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 The ultimate pit limit optimization (UPLO) serves as an important step in the mine 
planning process. Various approaches of maximum flow algorithms such as pseudo-
flow and push-relabel have been used for pit optimization, and have given good 
results. The Boykov-Kolmogorov (BK) maximum flow algorithm has been used in 
solving the computer vision problems and has given great practical results but it has 
never been applied in UPLO. In this work, we formulate and use the BK maximum 
flow algorithm and the push-relabel maximum flow algorithm in MATLAB Boost 
Graph Library within the MATLAB software in order to perform UPLO in two case 
studies. Comparing both case studies for the BK maximum flow algorithm and push-
relabel maximum flow algorithm gives the same maximum pit values but the BK 
maximum flow algorithm reduces the time consumed by 12% in the first case and 16% 
in the second case. This successful application of the BK maximum flow algorithm 
shows that it can also be used in UPLO.  
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1. Introduction 
Over the years, there have been developments on 

solving the open pit optimization problem in the 
mining industry. This can be dated back from the 
manual methods [1] that were used, to the current 
mathematical algorithms applied in the  modern 
computer technology [2]. Since the mining 
industry is capital-intensive [3] and operates with 
resources that are a product of mineral resource 
estimation of the geological block model [4], 
optimization of every operation is of essence so as 
to maximize the overall revenue from the mine. In 
the quest for maximizing the recovery of these 
ever-decreasing resources, optimization of these 
mining operations should be done safely [5]. Open-

pit optimization plays a major role since it acts as 
an initial stage that assists in planning other major 
operations such as setting out the layout of the 
mine, determining the size of the processing plant 
and the mine equipment, and scheduling of the 
mining activities [6-8]. Owing to the vital role 
played by the Ultimate Pit Limit Optimization 
(UPLO) in the mining industry, this work focuses 
on the algorithms used for UPLO and gives an 
alternative method that can be applied in order to 
solve the UPLO problem. Some of the 
abbreviations used in this work are listed in Table 
1.  
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Table 1. List of some abbreviations used in this 
work and their meanings. 

Abbreviation Meaning 
BK Boykov-Kolmogorov 

UPLO Ultimate pit limit optimization 
LG Lerchs-Grossmann 

EBM Economic block model 
EBVs Economic block values 

MatlabBGL MATLAB Boost Graph Library 
 
2. Literature Review 

The UPLO methods using the mathematical 
models were introduced by Lerchs–Grossmann 
(LG) in the 1960s when they developed the graph 
theory [9, 10]. In their work, the main idea was to 
convert the block model into a directed tree such 
that the blocks represented the vertices of the graph 
and the directed arcs represented the relationship 
between the blocks with respect to the slope 
constraints of the pit. This algorithm was widely 
accepted over the years and was adopted in 
different mining softwares, and it is still being 
applied to date [2] but sometimes proves difficult 
to program and can consume a lot of time, 
especially with huge block models [11]. LG also 
introduced the 2D dynamic programming ultimate 
pit limit algorithm, although required improvement 
since the real mines are in 3D [12]. The 2D 
dynamic programming ultimate pit limit algorithm 
on the other hand was improved to 3D in a bid to 
overcome the flows from the 2D but still failed to 
give the optimal results [13]. The network flow for 
ultimate pit limit was introduced in 1968 [14], 
where a bipartite network was formed from the 3D 
block model. This formed the basis of application 
of maximum flow algorithms in UPLO. The 
moving cone algorithm in UPLO was also 
introduced [15], and was also widely accepted due 
to its simplicity, though it is a heuristic method. 
Improvements have also been made on the moving 
cone algorithm in an endeavour to make it more 
efficient by various researchers [16-19]. The 
floating cone II was introduced [20], and was later 
advanced to modified floating cone II [21]. The 
modified floating cone II was also later improved 
coming up with the floating cone III method [19]. 
Korobov also developed a cone-based method in 
order to solve UPLO but failed to give a true 
optimum solution [22]. This work was later 
improved in trying to eliminate some of the 

drawbacks of Korobovs’ algorithm [22]. These 
cone-based algorithms have been incorporated in 
the mining industry in some of the optimization 
softwares [23] since they are simple to understand. 
One of their main drawbacks is that they are 
heuristic, and thus do not necessarily give the 
optimal results but rather close to the optimal 
results [24]. 

