increasing the dimensions of datasets. Hence, sub-

space clustering and projected clustering have 

some limitations with high-dimensional data. 

The limitations of sub-space clustering algorithms 

show that a flexible and general high-dimensional 

clustering algorithm is required. Ensemble 

clustering has emerged as an important elaboration 

of the classical clustering problems. It overcomes 

the challenges of high-dimensional data and gives 

a high performance on the real world datasets. 

Therefore, in this work, we propose a hierarchical 

ensemble of projected clustering algorithm for 

high-dimensional data called HUALM (high-

dimensional unsupervised active learning method) 

based on the ALM concepts, which has a linear 

time complexity with respect to the number of 

features and data points. The algorithm is run over 

some well-known datasets and it is compared with 

four different high-dimensional clustering 

algorithms: CLIQUE [22], PROCLUS [24], DP-

clustering [28], and HDDC [29]. HUALM breaks 

the feature space into several single-feature spaces, 

and then blurs the data points as multiple 1D ink-

drop patterns. This process is called “ink drop 

spread” (IDS). As individual ink drop patterns 

overlap, the density of overlapping portions 

becomes significantly higher. Therefore, they form 

a density vector named IDS-vector, with some hills 

and dales on the density bar graph. A threshold is 

applied on the IDS-vector, and then those data 

points that fall between each two adjacent dales are 

labeled with a unique prime number. This labeling 

procedure is done for all features. Finally, the 

labels of all features related to each data points are 

multiplied, and data points with the same 

multiplication results form the clusters. The 

proposed algorithm shows acceptable evaluation 

results, offering a better time complexity than 

CLIQUE. Furthermore, unlike sub-space 

clustering, it produces non-overlapping clusters so 

interpretation of the results is easy. The proposed 

algorithm can also find sub-space clusters of 

significantly different dimensionality. Moreover, 

the zooming process of the algorithm helps to find 

clusters with different densities. Consequently, 

HUALM solves the problems associated with sub-

space and projected clustering algorithms. 

The main contributions and advantages of the 

presented work can be summarized as follows: 

 Presenting a novel algorithm for clustering 

high-dimensional data based on ALM.  

 Hiring the idea of ink drop spread to address 

uncertainty in the data.  

 Presenting a hierarchical clustering algorithm 

with a shallower depth tree structure, compared 

with the other common hierarchical methods, 

where a decision is made for a single data point 

at each iteration. 

 Using prime-number labeling to ensemble the 

clusters in order to decrease the time/space 

complexity. 
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The remainder of this paper is organized as 

follows. In Section 2, the related works are 

discussed. The ALM concepts are reviewed in 

Section 3. In Section 4, HUALM algorithm is 

described. An experimental setup to assess the 

quality of our clustering algorithm is designed in 

Section 5. To show the performance of our 

approach in noisy environments, synthetic datasets 

with a variable amount of noise has been used in 

simulations, and HUALM is compared with four 

high-dimensional algorithms, namely CLIQUE, 

PROCLUS, DP-clustering, and HDDC. Finally, 

Section 6 provides a summary and conclusion. 

 

2. Related works 

In this section, we review the related clustering 

algorithms in the following categorizations: sub-

space versus projected, bottom-up versus top-

down, cell-based versus density-based, and 

ensemble clustering. In each part, the 

characteristics of our proposed algorithm are 

investigated. 

 

2.1 Sub-space vs. projected 

Sub-space clustering and projected clustering are 

extensions of traditional clustering, which are 

developed to cluster high-dimensional datasets. In 

sub-space clustering algorithms, an object might be 

reported to belong to several clusters in different 

sub-space projections, while in projected clustering 

algorithms each object belongs to one cluster in a 

sub-space. Sub-space clustering was first proposed 

by Aggarwal et al. in the CLIQUE approach [22] 

and after that, several sub-space clustering 

algorithms have been designed. MAFIA [23], 

SUBCLU [30], PreDeCon [31], FIRES [32], 

DUSC [33], and INSCY [34] are some examples of 

such algorithms. Projected clustering algorithms 

are partitioning methods that identify separate 

clusters in sub-space projections. PROCLUS 

(PROjected CLUstering) [24] is a modification of 

the K-Medoid algorithm for projected clustering. 

The PROCLUS algorithm discovers the sub-space 

dimensions of each cluster by evaluating the 

locality of the space adjacent to it. The number of 

clusters to be detected and the average 

dimensionality of the clusters are the objective 

functions that PROCLUS tries to satisfy. ORCLUS 

[35] adds the cluster-merging process to 

PROCLUS, and utilizes the principal components 

instead of the attributes. FINDIT [36] and SSPC 

[37] are variations of PROCLUS. FINDIT 

enhances efficiency and clustering accuracy by 

employing some heuristics. SSPC makes use of 

domain knowledge in the form of labeled objects 

and attributes in order to improve the clustering 

accuracy. FLOC [38], DOC [39], and MineClus 

[40] use the FP-tree for iterative-projected 

clustering. In DP-clustering [28], a projected 

clustering algorithm, at first, the data is projected 

to a 𝑂(log(𝑛))-dimensional space, and some 

candidate centers are calculated in the projected 

space. Then, a discrete clustering algorithm is hired 

to privately find 𝑘 centers out of the candidate set. 

In HDDC [29], the Gausian mixture models 

(GMMs) are applied to sub-spaces with high data 

density. This approach could be counted as a sub-

space clutering method. P3C [41], StatPC [42], 

FASTDOC [43], HARP [44], EPCH [45], and 

PCKA [46] are some other projected clustering 

algorithms. 

