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Abstract 
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, 

determination of permeability is a crucial task in reserve estimation, production and development. 

Traditional methods for permeability prediction are well log and core data analysis which are very expensive 

and time-consuming. Well log data is an alternative approach for prediction of permeability because they are 

usually available for all of the wells. Hence, attempts have been made to utilize well log data to predict 

permeability. However, because of complicate and non-linear relationship of well log and core permeability 

data, usual statistical and artificial methods are not completely able to provide meaningful results. In this 

regard, recent works on artificial intelligence have led to the introduction of a robust method generally called 

support vector machine (SVM). The term “SVM” is divided into two subcategories: support vector classifier 

(SVC) and support vector regression (SVR). The aim of this paper is to use SVR for predicting the 

permeability of three gas wells in South Pars filed, Iran. The results show that the overall correlation 

coefficient (R) between predicted and measured permeability of SVR is 0.97 compared to 0.71 of a 

developed general regression neural network. In addition, the strength and efficiency of SVR was proved by 

less time-consuming and better root mean square error in training and testing dataset. 

Keywords: Permeability; hydrocarbon reservoir; well logs; support vector machine; neural network.

1. Introduction 
Reservoir permeability is a critical parameter for 
characterization of the hydrocarbon reservoirs [1]. 
In fact, management and development of a 
reservoir require accurate knowledge of 
permeability. This petrophysical parameter can be 
determined by analyzing core, well test or well 
log data [2, 3]. Although no well log is currently 
capable of measuring permeability directly, 
correlating well logs with core permeability at the 
cored well has become a common practice in the 
industry [1]. Many empirical equations are 
available to transform well log data to 
permeability [2, 4]. These models often require a 
labor-intensive exercise to adjust constants or 
exponents or to introduce compensations. Despite 
these observations, theoretical relations between 
permeability and porosity have been sought. For 

example, Kozeny-Carmen theory relates 
permeability to porosity and the specific area of a 
porous rock with pores treated as an idealized 
bundle of capillary tubes. This theory treats the 
highly complex porous medium in a very simple 
manner and ignores the influence of conical flow 
in the constrictions and expansions of flow 
channels [1]. 
The statistical approach is comparatively a more 
versatile approach to the problem of permeability 
prediction. It makes use of the available core 
permeability (the dependent variable) and 
develops functional relationships with the well log 
data (the independent variables). It, however, 
requires the assumption and satisfaction of multi-
normal behavior and linearity, and hence it must 
be applied with caution [1]. 
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Alternatively, neural networks have been 

increasingly applied to predict reservoir properties 

using well log data [5, 6]. Previous investigations 

[7-11] have revealed that neural network is a 

proper tool for identifying the complex 

relationship among permeability, porosity, fluid 

saturations, depositional environments, lithology 

and well log data. However, more studies are still 

required to improve the obtained results of these 

research works. In this regard, recent works on the 

artificial intelligence have resulted in finding a 

suitable machine learning theory generally called 

support vector machine (SVM). SVM is divided 

into two subcategories: support vector classifier 

(SVC) and support vector regression (SVR). The 

SVM method (i.e. SVC and SVR) relies on the 

statistical learning theory which enables learning 

machines to generalize the unseen data. This 

method was introduced in the early 1990’s as a 

non-linear solution for classification and 

regression tasks [12]. This technique has been 

proven to have superior performances in the 

variety of problems due to its generalization 

abilities and robustness against noise and 

interferences [13, 14]. In general, there are at least 

three reasons for the success of SVM: its ability to 

learn well with only a very small number of 

parameters; its robustness against the error of 

data; and its computational efficiency compared 

with several other intelligent computational 

methods including neural network, fuzzy network, 

etc [15-17]. The objective of this study is to 

evaluate the ability of SVR for prediction of 

permeability in reservoirs with limited data. 

Kangan and Dallan gas reservoirs in the South 

Pars field, Iran were selected as the case study in 

this research work. Furthermore, the results of 

SVR will be compared with those obtained from a 

developed general regression neural network 

(GRNN).  

2. Material and Method 

2.1. Studied wells and input data 
The Iranian South Pars field is the northern 

extension of Qatar's giant North Field.  The field 

consists of two independent gas-bearing 

formations called Kangan (Triassic) and Upper 

Dalan (Permian). Each formation is divided into 

two different reservoir layers, separated by 

impermeable barriers. In this field, gas 

accumulation is mostly limited to the Permian–

Triassic stratigraphic units. These units (i.e. 