The UPLO problem has continued to be 
addressed by various researchers so as to improve 
the existing algorithms, and some of the proposed 
algorithms are as outlined in this work.  The Ford 
Fulkerson algorithm was used in order to solve 
UPLO but in a 2D model [25]. The “one three–one 
two (13–12)” algorithm has also been proposed for 
UPLO but also in 2D [26]. The stochastic approach 
has also been applied successfully in UPLO [27]. 
A new network optimization method for solving 
UPLO has been introduced [28]. The Best Positive 
Inverted Truncated Cone (BPITC) algorithm for 
UPLO has also been introduced [29]. An algorithm 
in UPLO that seek to search for the largest pit with 
non-negative value in its objective function has 
also been developed [7]. The Genetic Algorithm 
(GA) [30] and the Parallel Genetic Algorithm 
(PGA) [31] for solving the UPLO problem have 
also been proposed. The use of artificial neural 
network in 3D was also proposed for UPLO [24]. 
Some maximum flow algorithms have also been 
successfully used in UPLO such as the Push-
Relabel maximum flow [32, 33] and the pseudo-
flow maximum flow [32]. Table 2 shows the trend 
of some of the UPLO methods from 1960s.  

Time is a major factor involved in the mine 
industry since it helps in planning and performing 
different tasks within the shortest time possible. 
Maximum flow algorithms give optimal results 
since they are rigorous but most of them have not 
been incorporated in UPLO. Some of them such as 
the pseudo-flow maximum flow have been seen to 
immensely save on time when compared to the 
most commonly used Lerchs–Grossmann graph 
algorithm [11]. This paves the way for more 
research works to be done on the maximum flow 
algorithms with respect to their application in 
UPLO. This work, therefore, focuses on the 
maximum flow methods in relation to UPLO, and 
provides an alternative maximum flow algorithm 
to be applied in UPLO. 
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Table 2. A trend of some UPLO methods. 
Period UPLO Methods Used 

Before 1960 Manual methods 

1960-1970 

Lerchs-Grossmann 2D dynamic 
programming 
Lerchs-Grossmann graph theory 
Network flow analysis 
Moving cone algorithm 
Linear programming 

1970-1980 

Parametric analysis 
Korobov algorithm 
Improved moving cone 
Maximum closure 

1970-1990 
3D dynamic programming 
Best-valued cross-section algorithm 
Modified tree graph algorithm 

1990-2000 

Corrected Korobov algorithm 
Improved graph theory 
Moving cone II 
Transportation algorithm 
Interactive parameterization techniques 
Artificial neural network 
Push-relabel maximum flow algorithm 

2000-2010 

Stochastic process 
Pseudo-flow maximum flow algorithm 
Floating slopes method 
Modified moving cone II 
Real option approach 
Best positive inverted truncated cone 

2010-Date 

Ford Fulkerson algorithm in UPLO 
Floating cone method III 
Network optimization 
One three–One two technique 
New graph-based algorithm 
Genetic algorithm 
Parallel genetic algorithm 
New artificial neural network 

 

3. Maximum Flow Algorithms 
These are network flow problems that maintain a 

feasible flow in the network and aim at producing 
a maximum flow from the source to the sink of the 
network. In UPLO, the maximum flow theory was 
introduced in 1968 by Johnson [14], whereby he 
transformed the 3D block model into a bipartite 
network. The converted block model was then 
solved as a network flow problem in order to obtain 
the maximum flow. In the bipartite network, every 
block in the block model is symbolized by one 
node. An imaginary dummy source (s) and all the 
ore blocks (O) are placed on one side, while an 
imaginary dummy sink (t) and all the waste blocks 
(W) are kept on the other side. Depending on the 
requirements of the slope, the ore blocks are 
connected to each waste block that must be mined 
so as to mine the ore block. After this connection, 
all the waste blocks are then connected to the sink 
node, while all the ore blocks are connected to the 
dummy source node [14]. The direction of the flow 
is determined by the direction of the arc, as shown 
in Figure 1. The arc capacities differ depending on 
the location of the arc. There is an unlimited 
capacity for the dummy source(s) to send; 
unlimited capacity for the dummy sink (t) to 
receive; arcs linking the ore blocks and the source 
node have capacities that correspond to the ore 
block values; arcs linking the sink node and the 
waste blocks have capacities that corresponds to 
the waste block values; and finally, arcs linking the 
waste blocks and the ore blocks have boundless 
capacities since any waste block that restricts an 
ore block to be mined has to be mined out at any 
cost so that the ore block can be mined as well [12]. 