The proposed HUALM algorithm can be used for 

both sub-space and projected clustering but here, 

we introduce it as a projected clustering algorithm. 

In the empirical studies, we compare the proposed 

method with CLIQUE, PROCLUS, DP-clustering, 

and HDDC, implemented according to [22], [24], 

[28], and [29], respectively. 

 

2.2 Bottom-up vs. top-down 

Sub-space clustering algorithms could also be 

divided into two groups, the bottom-up search and 

the top-down search methods [21]. The bottom-up 

search method creates a histogram for each 

dimension, and selects those parts whose densities 

exceed a given threshold (that helps to reduce the 

search space), then combines those parts to form a 

multi-dimensional grid. The main idea is: if a unit 

in k dimensions is dense, then there are dense units 

in all (k-1) dimensional projections of it. 

Furthermore, the bottom-up approach could result 

in overlapping clusters; it means that, there can be 

zero or more clusters for an instance. Setting proper 

values for parameters such as the grid size and the 

density threshold is difficult for these algorithms. 

On the other hand, the top-down sub-space 

clustering approach, at first, tries to find an initial 

approximation of the clusters in the full feature 

space with equally weighted dimensions. After 

that, a weight is assigned to each dimension for 

each cluster. In an iterative manner, these assigned 

weights are used to regenerate clusters, and then 

are updated. This approach is highly resource-

consuming in terms of time complexity because it 

requires multiple iterations of clustering algorithms 

in the full set of dimensions. Therefore, many 

implementations of this approach use a sampling 

technique to improve the performance. In the top-

down algorithms, each instance is assigned to only 

one cluster [24]. The number of clusters and the 

size of the sub-spaces are the most important 

parameters for the top-down algorithms, which are 
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often very difficult to determine as the initial 

parameters. Furthermore, since the size of a sub-

space is a parameter in the top-down clustering 

algorithms, they tend to find clusters in sub-spaces 

with the size of this parameter’s value. For 

techniques that use sampling, the size of the sample 

is another critical parameter, and can play a critical 

role in the quality of the results. 

CLIQUE, ENCLUS [47], MAFIA, CBF [48], 

CLTree [49], MINECLUS, DOC, EPCH, and 

SCHISM [50] are the bottom-up clustering 

algorithms. CLIQUE and ENCLUS use a static-

sized grid for dividing each dimension, while the 

others act wisely to determine the cut-points by 

analyzing the data. MAFIA, CBF, and EPCH use 

histograms for analyzing the density of data, 

related to each dimension. CLTree makes use of 

decision trees to find the best cut point.  DOC does 

a random search by a maximum width and 

minimum number of instances per cluster. It can be 

considered as an earlier version of MINECLUS. 

However, the FP-tree structures help MINECLUS 

achieve better runtimes compared with DOC. 

EPCH computes low-dimensional histograms, and 

dense regions are identified in each histogram, 

based on iteratively lowering a threshold that 

depends on a user-specified parameter. A signature 

that consists of the identifiers of the dense regions 

that the data object belongs to, is derived for each 

data object. By matching the coefficients of the 

signatures, the similarity between two objects is 

measured, and then the objects are grouped due to 

their similarity until the desired number of clusters 

is obtained. The SCHISM algorithm enhances 

CLIQUE by adapting the density threshold to the 

sub-space dimensionality.  

PROCLUS, ORCLUS, FINDIT, COSA [51], P3C 

and STATPC are the top-down clustering 

algorithms. PROCLUS, ORCLUS, FINDIT, and 

COSA determine the weights of instances for each 

cluster [52]. PROCLUS samples the data, then 

selects a set of k medoids and iteratively improves 

the clustering, similar to CLARANS [53]. 

ORCLUS is a non-axis-aligned method, which is 

the extended version of the PROCLUS algorithm. 

FINDIT is similar in structure to PROCLUS, which 

uses the DOD (dimension oriented distance) 

distance measure. The algorithm counts the 

number of dimensions on which two instances are 

within a threshold distance of each other. COSA is 

an iterative algorithm that that uses the k-nearest 

neighbors for each instance in the dataset to 

determine the weights for each dimension for that 

particular instance. P3C uses the χ2 statistical test 

and expectation-maximization to find the optimal 

final clustering solution. STATPC defines sub-

space clusters that are statistically significant to 

eliminate redundant clusters. 

It should be mentioned that although FIRES uses 

1D histograms, it is not a bottom-up approach. It 

makes use of 1D histogram information (called 

base clusters) to jump directly to the interesting 

sub-spaces. Our proposed algorithm works similar 

to FIRES from this viewpoint. It uses 1D IDS-

vectors to label data points, and then aggregates all 

information and jumps directly to the composed 

clusters for further searching. 

 

2.3. Cell-based vs. density-based 

One more simple classification of high-

dimensional clustering algorithms, reported in 

[46], includes cell-based, density-based and 

clustering-oriented approaches. Cell-based 

approaches such as CLIQUE, DOC, MINECLUS, 

and SCHISM  find static or dynamic-sized grids in 

each dimension, and combine them to make sub-

space clusters. This category is very similar to the 

bottom-up category of [21]. Density-based 

methods such as SUBCLU, FIRES, and INSCY 

start by finding dense instances instead of dense 

bins in each attribute. These approaches require 

expensive computation to find dense instances; 

therefore, they are usually computationally 

infeasible. Clustering-based approaches focus on 

optimizing the overall clustering results rather than 

finding separate sub-space clusters. For example, 

in PROCLUS, the total number of clusters and the 

average dimensionality of the clusters should be 

optimized. Other examples of clustering-based 

methods are P3C and STATPC. 