Kangan–Dalan Formations) constitute very 

extensive natural gas reservoirs in this field and 

Persian Gulf area. They are composed of 

carbonate–evaporate series and also known as the 

Khuff Formation [18]. Figure 1 shows the 

geographical position of South Pars gas field. 

As it was mentioned in the introduction section, 

the main objective of this study is to predict 

permeability of the gas reservoirs by incorporating 

well logs of three wells in the southern Pars field. 

As a matter of fact, the well logs are considered as 

inputs, whereas the logarithm of horizontal 

permeability (Kh) is taken as the output of the 

networks. Available digitized well logs consist of 

sonic log (DT), gamma ray log (GR), 

compensated neutron porosity log (NPHI), density 

log (ROHB), photoelectric factor log (PEF), 

micro spherical focused resistivity log (MSFL), 

shallow and deep latero-resistivity logs (LLS and 

LLD). To show the possible relationship between 

well logs and permeability, a correlation matrix 

has been depicted. Table 1 gives the correlation 

matrix of the well logs and permeability. 

 

Figure1. Geographical position of South Pars gas field 

 

As it is seen in Table 1, there is a high positive 

relationship among the LKH, DT and NPHI while 

LKH has a negative correlation with RHOB data. 

However, other logs cannot establish any good 

relationships with LKH. In addition, due to both 

the heterogeneity of the reservoir and complex 

geology of the area, the location (i.e. X, Y 

coordinate) and the depth of data (i.e. Z value) are 

taken into consideration for this study.  

In this study, a total number of 175 well logs and 

core permeability datasets were obtained from 3 

wells of Kangan and Dalan gas reservoirs. The 

database was randomly divided into training and 

testing subsets using MATLAB multi-purpose 

commercial software in order to implement the 

automated Bayesian regularization. This type of 

regularization can significantly reduce the large 

amount of error called over-fitting. In view of the 

requirements of the networks computation 

algorithms, the data of the input and output 
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variables were normalized. In this study, 

normalization of data was carried out using 

equation (1) and the number of train data (125) 

and test data (50) were then selected randomly. 

12
minmax

min 





pp

pp
pn

                                  (1)                         

where pn is the normalized parameter, p denotes 

the actual parameter, pmin represents the minimum 

of the actual parameters and pmax stands for the 

maximum of the actual parameters. In addition, 

the cross-validation of the whole training set was 

used for adjusting the associated parameters of the 

networks [19].  

 
Table 1. Correlation matrix of the well logs data  

 LKH X Y Z GR DT RHOB NPHI PEF MSFL LLD LLS 

LKH 1            

X -.112 1           

Y .110 -.999 1          

Z .285 .655 -.655 1         

GR -.015 .219 -.216 .490 1        

DT .742 -.025 .026 .347 .088 1       

RHOB -.664 -.011 .010 -.397 -.182 -.915 1      

NPHI .820 -.110 .107 .240 .167 .746 -.615 1     

PEF .125 .125 -.119 .361 .210 .350 -.576 .009 1    

MSFL -.318 .072 -.070 -.164 -.259 -.327 .401 -.318 -.236 1   

LLD -.106 .107 -.110 .106 -.041 -.153 .169 -.101 -.078 .274 1  

LLS -.206 .077 -.078 -.023 -.102 -.239 .248 -.203 -.115 .235 .767 1 

 

2.2. Support Vector Machine  

Support vector machine (SVM) has been 

employed for regression estimation, the so called 

support vector regression (SVR), in which the real 

value functions are estimated. In this case, the aim 

of learning process is to find a function f(x) as an 

approximation of the value y(x) with minimum 

risk, and only based on the available independent 

and identically distributed data, i.e.   

1 1
( , ),..., ( , ) ( )

n

m m
x y x y X R Y R         (2) 

In SVR algorithm, the estimation function is 

determined by a small subset of training samples,  

namely, support vectors (SVs). Also in this 

algorithm, a specific loss function called ε- 

 

 

insensitive loss is developed to create a sparseness 

property for SVR. This function is described as 

follows 

0                        if ( )
( )

( )     Otherwise

y f x
y f x

y f x






 
 

 





  (3) 

where f(x), which is computed by the SVR, is the 

estimated value of the y and the corresponding 

errors being less than ε-boundary (ε-tube) are not 

penalized (Figure 2). 