 
Figure 1. Pit limit network design. 
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According to Verma and Batra [34], there are 
three main techniques of maximum flow 
algorithms: 

3.1. Augmenting-Path  
This method makes sure that the flow-

conservation constraints and the capacity 
constraints are adhered, and thus maintain a 
feasible flow during the implementation of the 
algorithm. The algorithms in the augmenting path 
are normally primal feasible. The algorithm 
iteratively looks for source (s) to sink (t) paths with 
residual capacities pushing the arcs with least 
capacity until no more source (s) to sink (t) paths 
are found. Some of the augmenting path algorithms 
are the Dinic’s algorithm [35] and the Boykov-
Kolmogorov maximum flow algorithm [36]. 

3.2. Push-Relabel 
This method conserves the capacity constraints 

but does not necessarily adhere to the flow-
conservation constraints, and thus does not 
maintain a feasible flow during the implementation 
of the algorithm. The algorithm allows for an 
excess flow into a node called surplus thus has a 
flow called preflow [34]. Unlike the augmenting 
path, push-relabel is dual feasible [34]. As the 
name suggests, the algorithm works by pushing 
and relabelling the nodes. The source node is given 
a fixed label of zero ‘0’, while the sink node is 
labelled ‘n’ representing the number of nodes and 
is also fixed. Initially, all the other nodes are also 
set as zero ‘0’ and all the arcs from the source node 
to ore blocks are saturated. During the push 
process, the nodes with an excess flow push the 
flow to a neighbouring node that has a minor label, 
and if such a node does not exist, then that node is 
relabelled with an increase of one ‘1’ to its value. 
This phase terminates when all the nodes with 
excess flow have labels greater than ‘n’. The next 
phase then redirects the excess flow to the source 
node, thus converting the preflow into a maximum 
flow [34]. 

3.3. Hochbaum’s Pseudo-flow 

Just as the push-relabel algorithm, pseudo-flow 
conserves capacity constraints but does not 
necessarily adhere to the flow-conservation 
constraints, and thus does not maintain a feasible 
flow during the implementation of the algorithm 
and is also dual feasible. Unlike the push-relabel 
algorithm, pseudo-flow allows for an excess flow 
as well as deficit at the nodes, thus having a flow 
called pseudo-flow [37]. Initially, in this algorithm, 

all arcs coming from the source and those entering 
the sink are all saturated. A forest with numerous 
components is then induced by making sure that 
there are no cycles in the free arcs and the roots of 
these components are nodes with strict surplus or 
deficit. Iterations in the algorithm are done by 
searching for residual arcs from a node with 
surplus to one with deficit until none is found. The 
next phase then converts the pseudo-flow into a 
maximum flow [37].  

In UPLO, the push-relabel and pseudo-flow 
maximum flow algorithms have made their 
applications. Pseudo-flow has been tested by 
various researches, who have given better results 
when compared to the Lerchs–Grossmann 
algorithm [2, 11, 37]. These maximum flow 
algorithms have been incorporated in some of the 
commercial mining optimization softwares. Push-
relabel has been applied in Minemax’s Scheduler 
[32], Mincom [33], etc. Pseudo-flow has been 
applied in Deswik, and has also been recently 
implemented in the Gemcom’s Whittle 
optimization software [11]. From these adoptions 
into the optimization software, it can be seen that 
maximum flow has greatly improved the UPLO 
problem, solving and thus giving room for more 
research works to be done. This work looks at the 
augmenting path maximum flow option by 
applying the BK algorithm in UPLO since it has 
also proved to have better results in other 
applications such as the computer vision problems 
[34, 36].  

4. Boykov-Kolmogorov (BK) Maximum Flow 
Algorithm 

The BK algorithm was developed to improve the 
augmenting paths work in computer vision and 
proved to give better results experimentally when 
compared to other algorithms [36]. With the 
augmenting paths, a new breath-first search is 
normally started from the source (s) to sink (t) 
paths once all the pre-examined paths are 
exhausted. This search in UPLO can be achieved 
by scanning the blocks (vertices) within the block 
model. Since it can be very costly to repeat the 
whole search process every time, the BK algorithm 
builds two search trees, where one starts from the 
source and the other from the sink. The algorithm 
also reuses these trees in their search instead of 
starting afresh, thus saving on time [36]. The 
algorithm works by maintaining two search trees T 
and S, which are rooted at the sink node (t) and the 
source node (s), respectively. Moving away from 
the root node, the next node becomes the child of 
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the previous node parent. At the beginning of the 
algorithm, the edges from the parent to the children 
in tree S are not saturated, and likewise, to the 
edges from the children to the parent in root T. At 
any given step, a node can either be in tree S, T or 
can be free, as shown in Equation (1). 