Our proposed algorithm can be categorized as both 

cell-based and density-based. It finds dynamic-

sized grids in each dimension similar to cell-based, 

and since it uses a fuzzy membership function for 

each data point, each specific instance is affected 

by the data points that exist in its neighborhood. 

Furthermore, because of using the data-labeling 

technique, it can find arbitrary shaped clusters in 

each cell. Consequently, it is neither completely 

cell-based nor completely density-based. However, 

it does not require expensive computations as the 

density-based methods do. 

 

2.4 Ensemble clustering 
Ensemble clustering has emerged as an important 
elaboration of the classical clustering problems 
[54]. The clustering ensembles combine multiple 
clustering solutions of a given dataset into a single 
(consensus) clustering solution [55] to improve the 
robustness, accuracy, and quality of the clustering 
result, which is known by many different names 
such as consensus clustering, aggregation of 
clustering and clustering combination [55-60]. It 
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overcomes the challenges created by high-
dimensional data and gives a high performance on 
the real world datasets [61-65]. Every clustering 
ensemble method is made up of two steps. The first 
step takes a dataset as input, and outputs an 
ensemble of clustering solutions. Once a collection 
of ensemble members has been generated, a 
suitable integration function is applied to combine 
them to produce a final clustering in the second 
step. The major challenge of ensemble clustering is 
the second step [55, 66-68], for some reasons. First, 
there is no label associated with each object. The 
number of produced clusters may differ across the 
different base solutions as well. Cluster labels are 
also symbolic. Therefore, ensemble clustering 
requires solving these problems in order to 
combine partitions.  
Many different strategies have been used to 
generate the ensemble members, for example, 
applying different clustering algorithms, changing 
initialization or other parameters of a clustering 
algorithm, and using non-identical sets of the 
features. Obviously, the strategy of projecting 
objects on different feature-spaces is somehow 
related to sub-space clustering and has been 
reported in different ensemble clustering 
approaches [69-73].  
After generating the initial partitions, a consensus 
function is used to combine them and produce a 
final partition, which is the main step in any 
clustering ensemble algorithm. The definition of 
the correspondence of labels for different partitions 
is not simple. In spite of the difficulty associated 
with this issue, there are several functions 
generating the ensemble of partitions. The most 
usual functions are based on the co-association [69, 
75, 76], graph [77-79], mixture models [80], 
mutual information [81], and majority voting [82, 
83] techniques. Recently, a distributed ensemble 
clustering method has been proposed that hires an 
entropy-based consensus function [84]. 
Our proposed algorithm uses non-identical sets of 
features in order to generate the initial partitions for 
cluster ensemble, and to make diversity. It uses a 
single feature space with all the data points. Using 
different subsets of features is very useful for 
clustering of high-dimensional data, because, as it 
works with subsets of the overall feature space, it 
reduces the computation burden of the clustering 
and time complexity of the algorithm. This is one 
of the advantages of ensemble clustering that uses 
the simple clustering trials and then aggregates the 
results. 
HUALM algorithm uses data-labeling with the 
prime numbers and then multiplying the labels, as 
a consensus function. The advantage of using this 
method is to overcome some difficulties related to 
combining the results of clustering phases. As a 
consequence, the problems associated with the 
combination of ensemble clustering are easily 
solved in our proposed clustering algorithm. 

3. Active learning method (ALM) 
ALM was developed for the purpose of human 
brain learning simulation [3, 4]. The idea resembles 
the brain activity that stores the behavior of data 
instead of the exact data. It also looks at data while 
considering some kind of uncertainty, just as the 
brain does. ALM breaks a complex problem into 
several easier and understandable problems, and 
then aggregates the results; this is similar to the 
human brain activity, as well.  
 
ALM breaks a multiple-inputs-single-output 
(MISO) system into several single-input-single-
output (SISO) sub-systems and aggregates the 
behavior of sub-systems to obtain the final output 
(Figure 1). Each SISO sub-system is expressed as 
a data plane (called IDS plane) resulting from the 
projection of the data on each input-output plane. 
The effect of each data point is simulated with a 
fuzzy membership function called an ink. Figure 2a 
depicts two such membership functions over-
lapped and aggregated. An IDS plane after 
applying IDS operator to the five data samples is 
shown in figure 2b.  

The range of input variables should be quantized to 

n levels to gain a faster simulation time and less 

hardware for implementation. In order to have 

faster and more precise results, the algorithm 

requires to divide the input variables range into 

some intervals. Therefore, for each SISO sub-

system there may be more than one IDS unit with 

a size less than the initial number of grids.  

Figure 1. ALM breaks Multiple-Inputs-Single-
Output (MISO) system into several Single-Input-
Single-Output (SISO) subsystems and aggregates 

the behavior of subsystems to obtain the final 

output. 

                   (a)                                             (b) 

Figure 2. a) Ink stains with pyramid shape b) 

Five Inks are diffused on the plane. 
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After mining some information from all of the IDS 

planes, the inference unit integrates this 

information. In inference unit of the ALM, a rule 

base is generated, while partial knowledge existing 

in the data samples are integrated. 