For developing the regression algorithm, we begin 

with the linear function estimation. It is clear that 

every linear function of input vector x has the 

following representation: [20] 

 

 

 
Figure 2. ε-Insensitive loss function [21]
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Where , ,nw x X R b R                       (4) 

It should be noted that angle bracket ( . ) 

indicates the inner product of two vectors in 

Hilbert space (i.e. a space in which inner product 

of two vectors has a real value, also called inner 

(or dot) product space). In ε -SVR, the aim is to 

find a function f(x) that estimates the values of 

output variables with deviations   from the 

actual training data. The ε -values control the 

complexity of the approximating functions where 

small values tend to penalize large portion of the 

training data leading to tight approximating 

models and large values tend to free data from 

penalization leading to loose approximating 

models. Therefore, the proper choice of e-value is 

critical for the generalization of regression 

models. 

To find f(x), one should minimize the regulated 

risk functional (Rreg) (instead of just empirical risk 

functional which is used in traditional learning 

algorithms such as ANN) defined as follows [22]: 
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            (5)  

The Remp is the empirical error over training 
data which is defined in ε-insensitive loss function 

framework. The regularization coefficient C in the 

Eq. (5) is an indicator of the complexity of 

function f and penalizes the error by setting the 

tradeoff between training error minimization and 

model complexity. Briefly, the minimization of 

the Rreg illustrates the principle idea of the 

structural risk minimization theory which states 

that for achieving the minimum risk, simultaneous 

control of the complexity of the model and the 

error owing to training data is essential. This idea 

improves the generalization of the SVR.   

It has been proven that minimizing the Eq. (5) is 

equivalent to the following convex constrained 

quadratic optimization problem [23]: 
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where ξi and
i
  are slack variables introduced to 

satisfy constraints on the function. Therefore, 

SVR fits a function to the given data by not only 

minimizing the training error but also by 

penalizing complex fitting functions. The first 

term of Eq. (6) is the Vapnik– Chervonenkis (VC) 

confidence interval whereas the second one is the 

empirical risk. Both terms limit the upper bound 

of the generalization error rather than limit the 

training error. This means that SVR strikes a 

balance between the empirical error and VC-

confidence interval which leads to improved 

generalization performance than neural network 

models [24]. In Eq. (6), C tries to ensure the 

margin ε is maximized and error of the 

classification   is minimized. According to Eq. 

(6), any error smaller than ε does not require a 

nonzero ξi or
i
  , and does not enter the objective 

function [25].  

By introducing Lagrange multipliers (α and 

α
'
) and allowing for C > 0, ε > 0 chosen a 

priori, the equation of an optimum hyper 

plane is achieved by maximizing the 

following relations: 

1 1 1

1
( ) . ( ) (( ) ( ) )

2
( , )

N N N

i i i i i i i i i i i

i i i

x x yL          
  

                (7) 

  0 ( )
i i

Subject to C                                 (8) 

where, xi only appears inside an inner product. To 

get a potentially better representation of the data 

in non-linear case, the data points can be mapped 

into an alternative space, generally called feature 

space (a pre-Hilbert or inner product space) 

through a replacement: 

)().(. jiji xxxx                                   (9) 

The functional form of the mapping φ(xi) does not 

need to be known since it is implicitly defined by 

the choice of kernel: k(xi, xj) = φ(xi).φ(xj) or inner 

product in Hilbert space. With a suitable choice of 

kernel, the data can become separable in feature 

space while the original input space is still non-

linear. Thus, whereas data for n-parity or the two- 

spiral problem is non-separable by a hyper plane 

in input space, it can be separated in the feature 

space by the proper kernels [26, 27]. Table 2 gives 

some of the common kernels.  

Then, the nonlinear regression estimate takes the 

following form: 

1 1 1 1

( ) ( ) ( ) ( ) ( , )

N N N N

T

i i i j i i i j

i j i j

i
x x b K x x by      

   

        (10)                                
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where b is computed using the fact that constrains 

of equation (6) becomes ξi = 0 if 0<αi<C, and 
i = 0 if 0 < i< C [28]. 