ܶ ⊂ ݐ    ,ܰ ∈ ܶ,    ܵ ⊂ ݏ    ,ܰ ∈ ܵ,    ܵ ∩ ܶ = ∅ (1) 

The nodes within the trees can be regarded as 
active or passive depending on their location, as 
shown in Figure 2.  

 
Figure 2. Active and passive nodes in the BK algorithm. 

 
The active nodes are located at the edges of the 

trees since they are the ones that link to the new 
free nodes. Once they scan and link to the free 
nodes, they seize to be active, while the new linked 
nodes become the active nodes. Once an active 
node from one tree comes into contact with the 
active nodes from the other tree, an augmenting 
path is created. The algorithm iterates three main 
steps: 

Growth step: this is the step where the tree grows by 
linking the active nodes in the tree to the free nodes 
whose edges are not saturated until an augmenting path 
is found. In UPLO, the blocks will be linking depending 
on the set of blocks that are required to be mined to pave 
the way for mining a certain ore block. The growth step 
terminates when an augmenting path from the source to 
the root is found. This is achieved by linking the active 
nodes of the two set of trees S and T.  

Augmentation step: this step enhances the 
augmenting paths found in the growth step by trying to 
push maximum flow through the edges such that some 
edges becomes saturated. The saturation makes the 
edges invalid, thus rendering the nodes preceding the 
orphans. This then creates another set of trees whose 
roots are the orphans created in this step. 

Adoption step: with creation of a forest of trees from 
the augmenting step, the adoption step restores the 
original set up of S and T trees. This is achieved by 
looking for new parents with non-saturated edges for the 
orphans from the same tree they has come from. If the 
orphans do not get new valid parents, they become free 
nodes. This step ends when all the orphans cease to exist 
and the original S and T trees are left. Once the adoption 
step ends, the algorithm starts again at the growth step 
until the time when all the active nodes phase out, thus 
achieving a maximum flow. A flowchart for the steps in 

the BK algorithm that is modelled for UPLO is shown 
in Figure 3. 

 
Figure 3. The BK maximum flow algorithm 

flowchart. 
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4.1. 2D Illustration of BK Maximum Flow in Pit 
Optimization 

If we consider a 2D block model shown in Figure 
4, the BK maximum flow algorithm can be applied 
in pit limit optimization in order to calculate the 
maximum pit value. The blocks are labelled from 
A to J and their Economic Block Values (EBVs) 
given at the centre of each block. EBVs represent 
the values of the individual blocks in the economic 
block model. EBVs are calculated by considering 
the revenue from selling a single block and the cost 
of mining that block, as shown in Equation (2). 
This assists in the identification of the waste blocks 
(if EBV is negative or zero) and the ore blocks (if 
EBV is positive). 
  ܸܤܧ =  (݈ܾ݇ܿ) ݁ݑ݊݁ݒܴ݁ 

−  (2) (݈ܾ݇ܿ)  ݐݏܥ 

 

 
Figure 4. A 2D block model. 

The first step is to convert the block model to a 
graph and introduce the source node (s) and the 
sink node (t), both of which will act as the root 
nodes for trees S and T, respectively, as shown in 
Figure 5. The algorithm starts with making the root 
nodes active while the other nodes are free. 

The algorithm then scans by looking for free 
nodes adjacent to the active nodes. The active 
nodes are then linked to the neighbouring free 
nodes, which are then activated, and the previous 
active nodes become passive, as shown in Figure 6.  

  
Figure 5. Graph representing the block model. Figure 6. Graph showing the active nodes. 

Assuming a maximum slope angle of 45o, the 
active nodes link the free neighbouring nodes, 
which in this case are the waste blocks that have to 
be mined for the ore block to be mined. The growth 
continues until the two trees join, as shown in 
Figure 7.  