 

4. High dimensional unsupervised active 

learning method  

In this section, a novel projected clustering 

algorithm, called HUALM, which its fundamental 

concepts are driven from a powerful fuzzy 

modeling technique, ALM, is proposed. Sub-space 

and projected clustering methods are developed to 

deal with high-dimensional datasets. HUALM is an 

ensemble clustering method, which breaks high-

dimensional data into several 1D data, and after 

analyzing each of them, aggregates the results to 

obtain the final clustering result; this concept is 

borrowed from the ALM algorithm. HUALM 

algorithm also uses the concept of diffusion of 

information that is one of the basic concepts of the 

ALM algorithm. This concept plays an important 

role in the HUALM algorithm. Each data point is 

associated with a fuzzy membership function, 

called ink-drop. Therefore, the projection of all 

data spots onto 1D spaces called IDS-vectors is 

smooth contrary to those clustering algorithms that 

consider the frequency of data (e.g. MAFIA, CBE, 

EPCH). In fact, considering a fuzzy membership 

function for each data point acts similar to running 

a low-pass filter over the data frequency. The 

histograms of the resulting IDS-vectors smoothly 

have some maxima and minima, which is similar to 

pictures of hills and dales.  The smoothness of the 

resulting IDS-vectors makes it easy to find cutting 

points by searching for dales in the resulting hill 

and dale like IDS-vector. Therefore, HUALM is 

the extended version of ALM, which is adapted for 

clustering high-dimensional data. 

There are other concepts in the HUALM algorithm, 

as well. It is a hierarchical clustering algorithm, 

which applies zooming process in already found 

clusters of upper levels. This zooming process can 

help the algorithm to find clusters with different 

densities and clusters that are not detected in the 

upper levels of the algorithm. The algorithm has a 

linear time complexity with respect to the number 

of features, number of data points, and number of 

levels, individually. However, usually no more 

than three or four levels are required. The 

algorithm also puts a threshold on each IDS-vector. 

Consequently, it can eliminate noise and outliers, 

and helps to ignore unrelated dimensions of the 

data. The idea of assigning a unique prime number 

to those data points that fall into a 1D cluster helps 

the algorithm to aggregate the results of all 1D 

clustering in an effective manner; this process is the 

aggregation part of our proposed ensemble 

clustering. Furthermore, although HUALM is a 

kind of cell-based approach, it neither assigns a cell 

to a cluster nor works with cells; it just assigns 

labels to data points and works with the labels. 

These concepts help the algorithm to be an 

effective high-dimensional clustering algorithm. 

 

4.1. Algorithm  

The pseudo-code and flowchart of HUALM 

algorithm are shown in figures 3 and 4, 

respectively. The body of the algorithm has three 

nested loops. The innermost loop finds out the 

dense partitions of each dimension and uniquely 

labels data points according to these partitions by 

prime numbers.   

Figure 3.The pseudocode of HUALM 

algorithm. 

PROGRAM HUALM: 

    Start 

    Quantize input data; 
    Initialize algorithm parameters; 

    Labeling all data points with 1, and set num_clust(1)=1; 

    i=1; 
    Repeat 

      For C=1: num_clust 

         Datapoints=data points which their label is label©; 
         For D=1:num_dim 

            Spread ink drop for every Datapoint; 

            Aggregate Ink-drop patterns on an IDS unit; 
            Normalize IDS unit; 

            Put threshold on IDS unit; 
            Determine partitions by finding local minima of IDS 

vectors; 

            Labeling each partition’s Datapoints with a unique 
prime number; 

         End for 

         Multiplying labels of Datapoints; 
       End for 

       Update parameters (zoom in step); 

       i=i+1;   
       Num_clust(i)=count number of labels of all data points; 

    Until(num_clust(i) = num_clust(i-1) or i>= max-level) 

    Stop 

End program. 
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The two inner loops in the algorithm form full 

dimensional clusters by assigning a unique label to 

every data point that belongs to one cluster. This 

process is done by multiplying the corresponding 

prime numbers that have been assigned to data 

points in the innermost loop of the algorithm. The 

third (and outer) loop separates data points with the 

same label more and more by zooming in each 

 Figure 4. The flowchart of the proposed HUALM clustering algorithm. 

 

Zoom in Level 2

Zoom in Level 1

Zoom in Level 0 .

.

. . .

. .

Figure 5. Hierarchical structure of the HUALM algorithm. 
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cluster. This zooming process continues until for 

two iterations the number of produced clusters 

(labels) does not change or it exceeds the maximum 

number of levels. This step of the algorithm adds a 

hierarchical process to the algorithm (Figure 5). 

Consequently, the proposed algorithm is a 

hierarchical data-labeling ensemble of projected 

clustering algorithm for high-dimensional data.  

We describe the main steps of the algorithm in the 

following subsections. 

  

4.1.1 Feature Domain Quantization 

In HUALM, at first, the range of each input 

variable (feature) is divided into n disjoint intervals 

of equal size, in order to gain a faster simulation 

time and less hardware for implementation. It 

should be noted that the IDS units in the algorithm 

are 1D vectors that contain the aggregated effects 

of spreading data points on each dimension. 

Therefore, each IDS unit is a vector with n 

elements. Selecting a value for n mainly depends 

on the data characteristics, and it can be different 

for each dimension.  