Table 2. Polynomial, Normalized Polynomial, Radial Basis Function (Gaussian) and Pearson Universal (PUK) Kernels [16] 

Type of Classifier Kernel Function 

Complete polynomial of degree   ( , ) ( 1)i j i jK x x x x    

Normalized polynomial kernel of degree   
( 1)

( , )
( ) ( )

i j

i j
T T

i j i j

x x
K x x

x x y y

 



 

Gaussian (RBF) with parameters  (sigma) 

control the half-width of the curve fitting peak 
 






  22
2/exp),( jiji xxxxK  

Pearson VII Universal Kernel (PUK) with two 

parameters of  (sigma) and ω (omega) which 

control the Pearson width and the tailing factor 

of the curve fitting peak 
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There are a quite number of algorithms for SVR 

training, and Sequential Minimum Optimization 

(SMO) is an efficient one for this purpose [29]. It 

is a simple algorithm which can quickly solve the 

SVR quadratic programming problem without any 

extra matrix storage and is exempt from using any 

numerical quadratic programming optimization 

steps. SMO decomposes the overall quadratic 

programming problem into sub-problems of 

quadratic programming by using Osuna’s theorem 

to ensure convergence. There are two specific 

components in the structure of SMO: an analytic 

method for solving the two Lagrange multipliers; 

and a heuristic one for choosing multipliers in 

optimization step [30].  

The advantage of SMO lies on the fact that 

solving for two Lagrange multipliers can be done 

analytically. Hence, numerical quadratic 

programming optimization can be avoided 

completely [30]. In addition, SMO requires no 

extra matrix storage. Thus, very large SVR 

training problems can fit inside the memory of an 

ordinary personal computer or workstation. In this 

study, SMO algorithm is used for both optimizing 

the structure of SVR and helping to predict the 

permeability in reasonable running time.   

2.3. General regression neural network 

General Regression Neural Network (GRNN) has 

been proposed by Specht (1991). GRNN is a type 

of supervised network and also trains quickly on 

sparse data sets but, rather than categorizing it. 

This algorithm provides smooth transitions from 

one observed value to another even with sparse 

data in a multidimensional measurement space. 

GRNN can be thought as a normalized Radial 

Basis Functions (RBF) network in which there is a 

hidden unit centered at every training case. These 

RBF units are usually probability density 

functions such as the Gaussian. The only weights 

that need to be learned are the widths of the RBF 

units. These widths are called "smoothing 

parameters". The regression of a dependent 

variable, Y, on an independent variable, X, is the 

computation of the most probable value of Y for 

each value of X based on a finite number of 

possibly noisy measurements of X and the 

associated values of Y. 

This method does not need to assume a specific 

functional form. A Euclidean distance (Di
2
) is 

estimated between an input vector and the 

weights, which are then rescaled by the spreading 

factor. The radial basis output is then the 

exponential of the negatively weighted distance. 

The GRNN equation can be written as: 
2 ( ) ( )i T i

iD X X X X                                  (11)
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where, σ is the smoothing factor (SF) and T stands 

for transpose notation.  
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In this theory, the optimum smoothing factor is 
determined after several runs according to the 
mean squared error of the estimate, which must be 
kept at minimum. This process is referred to as the 
training of the network. If a number of iterations 
pass with no improvement in the mean squared 
error, that smoothing factor is determined as the 
optimum one for that data set. While applying the 
network to a new set of data, increasing the 
smoothing factor would result in decreasing the 
range of output values [31]. The smoothing factor 
must be greater than 0 and can usually range from 
0.1 to 1 with good results.  

3. Results 
3.1. Prediction of permeability using SVR 
As it was mentioned, the performance of SVR 
depends mostly on the choice of kernel function 
and which is in a sense equivalent to the choice of 
the ANN structure. In this regard, despite the 
obtained results of previous research works [32, 
33], indicating the Gaussian radial basis function 
as a superior kernel, optimal kernel was selected 
based upon the root mean square error (RMSE) of 
SVR during the training process. Obtained results 
of this study are shown in Figure 3.  
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Figure 3. Different kernels with their relative RMS error during the training process 

 
As it is depicted in Figure 3, different kernels 
were compared to each other. The obtained results 
seem to be logical because polynomial and 
normalized polynomial kernels are usually used in 
the simple nonlinear systems and there were the 
error of 0.36 and 0.33 for these kernels 
respectively. There is also an unexpected result 
for the performance of Gaussian kernel because 
the RMSE of this kernel was around 0.68. As 
shown in Figure 3, Pearson Universal Kernel 
(PUK) is the best one for the estimation of 
permeability with an error of 0.06.  
Moreover, for implementation of the SVR, the 
appropriate values of optimal parameters C (trade-
off parameter),   and ω (parameters of Pearson 
Universal kernel) need to be determined prior to 
building the model. For managing this issue, 
among all model selection tools, cross-validation 
techniques can be rigorous for adjusting 
associated parameters of SVR because they make 
no biased assumptions about the data and noise 
distribution. The Leave One Out (LOO) is a cross 
validation procedure consisting of removing one 
example from the training set, constructing the 
decision function on the basis only of the 
remaining training data and then testing on the  
 