Since the BK maximum flow algorithm is an 
augmenting path method, it makes sure that the 
flow-conservation constraints and the capacity 
constraints are adhered to, such that: 

i. The flow entering the ore block i from the 
source node s is equal to the total sum of 
the flow going out of the ore block to the 
overlying waste blocks (Equation 3), while 
the total sum of flow entering a waste node 

j is equal to the flow from the waste block 
to the sink node t (Equation 4). 

ii. An edge ai j∈ A cannot carry more than its 
capacity (Equation 5). 

௦݂     −    ݂
∈ே

   = ݅  ℎܿܽ݁    ݎ݂    0     ∈ ܰ (3) 

 ݂
∈ே

    −     ݂௧   = ݆  ℎܿܽ݁    ݎ݂    0     ∈ ܰ  (4) 

݂     ≤ ℎ   ܽܿܽ݁    ݎ݂ܥ     ∈  (5) ܣ

where: 
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N = Set of nodes within the graph representing the blocks within the economic block model; 
A = Set of arcs linking the nodes within the graph representing the relationship between the blocks; 
ai j = An arc that links the ore blocks to the overlying waste blocks depending on the overall slope angle; 
fsi = Flow from the source node to the ore block; 
fij = Flow from the ore block to the waste block; 
fjt = Flow from the waste block to the sink node; 
Cij = Maximum capacity of flow through the arc. 

 
The algorithm then augments the paths created 

by trying to push maximum flow through the edges 
such that some edges become saturated. This can 
result in the creation of orphans that have to be 

adopted by giving them new parents that have valid 
edges. The iteration process continues until the 
active nodes cease to exist, thus achieving a 
maximum flow, as shown in Figure 8.  

  
Figure 7. Graph showing the augmenting paths from 

source (s) to root (t). 
Figure 8. Maximum flow though the network. 

The maximum pit value can be realized by 
separating the trees S and T using the invalid parts 
created by the saturated edges (in blue) linking the 
two trees. The saturated edges from the source 
node to the ore blocks are normally broken in order 
to avoid the support of the ore blocks to the 
overlying waste blocks, as shown in Figure 9. The 
other saturated edges from the waste blocks to the 

sink node are also broken in order to avoid the 
support of these waste blocks from the underlying 
ore blocks. This also makes sure that there are no 
outgoing arcs from the maximum closure. In this 
case, the ultimate pit contains the blocks B-C-D-E-
H-I with a maximum pit value of 4, as shown in 
Figure 10. Trees S and T are marked in red and 
green, respectively.  

  
Figure 9. Network showing the saturated edges. Figure 10. Maximum pit value from S tree. 

 

 0 /

 0 /

 1/   0 /  1/ 

 0 /

 1/ 
 2 /  0 /

 1/   0 /

 0 /
 0 /

 0 /

 0 /

 1/   0 /  1/ 

 0 /

 1/
 2 /  0 /

 1/  0 /

 0 /
 0 / 

 0 /

 0 /

 1/   0 /  1/ 

 0 / 

 1/ 
 2 /  0 /

 1/   0 /

 0 / 
 0 /



Mwangi et al Journal of Mining & Environment, Vol. 12, No. 1, 2021 
 

8 

5. Application of BK Maximum Flow to Case 
Studies 

BK maximum flow algorithm was then applied 
in the mining case studies in order to ascertain its 
applicability in the UPLO problem. The MATLAB 
environment was used in order to formulate a 
suitable model for application in UPLO. The 
MATLAB Boost Graph Library (MatlabBGL) 
package [38] was used since it contains different 
data structures as well as algorithms [39] that boost 
the graph library of the MATLAB environment. 
The BK maximum flow and push-relabel 
maximum flow are some on the algorithms 
contained in MatlabBGL [38]. They were well-
formulated in this work to suit the UPLO problem. 
The implementation and testing of the BK 
maximum flow algorithm on the case studies was 
done on an Intel® Core™ i5-6200 CPU Dell 
computer with 16 GB of RAM.  

The datasets used in the case studies came from 
Minelib (http://mansci-web.uai.cl/minelib/) [40], 
which is a public library that deals with open-pit 
mining-related problems. Minelib provides the 
datasets as well as their best-known solutions for 

ultimate pit limit and scheduling. Minelib uses the 
Hochbaum's Pseudoflow algorithm in order to 
solve the UPLO problem [40].  