 

4.1.2 Parameter Initialization 

In the initialization phase of the algorithm, 

parameters of the algorithm including: the ink-

diameter (𝐼𝑑), threshold value (𝑇ℎ), and an 

updating factor(s), are determined. The 𝐼𝑑 

determines the influence of a point in its 

neighborhood. The effect of considering each data 

point with an 𝐼𝑑, and adding the  effects of all 

points is the same as applying a low-pass filter on 

frequency of data in each dimension. The size of 

ink is somehow related to the size of the filter 

window. The threshold can be used for noise 

elimination, outlier rejection, and specifying 

cluster boundaries. On the other hand, updating 

factor is used for adjusting the parameters in each 

level of hierarchy. Selecting proper values for the 

parameters of the algorithm is essential to find out 

clusters with high accuracy and efficiency. 

The labels of all data points are set to 1, at the 

beginning of the algorithm, which means 𝑛𝑐 = 1, 

where 𝑛𝑐 is the number of clusters. Since there is 

no information about their real category, all data 

points are considered as one cluster at the 

beginning of the algorithm. 

  

4.1.3 IDS Operation 

In this step, the ink drops of data points that belong 

to a cluster spread over 1D IDS units, in which 

there is one IDS unit per each feature. Therefore, 𝑑 

IDS units are formed, where 𝑑 is the feature size. 

A 2D fuzzy membership function is considered for 

ink-drop pattern, where any type of distribution 

functions can be used for it. Figure 6 shows some 

examples of this pattern. The ink-drop of data 

points of a cluster are combined in the IDS units; 

therefore, 𝑑 vectors that represent the accumulation 

effects of all data points of the cluster are obtained.  

  

In order to eliminate the features that do not belong 

to a cluster, or to remove noise or outliers, a 

threshold is applied on the IDS unit vector. 

Therefore, some data labels may be considered as 

(1). Normalization is necessary before applying the 

pre-defined threshold on the vector.  

[1.. ], ( ) ( ) 0x n D x Th D x      (1) 

,where 𝐷(𝑥) is the IDS-vector. 

Afterward, each IDS unit is partitioned via its local 

minima, and portions of data points that fall within 

each partition are labeled with a unique prime 

number. Therefore, each data point is labeled with 

at most 𝑑 prime numbers, one label per feature. In 

order to find the local minima of an IDS-vector, we 

use the first derivative of the vector (i.e. 𝑥′[𝑛] =
𝑥[𝑛] − 𝑥[𝑛 − 1]), then check the points where the 

slope turns from negative to positive (or maybe 

with some zeros between them). 

Figure 7 shows an example of IDS-vector in a bar 

graph. After eliminating the unrelated data points 

by the thresholding process of (1), the IDS unit 

vector is partitioned with respect to the local 

minima of the vector. Then, data points that fall 

within the same partition are labeled with the same 

prime number. 

 

4.1.4 Finding Clusters  

The multiplication of D prime numbers of a data 

point determines the absolute label of it.  

 

Figure 6. Some examples of ink drop patterns with the 

Ink-diameter of IDS. 

Figure 7. An IDS-vector, which has some hills 

(maxima) and dales (minima). 
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Data points with the same absolute label are 

considered as a cluster, which means that they are 

in the same partition of all features.  

Subsequently, after finding clusters, the center of 

clusters can be found either by averaging their data 

points or by achieving the median, or by computing 

the median interval. Cluster centers can also be 

found from the generated IDS-vectors by defining 

the center of the cluster as the point that has 

maximum density in all dimensions.  

After the first level of clustering, the algorithm 

zooms in each constituted cluster and clusters them 

again if possible, until either the number of clusters 

in two consecutive levels does not change or the 

algorithm reaches a predefined maximum number 

of levels. In most cases, no more than three levels 

are required to obtain an optimal result if the initial 

values of parameters are selected wisely. There 

could be other stopping criteria for the algorithm, 

for example, reaching an optimum clustering 

validation factor. Consequently, the proposed 

algorithm can discover clusters of data via a 

divisible-like algorithm. The hierarchical portion 

of the algorithm helps to find sub-clusters of an 

already found cluster by means of a zooming 

process. 
 

4. 2. Time complexity 

In order to compute the complexity of the proposed 

clustering algorithm, the two inner loops of 

algorithm are divided into three parts. The first part 

is spreading ink drops for N data points on D 

dimensions, which is 𝑂(𝑁 × 𝐷). The second part 

is scanning n arrays of the IDS-vectors and finding 

cutting points, which is 𝑂(𝑛 × 𝐷). The third part is 

multiplying data labels, which is 𝑂(𝑁 × (𝐷 − 1)). 
Thus the complexity of two inner loop of the 

algorithm is 𝑂(2𝑁𝐷 + 𝑛𝐷 − 𝑁), which equals to 

𝑂(𝑁 × 𝐷). Therefore, the algorithm complexity is 

in the order of 𝑂(𝑁 × 𝐷 × 𝐿), where N is the size 

of dataset, D is the feature size, and L is number of 

zooming levels of the algorithm. The complexity 

shows that the proposed algorithm is linear in term 

of either dataset size, or feature size or number of 

levels of the algorithm, individually.  

However, the overall time complexity of the 

algorithm for high-dimensional datasets is actually 

less than the proposed formula. Since in high-

dimensional datasets, clusters exist in sub-spaces 

and thus the algorithm does not need to search the 

entire feature space after the first level. In addition, 

some data points are reported as outliers or noisy 

data points, so they will not involve in the 

clustering process of the next levels. 