 
 

 
removed example [19]. In this fashion, one tests 
all examples of the training data and measures the 
fraction of errors over the total number of training 
examples. To obtain the optimal value of , the 

SVR with different s was trained, the varying 
from 0.01 to 0.2, every 0.01. At last, the 
optimal was found as 0.13. In order to find an 

optimal and ω, the RMSE on different s and ωs 

were calculated. The optimal and ω were found 
as 0.08 and 0.23 respectively. Figure 4 shows the 
LOO cross validation step used for selecting the 
best values of ,  and ω. 
In the next stage, regarding to many combinations 
of the input variables, a set of nine input 
parameters (i.e. X, Y, Z, DT, RHOB, NPHI, GR, 
PEF, MSFL) were selected based on the least 
RMSE and the highest R values of SVR model 
during the training and testing process (Table 3).  
Ultimately, a Matlab software code (i.e. M.file) 
was developed and used to evaluate the 
performance of SVR using the available 
(measured) permeability data. Table 4 reports the 
measured and predicted permeability for testing 

data set. As it is seen in Table 4, there is an 
acceptable agreement between the predicted 
and measured permeability. Figure 5 shows 
the performance of SVR in prediction 
process.  
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Figure 4. RMS error versus   (left), versus   (right) and versus ω (bottom) in LOO cross-validation step 

 
3.2. Prediction of permeability using general 

regression neural network  

In order to check the accuracy of SVR in 

prediction of permeability, obtained results of 

SVR are compared with that of the GRNN. This 

network was already developed by my co-author 

[34] and its efficiency in the prediction of 

permeability was successfully tested. The 

structure of the GRNN model includes one input 

layer consisting 9 neurons, one hidden layer of 

radial basis function comprising 174 neurons and 

an output layer containing only one neuron. 

Multiple layers of neurons with nonlinear transfer 

functions allowed the network to learn nonlinear 

and linear relationships between the input and 

output vectors.  

Smooth factor (SF) is the most important feature 

in the structure of GRNN. This parameter was 

determined regarding to the RMSE of dataset. 

Finally, the optimum value of the smooth factor 

was found as 0.23. Figure 6 shows the process of 

finding the best SF for the training set. Table 5 

represents the performance of GRNN in 

prediction of permeability while the training and 

testing datasets were the same as those of the 

SVR. As it is seen in Table 5, the capability of 

GRNN in prediction of permeability is not as 

good as that of the SVR (see Table 4). In fact, 

there is a correlation coefficient of 0.711 between 

the measured and predicted permeability of 

GRNN. Figure 7 clearly represents the efficiency 

of GRNN in prediction of permeability.   

 

 
 

Table 3. The results and performance of SVR with different input parameters 

Input variables R (Train) R(Test) 
RMSE 
(Train) 

RMSE 
(Test) 

DT, RHOB, NPHI 0.935 0.920 0.67 0.81 
DT, RHOB, NPHI, MSFL 0.952 0.937 0.55 0.64 
X, Y, Z, DT, RHOB, NPHI 0.978 0.950 0.33 0.47 

X, Y, Z, DT, RHOB, NPHI, GR, PEF, 
MSFL 

0.99 0.97 0. 06 0.08 
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Table 4. Comparison between the predicted results of SVR with those of the measured data 

Sample. 
No 

Measured 
Permeability 

(md) 

Predicted 
permeability 

by SVR 
(md) 

Sample. No 
Measured 

Permeability(md) 

Predicted 
permeability by 

SVR(md) 