5.1. Case 1: Arizona’s Copper Deposit (KD) 
The dataset from the Arizona’s copper deposit, 

classified as ‘KD’ in Minelib, was used in the 
application of BK maximum flow algorithm in 
UPLO. The block model contained 14,153 blocks 
that were 20 x 20 x 15 m in size. The block indices 
were provided so as to know the location of the 
blocks within the block model. The precedence 
blocks were computed at 45 degrees with 8 levels 
giving a total of 219,778 precedences. EBVs were 
also provided in order to help in calculating the 
ultimate pit value. Figure 11 shows a section of the 
MATLAB code used to input the data for this 
deposit and also a section of the data after it was 
imported in MATLAB. The data included the block 
indices, i.e. Easting (XI), Northing (YI), and 
Elevation (ZI); EBVs, and the class for 
distinguishing between the waste and ore blocks. 
The ore block precedencies were also loaded in a 
separate file. 

 
Figure 11. Sections of the input code and data used for the ‘KD’ deposit. 

The ultimate pit limit for the copper deposit was 
calculated using the BK maximum flow algorithm 
and push-relabel maximum flow; the latter is 
already being applied in the mining industry [32]. 
The BK maximum flow algorithm gave a 
maximum pit value of $652,195,037 within a 
timeframe of 8.99 s. The push-relabel maximum 
flow also gave the same maximum pit value but 
with a longer time of 10.56 s. These two methods 
concurred with the maximum pit value [40] given 

in Minelib that used the pseudo-flow maximum 
flow algorithm. The BK maximum flow algorithm, 
in this case, was faster than the push-relabel 
maximum flow. Table 3 gives a summary of the 
Arizona’s copper deposit (KD) and the results of 
using the two maximum flow methods. The 
MATLAB output of the maximum pit value 
obtained using the BK maximum flow algorithm 
for this deposit is shown in Figure 12. 

Table 3. A summary of the Arizona’s copper deposit (KD). 
 Blocks Block size (m) Precedences Max. pit value ($) Time (s) 

BK 14,153 20 x 20 x15 219,778 652,195,037 8.99 
Push-relabel 14,153 20 x 20 x15 219,778 652,195,037 10.56 

http://mansci-web.uai.cl/minelib/)
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Figure 12. The maximum pit value output using the BK maximum flow ‘KD’ deposit. 

5.2. Case 2: Gold/Copper Mine in Nevada, USA 
(p4hd) 

The dataset from a gold and copper mine in 
Nevada (USA), classified as ‘p4hd’ in Minelib, 
was also used in the application of BK maximum 
flow algorithm in UPLO. The block model 
contained 40,947 blocks that were 50 x 50 x 20 ft 
in size. The block indices were also provided so as 

to know the location of the blocks within the block 
model. The precedence blocks were also computed 
at 45 degrees with 8 levels giving a total of 738,609 
precedences. EBVs were also provided to help in 
calculating the ultimate pit value. Figure 13 shows 
a section of the MATLAB code used to input the 
data for this deposit and also a section of the data 
after it was imported in MATLAB. 

 
Figure 13. Sections of the input code and data used for the ‘p4hd’ deposit. 

The ultimate pit limit for this deposit was also 
calculated using the BK maximum flow algorithm 
and the push-relabel maximum flow. The BK 
maximum flow algorithm gave a maximum pit 
value of $293,373,256 in 362.01 s. The push-
relabel maximum flow also gave the same 
maximum pit value but still with a longer time of 
434.61 s. These two methods also concurred with 
the pseudo-flow maximum pit value [40] given in 
Minelib. This, therefore, shows that the BK 

maximum flow algorithm can be applied in the 
mining industry ultimate pit optimization since it is 
even faster than the push-relabel maximum flow, 
which is already being applied. Table 4 gives a 
summary of the Arizona’s copper deposit (KD) and 
the results of using the two maximum flow 
methods. The MATLAB output of the maximum 
pit value obtained using the BK maximum flow 
algorithm for this deposit is shown in Figure 14. 