 

 

5. Experiments 

In this section, a sequence of experiments are 

conducted for evaluating HUALM in terms of: 

scalability of the algorithm, noise and outlier 

immunity, and clustering quality. In addition, the 

hierarchical characteristics of the algorithm is 

shown by two experiments. The sensitivity analysis 

of the algorithm to its parameters is achieved by 

using different configurations of parameters and 

data conditions. Synthetic data are used for this part 

of the experiments. The ability of the proposed 

algorithm to work in noisy environments, detecting 

outliers, and finding clusters of sub-spaces has 

been investigated by some experiments. Clustering 

quality of the algorithm is measured by two 

clustering evaluation criteria, the accuracy, and F-

measure. It is also compared with four different 

clustering algorithms including two sub-space 

clustering algorithms, CLIQUE and HDDC 

implemented according to [22] and [29], 

respectively, and two projected clustering 

algorithms, PROCLUS and DP-clustering, 

implemented according to [24] and [28], 

respectively. These algorithms have been chosen 

due to their fewer parameters and easier tuning 

compared to the others. Synthetic data and real 

databases are used for this part of the experiments. 

The characteristics of these datasets are 

summarized in table 1. The clustering evaluation 

methods can be divided into two categories: 

internal and external methods. Internal evaluation 

is attributed to the situation in which the clustering 

results are evaluated based on the data that is 

clustered itself. In external evaluation, the 

clustering results are evaluated based on the data 

that has known class labels. Using internal criteria 

in cluster evaluation is biased towards algorithms 

that use the same cluster model; consequently, the 

best way for unbiased evaluations so far has been 

the external evaluation measures [85, 86]. In this 

work, the external clustering measures accuracy 

and F-measure [87] are used to evaluate the 

proposed algorithm. 

In this paper, accuracy is defined just the same as 

precision definition in [79], which measures the 

homogeneity of clusters with respect to priory 

known classes; it is given in (2). Having cluster 𝐶𝑖, 
let 𝐽𝑖 denote the partition that contains the 

maximum number of points from 𝐶𝑖. It measures 

the fraction of points in 𝐶𝑖 from the majority 

partition 𝑇𝐽𝑖.  

11/ max { } /k

i i j ij ij iAccuracy n n n n   (2) 

The accuracy of clustering 𝐶 is defined as the 

weighted sum of the cluster-wise accuracy values 

as in (3). 
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  (3) 

where, the ratio 𝑛𝑖 𝑛⁄  denotes the fraction of points 

in cluster 𝐶𝑖.  
The maximum value of accuracy is one, when each 

cluster comprises points from only one partition. 

Furthermore, when the number of clusters is equal 

to the actual number of partitions, then 

"accuracy=1" indicates perfect clustering, with a 

one-to-one correspondence between the clusters 

and partitions. However, a high accuracy can be 

achieved when the number of clusters is large; in 

particular, accuracy is 1 if each data point lies in a 

separate cluster. Thus, accuracy could not be used 

to trade-off the quality of the clustering against the 

number of clusters; however, F-measure allows us 

to make this trade-off. For a perfect clustering, 

when the number of clusters is equal to the actual 

number of partitions, the maximum value of F-

measure is one. 

 

5.1. Examples to show hierarchical property of 

proposed algorithm 

The hierarchical behavior of the algorithm is 

shown by two examples. The datasets that are used 

for this purpose are aggregation and spiral datasets. 

As shown in figure 8, the HUALM algorithm can 

cluster the aggregation dataset after three levels. It 

shows that the algorithm works well for the clusters 

that have convex shapes.  Likewise, figure 9 shows 

the result of the algorithm on the spiral dataset. For 

this dataset, the algorithm reaches the accuracy of 

one after three levels, although the number of 

generated clusters is greater than the real one.  

Figure 10 shows the F-measure and accuracy 

measures for these two examples. As it shows, the 

two evaluation measures are almost the same for 

the aggregation dataset, because as the algorithm 

advances, the clusters are truly separated, and thus 

the clustering algorithm works well for this dataset.  

However, for the spiral dataset, as the algorithm 

advances, more clusters are composed and the 

purity of clusters increases, so the accuracy 

increases. However, as the number of clusters 

increases, the F-measure is decreased.  

 

 
5.2. Scalability of algorithm 
This part of the experiment aims at checking the 

behavior of HUALM when the datasets have 

different numbers of instances and features. A data 

generator function has been written, which 

uniformly distributes clusters with Gaussian 

distribution in the feature space; the standard 

deviation of each cluster is random but restricted. 

This data generator function is used for evaluating 

the scalability of HUALM in terms of time and two 

quality measures, accuracy, and F-measure. 

Figure 11 shows the scalability of the algorithm 

with respect to time. In all experiments, the number 

of clusters is constant and equal to 130. Figures 11a 

and 11b show that the execution time of the 

algorithm increases linearly with the number of 

data per cluster. They also show that the execution 

time of the algorithm is linearly correlated to the 

number of features. Therefore, as the complexity 

expression of the algorithm indicates, the time 

complexity of the algorithm is linear regarding the 

number of data points and the number of features. 

                 (a)                         (b)                    (c) 

Figure 9. HUALM on spiral dataset reaches an accuracy 

of one after three levels, but with the number of clusters 

more than the actual one a) level-1, b) level-2, c) level-3. 

                       (a)                                                   (b) 

Figure 10. a) The accuracy and F-measure for aggregation 

dataset are near to one after running the three levels of the 

algorithm. b) Accuracy for the spiral dataset reaches one 

after running the three levels of the algorithm but the F-

measure is low due to the large number of produced 

clusters. 