1 2.27 2.11 26 1.6 1.51 

2 1.9 1.8 27 1.8 1.71 

3 1.7 1.65 28 1.9 1.71 

4 1.6 1.49 29 2.3 2.15 

5 1.3 1.25 30 2.39 2.49 

6 1.5 1.35 31 1.82 1.92 

7 1.3 1.19 32 1.823 1.75 

8 1.3 1.38 33 1.79 1.63 

9 1.21 1.11 34 2.23 2.47 

10 1.09 1.1 35 2 1.91 

11 0.86 0.78 36 2.301 2.271 

12 0.87 0.73 37 2.301 2.286 

13 1.24 1.35 38 1.79 1.89 

14 0.87 0.95 39 2.22 2.46 

15 0.717 0.743 40 1.88 1.68 

16 0.83 0.69 41 1.95 1.86 

17 0.84 0.99 42 1.9 1.97 

18 0.51 0.43 43 2.03 2.12 

19 0.191 0.201 44 2.22 2.06 

20 0.86 0.83 45 2.15 2.11 

21 0.98 0.92 46 2.15 2.24 

22 1.09 0.99 47 2.22 2.16 

23 1.4 1.2 48 2.301 2.309 

24 1.5 1.57 49 2.522 2.678 

25 1.4 1.39 50 2.522 2.453 
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Figure 5. Performance of SVR in predicting permeability 
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Figure 6. SF versus RMSE on LOO cross-validation 

 

 

Table 5. Comparison of the measured with predicted permeability in testing dataset  

Sampling 

No 

Measured 

Permeability 

(md) 

Predicted 

Permeability by 

GRNN(md) 

Sampling 

No 

Measured 

Permeability(md) 

Predicted 

Permeability 

by GRNN(md) 

1 2.27 1.8 26 1.4 1.6 

2 1.9 1.7 27 1.6 1.5 

3 1.7 1.6 28 1.8 1.2 

4 1.6 1.4 29 1.9 1.3 

5 1.3 1.1 30 2.3 1.53 

6 1.5 1.4 31 2.39 1.79 

7 1.3 1.01 32 1.82 1.71 

8 1.3 1.01 33 1.823 1.906 

9 1.21 1.24 34 1.79 1.704 

10 1.09 1.11 35 2.23 1.74 

11 0.86 1.14 36 2 1.9 

12 0.87 1.22 37 2.301 1.51 

13 1.24 0.931 38 2.301 2.021 

14 0.87 1.14 39 1.79 1.93 

15 0.717 0.481 40 2.22 1.84 

16 0.83 0.701 41 1.88 2 

17 0.84 0.55 42 1.95 1.8 

18 0.51 0.97 43 1.9 1.8 

19 0.191 0.298 44 2.03 2.04 

20 0.86 1.03 45 2.22 1.9 

21 0.98 1.44 46 2.15 2.08 

22 1.09 1.29 47 2.15 1.9 

23 1.4 1.9 48 2.22 2.24 

24 1.5 1.9 49 2.301 2.073 

25 1.4 1.6 50 2.522 2 
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Figure 7. Performance of GRNN in prediction of permeability 

 

4. Discussion 
In this research work, the performance of SVR 

algorithm was demonstrated in prediction of 

permeability. In this regard, two Matlab software 

codes (i.e. M.files) were developed and utilized 

for interrogating the performance of SVR with the  

 

best performed work of GRNN model. When we 

compared the obtained results of SVR with those 

of the GRNN model, the SVR presented better 

overall performance over GRNN approach in 

terms of RMSE and correlation coefficient (R) 

during both training and testing process (Table 6).   

 
Table 6. Assessing the performed work of the SVR and GRNN 

Model R (Train) R(Test) RMSE (Train) RMSE (Test) 

GRNN 0.996 0.711 0.06 0.22 

SVR 0.998 0.97 0.06 0.08 

 
Table 6 shows the estimation capability of SVR 

and GRNN models in the independent training 

and test phases. According to this Table, the 

RMSE of SVR model is smaller than that of the 

GRNN. Figure 8 shows the scatter plots of 

measured and predicted permeability of each 

method in test data set.  
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Figure 8. Relationship between the measured and predicted permeability obtained by SVR and GRNN methods for test 

dataset 
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The plots indicate that an acceptable prediction 

(i.e. R=0.97) was obtained through the SVR 

modeling. In addition, the SVR consumes 

considerably less time for prediction compared to 

that of the GRNN. All of these expressions 

introduce the SVR as a suitable algorithm for the 

prediction of permeability.  

 

5. Conclusions  
In this research work, we have shown the 

application of SVR compared with GRNN model 

for prediction of permeability of three gas wells in 

the Kangan and Dalan reservoir of South Pars 

Field, based on the digital well log data. Although 

both methods are data-driven models, it has been 

found that the SVR makes the running time 

considerably faster with the higher accuracy. In 

terms of accuracy, the SVR technique resulted in a 

RMSE reduction relative to that of the GRNN 

model (Table 6). Regarding the running time, 

SVR requires a small fraction of the 

computational time used by GRNN, an important 

factor in choosing an appropriate and high-

performance data-driven model. 
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