Table 4. A summary of the gold/copper mine in Nevada, USA (p4hd). 
 Block Block Size (ft) Precedence Max. pit value ($) Time (s) 

BK 40,947 50 x 50 x 20 738,609 293,373,256 362.01 
Push-relabel 40,947 50 x 50 x 20 738,609 293,373,256 434.61 

 

 
Figure 14. The maximum pit value output for using BK maximum flow ‘p4hd’ deposit. 
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From the two case studies, the difference 
between the times in the two algorithms is not so 
big when applied in a block model with few 
numbers of blocks. From the first case with 14,153 
blocks, the BK algorithm reduced the time with 
12%, while in the second case with 40,947 blocks, 
the BK algorithm reduced the time with 16%. The 
results achieved by the BK maximum flow 
algorithm, especially in time reduction, can be 
attributed to two main factors. One of the factors is 
the use of two search trees instead of one as used in 
the other algorithms. This helps in speeding-up the 
process and in-turn saving on time. The second 
factor is the reuse of trees in the search process 
instead of starting afresh. This helps in saving time 
since searching from an already built tree will be 
quicker, especially from an iterative process. The 
maximum pit values from the first case and the 
second case were $652,195,037 and $293,373,256, 
respectively, using both the BK maximum flow and 
push-relabel maximum flow algorithms. This also 
concurs with the results given in Minelib, which 
provides the best-known solutions for the ultimate 
pit limit for their datasets [40]. The results of these 
two case studies show that the BK algorithm can be 
applied in UPLO and even give better results in 
terms of time efficiency when applied in the block 
models with a huge number of blocks. 

6. Conclusions 

Ultimate pit limit optimization (UPLO), playing 
a major role in the mining industry and algorithms 
for solving UPLO, has been developed and 
improved by various researchers from the 1960s. 
This work narrowed down to the application of the 
maximum flow algorithms in UPLO. The 
maximum flow algorithms such as the push-relabel 
and pseudo-flow maximum flow algorithms have 
made their applications in UPLO and have even 
been demonstrated to perform better than the 
widely accepted Lerchs–Grossmann algorithm. 
Production of the optimal results in the shortest 
time possible plays an important role in UPLO. 
Since the Boykov-Kolmogorov (BK) algorithm, as 
a variant of the maximum flow algorithms has been 
proved to give good practical results in the 
computer vision problems within a considerable 
amount of time, it was formulated in MatlabBGL 
to perform UPLO in two case mining studies. In the 
first case study, the BK maximum flow algorithm 
gave a maximum pit value of $652,195,037 in 8.99 
s, which was faster compared to push-relabel, 
which gave the same maximum pit value but in 
10.56 s. In the second case study, the BK maximum 

flow algorithm gave a maximum pit value of 
$293,373,256 in 362.01 s, which was also faster 
compared to push-relabel, which gave the same 
maximum pit value in 434.61 s. This reduction can 
be attributed to the use of two search trees by the 
algorithm as well as the reuse of trees in the search 
process instead of starting afresh. This ascertained 
that the BK algorithm could as well be applied in 
the mining industry in pit limit optimization. 
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  چکیده:

مانند  انیحداکثر جر يهاتمیمختلف الگور يهادر معادن است. روش دیتول يزیدر روند برنامه ر یبه عنوان گام مهم )UPLO(معدن  تیپ ییحد نها يسازنهیبه
در حل  Boykov-Kolmogorov (BK) انیحداکثر جر تمیداده است. از الگور یخوب جیمعدن استفاده شده و نتا یینها تیپ يساز نهیبه يبرا انیشبه جر

پژوهش،  نیاستفاده نشده است. در ا UPLOروش هرگز در  نیبه همراه داشته است؛ اما از ا یخوب اریبس یعمل جیاستفاده شده است و نتا ياهانیرا دگاهیمسائل با د
استفاده شده  MATLABشدن در نرم افزار  هبا فرمول Push-Relabel تمیو الگور BK انیحداکثر جر تمیاز الگور ،يدر دو مطالعه مورد UPLOانجام  يبرا

 یینها تینشان داد که، حداکثر اندازه پ Push-Relabel انیحداکثر جر تمیو الگور BK انیحداکثر جر تمیالگور يبرا يدر هر دو مطالعه مورد جینتا سهیاست. مقا
 نیدهد. ایکاهش م %16و در حالت دوم  %12را در حالت اول  ییت نهایزمان محاسبه پ BK انیحداکثر جر تمیاست اما الگور کسانیهر دو مورد  يمعدن برا

  .استفاده کرد. زین UPLOمحاسبه  ياز آن برا توانیکه م دهدینشان م BK انیحداکثر جر تمیالگور زیآم تیکاربرد موفق

  پیت. ییحد نها، Pseudo-flow، انیحداکثر جر، Boykov-Kolmogorovالگوریتم  کلمات کلیدي:
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