(a)                           (b)         (c) 

Figure 8. HUALM algorithm can thoroughly cluster the 

aggregation dataset after three levels, a) level-1, b) level-2, 

c) level-3. 
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Figure 12 shows the time complexities of different 

levels of the algorithm. It indicates that the time 

complexities of different levels of the algorithm are 

almost the same. Therefore, as the complexity 

expression shows, the time complexity of the 

algorithm is linear regarding the number of levels. 

 
Figure 13 shows the scalability performance of the 

algorithm in terms of the accuracy and F-measure. 

The number of clusters is constant and equal to 

Figure 12. Time complexities of different levels of the 

algorithm are almost the same. 

Figure 11. a) Time complexity of the algorithm is 

linearly related to the number of data per cluster b) 

The time complexity of the algorithm is linearly related 

to the number of features. 

(a) 

(b) 

Figure 13. a) F-measure is almost constant when the number of data per clusters increases. 

Decreasing in F-measure as the number of dimensions increases is related to the generated dataset 

structure, and could improve by adjusting the algorithm parameters. b) If the algorithm parameters 

remain constant, the F-measure index will be degraded due to increase in feature size. c) Accuracy 

index does not change with the number of data per clusters. d) Accuracy does not change with the 

feature size of the generated dataset because in the HUALM algorithm, reaching an accuracy of one 

is almost always possible but usually with a lot of produced clusters. 
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130, and the parameters of algorithm are the same 

in all experiments.  

Figures 13a and 13b show that the algorithm has a 

good and almost constant F-measure in case of 

increasing the number of data points per clusters, 

although as the number of dimensions increases, 

the F-measure index decreases. A reason for 

decreasing F-measure is related to the dataset 

because in higher dimensional generated datasets, 

the data in each cluster is farther from each other 

than in the lower dimensional one; consequently, 

for higher dimensions of the generated dataset, the 

algorithm splits the clusters more and more. 

Therefore, F-measure index which is sensitive to 

the number of clusters, reduces by increasing the 

dimensions of the generated dataset. However, as 

Figure 14 indicates, the F-measure for these types 

of datasets could be improved by adjusting the 

algorithm parameters. As figures 13c and 13d 

show, the accuracy of the algorithm for the 

generated dataset is near one. They show the ability 

of the algorithm to work with high-dimensional 

datasets with a good accuracy measure. 

 
Figure 14 shows the effects of the algorithm 

parameters on the quality of clustering by 

monitoring the F-measure evaluation index. In this 

experiment, the number of features is 6, the number 

of clusters is 130, and the number of data points in 

each cluster is 200. The algorithm has been run 10 

times and the best and average F-measures have 

been reported in figures 14a and 14b respectively.  

As shown in figures 13, the F-measure for higher 

dimensions decreases when the parameters are 

constant. However, in the experiment of figure 14 

it is shown that by adjusting the parameters, better 

quality measures can be achieved. Figure 14.a 

shows that with an IDS from 5 to 9, the F-measure 

index can reach to its maximum value. However, 

for this dataset, with the IDS smaller than 5 and 

bigger than 9, the F-measure index is smaller than 

its maximum value. In addition, it shows the impact 

of the threshold on the F-measure index for this 

dataset, where it is reduced by increasing in the 

threshold. That is, as the threshold increases, more 

data points are eliminated and thus, the F-measure 

will be decreased. Therefore, by adjusting the 

parameters of the algorithm, better clustering 

results could be achieved.  

 

5.3. Noise and outlier immunity  

 In order to show the invariance of our approach 

with respect to noise, a 2D dataset having two 

clusters with Gaussian distribution has been used, 

in which different percentages of noise ranging 

from 1% to 100% of the total number of data points 

have been injected. The white noise has been 

injected, and the algorithm has been run ten times 

over the datasets containing Gaussian clusters with 

random standard deviations. Figure 15.a shows the 

original dataset with 100% injected white-noise, 

and figure 15b shows the result of HUALM on this 

synthetic dataset. This example shows the power of 

HUALM in distinguishing clusters in noisy 

environments.  

Figure 14. Effects of the algorithm parameters on the F-

measure. a) As the threshold increases the F-measure 

decreases. b) For IDS between 4 and 8 the maximum F-

measure value has been achieved. 

 

 (a)                                       (b)      

Figure 15. HUALM result on a random Gaussian 

dataset with 100% of total number of data, injected 

white noise. a) Two clusters have been shown in red and 

cyan, and the white noise in black. b) Output of the 

algorithm shows the ability of the algorithm to eliminate 

noise and outliers. 

(a) 

(b) 
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Figure 16 shows the ability of the algorithm to find 

noisy data and outliers, while preserving a high 

accuracy. Figure 16.a, shows the percentage of 

detected noise vs. the percentage of injected noise; 

and figure 16b shows the HUALM clustering 

accuracy versus the percentage of injected noise. 
 

5.4. Clustering Quality 

In this part of the experiments, the clustering 

quality of HUALM is measured and compared with 

CLIQUE, PROCLUS, DP-clustering and HDDC. 

These algorithms are high-dimensional clustering 

methods. Synthetic and real datasets are used in 

this part of the experiments.  

The characteristics of these datasets are 

summarized in table 1.  

The clustering quality measures have been 

calculated for these algorithms, and the results are 

summarized in table 2. It should be noticed that 

each algorithm has been run with different 

parameters and the best concurrent evaluation 

indices are reported.  

According to table 2, the HUALM algorithm has 

the best accuracy compared to the other four 

clustering algorithms. As discussed earlier, 

HUALM can potentially gain an accuracy near one 

in exchange for the higher number of clusters. 

Since the number of clusters in our algorithm is 

usually greater than the real number of clusters, in 

some cases, the F-measure is less than the other 

four algorithms.  

 

Table 2. Validity indexes for clustering methods. 
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Aggregation 0.9970 0.9210 0.9940 0.9112 0.7272 0.9950 0.7082 0.6060 0.8345 0.6821 

Spiral 1.0000 0.9020 0.9500 0.9359 0.8820 0.1596 0.1776 0.1410 0.1847 0.2171 

Chainlink 1.0000 0.9952 1.0000 1.0000 0.9060 0.2800 0.2800 0.360 0.2119 0.3935 

Haberman 0.7605 0.7494 0.7544 0.7549 0.7353 0.8197 0.8092 0.5726 0.7779 0.8355 

Seeds 0.9164 0.8900 0.8549 0.5238 0.8324 0.5751 0.4130 0.7136 0.5953 0.5322 

Glass 0.7918 0.4631 0.7567 0.5047 0.5733 0.3986 0.4237 0.3589 0.4271 0.3927 

Waveform 0.6906 0.3410 0.3457 0.5530 0.4121 0.4394 0.4880 0.3425 0.5632 0.3432 

Breast 0.8807 0.7308 0.7574 0.7626 0.7530 0.4376 0.6281 0.5917 0.6054 0.6837 

 

Table 1. Summary of the datasets. 

 

Data set 

Number 

of 

objects 

Number 

of 

features 

Number 

of 

classes 

Aggregation 788 2 7 

spiral 312 2 3 

Chainlink 1000 3 2 

Haberman 306 3 2 

Seeds 210 7 3 

Glass 214 9 7 

Waveform 5000 21 3 

Breast 198 33 2 

 

                             (a)                                             (b) 

Figure 16. Performance of the algorithm to find noisy 

data and outliers, while keeping a high accuracy. a) 

The percentage of detected noise vs. the percentage of 

injected noise. b) Clustering accuracy vs. the 

percentage of injected noise. 
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6. Conclusion 

In this work, a novel clustering algorithm, namely 

HUALM, was introduced for high-dimensional 

data, based on the active learning algorithm.  

The proposed algorithm clusters the 1D IDS-

vectors, which are the density vectors of the grids 

after ink drop spread of data points and projecting 

the results. The algorithm then finds the cutting 

points by exploring the local minima of the IDS-

vectors. It assigns labels to the data points 

according to their position in each dimension, with 

prime numbers. Eventually, it aggregates the 

results of 1D clustering by multiplying the assigned 

labels. Noise mitigation and outlier elimination are 

carried out through a thresholding mechanism. It 

also helps the algorithm to eliminate the unrelated 

dimensions of clusters to lower the complexities. In 

order to improve the performance of the proposed 

algorithm, it has a hierarchical zooming process, 

which helps the complex datasets clustering. The 

complexity of the algorithm was computed and 

confirmed via experiments. The effects of the 

parameters on the clustering results were also 

investigated. The simulation results confirmed the 

efficiency of the proposed algorithm.  
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 چکیده:

وریتم مبتنی این الگ ایمفهوم پایه های با ابعاد بالا پیشنهاد شده است.   داده تصویری بندی خوشه در این مقاله یک الگوریتم ترکیب سلسله مراتبی برای   

ست  بر روش یادگیری فعال شده از برخی ویژگی ، ا سان می که یک رویکرد یادگیری فازی الهام گرفته  شد های رفتاری عملکرد مغز ان ری  . روش یادگیبا

رات خلاصه   تاثیهمه آن کرده تا  پراکندهاده را به شکل الگوهای قطره جوهر  نقاط دتاثیر بندی است که  فعال غیر نظارتی با ابعاد بالا یک الگوریتم خوشه 

ست که از بخش بندی   کند. این رویکرد مبتنی بر یک روش خوشه ستانه را بر بردارهای حاصل اعمال می  ، و سپس یک حد آ شده سازی   بندی ترکیبی ا

به عنوان    را، سهههپس، به نقاط داده موجود در هر بخش یک عدد اول    گیرد. بندی بهره می ترکیبی از راهکارهای خوشهههه   ایجاد تراکمی یک بعدی برای   

های قطعی ایجاد شوند. نقاط داده  انجام گرفته تا برچسب  ،های نقاط دادهبا ضرب کردن برچسب   یک عمل ترکیب،دهد. در ادامه، تخصیص می  ،برچسب 

  رفتههای پیچیده در نظر گبندی دادهشوند. ویژگی سلسله مراتبی این الگوریتم به منظور خوشه    های قطعی یکسان در یک خوشه قرار داده می  با برچسب 

های بیشتری به دست آیند. این الگوریتم با استفاده از چندین مجموعه داده تحلیلی خوشه-های تشکیل شده قبلی، زیر، تا با بزرگنمایی خوشهاست شده

بالا،   های با ابعادبندی شناخته شده برای داده  های خوشه در مقایسه با برخی الگوریتم دهند که ارزیابی شده است. نتایج به دست آمده نشان می     و واقعی

 .دهداز خود نشان میروش پیشنهادی عملکرد مطلوبی 

 .بندی سلسله مراتبی، روش یادگیری فعال غیر نظارتیبندی با ابعاد بالا، خوشهبندی ترکیبی، خوشهخوشه :کلمات کلیدی

 


