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TOP LOCAL COHOMOLOGY AND TOP FORMAL
LOCAL COHOMOLOGY MODULES WITH SPECIFIED
ATTACHED PRIMES

A. NAZARI* AND F. RASTGOO

ABSTRACT. Let (R, m) be a Noetherian local ring, M be a finitely
generated R-module of dimension n and a be an ideal of R. In
this paper, generalizing the main results of Dibaei and Jafari [3]
and Rezaei [8], we will show that if T is a subset of Asshp M,
then there exists an ideal a of R such that Attg Hy (M) = T.
As an application, we give some relationships between top local
cohomology modules and top formal local cohomology modules.

1. INTRODUCTION

Throughout this paper, let (R, m) be a commutative Noetherian local
ring, a be an ideal of R and M be a finitely generated R-module of
dimension n. For an R-module M, the i-th local cohomology module
of M with respect to a is defined as

H:(M) = lim Ext’(R/a™, M).

n

Y

For the basic properties of local cohomology the reader can refer to
[2]. Also, for each i > 0; F(M) := lim Hy (M/a'M) is called the i-th
t

formal local cohomology module of M with respect to a. The formal
local cohomology modules have been studied by several authors; see
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for example [1], [5] and [9]. Let M be a finitely generated R-module
of dimension n, then Max{i € Z : H,(M) # 0} < n by [2, Theorem
6.1.2] and Max{i € Z : F (M) # 0} < n by [9, Theorem 4.5]. Recall
that the module Hj(M) is called a top local cohomology module if
Max{i € Z : H.(M) # 0} = n and the module §*(M) is called a top
formal local cohomology module if Max{i € Z : (M) # 0} = n. For
each Artinian R-module A, we denote by Attr A the set of all attached
prime ideals of A.
In section 2, we show that any subset T" of Asshr M, where

Asshp M = {p € Assg M : dim(R/p) = dim M},

can be expressed as the set of attached primes of the top local cohomol-
ogy module H} (M) for some ideal a of R. This generalizes a result of
Dibaei and Jafari [3] to Noetherian local rings that are not necessarily
complete.

We say that the top local cohomology module H} (M) satisfies the

property (x), if
AttRH:'(M):{pEASSRM : lel(R/p):nand \/W:m}

Rezaei in [3], showed that if (R, m) is a complete Noetherian local ring
and M is a finitely generated R-module of dimension n then for each
ideal a of R there exists an ideal b such that HJ (M) = (M) and
there exists an ideal ¢ such that §2(M) = H'(M). In section 3, we
generalize this result. In fact, we show that over Noetherian local rings
that are not necessarily complete, there exists an ideal ¢ such that
§(M) = H(M) and if Hy (M) satisfies the property (*) then there
exists an ideal b such that HJ (M) = §¢(M).

For any ideal a of R, the radical of a, denoted by +/a, is defined
to be the set {x € R : 2" € a for some n € N}. Also, we denote
{p € SpecR : p D a} by V(a) and Min V(a) by Min(a). For an R-
module M, we show the set of minimal members of associated primes
of M by mAssg(M). For any unexplained notation and terminology,
we refer the reader to [2] and [0].

2. TOP LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED
PRIMES

In this section, we study the set of attached primes of top local
cohomology modules.

Notation 2.1. Let a be an ideal of R and M be a finitely generated R-

module of dimension n. Let 0 = [ caq, i N(P) be a reduced primary
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decomposition of the submodule 0 of M. Following [7], we set
Assg(a, M) = {p € Assg M : dim(R/p) =n and \/a+p =m}.

Set N* = (V,casen(anr) V(p). Note that N does not depend on the
choice of the reduced primary decomposition of zero because

Assg(a, M) C mAssg M.
It is clear that Assg(a, M) = Assr(M/N*®) and

Assp N* = Assp M \ Assg(a, M).
For each integer [ > 0 and any subset S of Spec R we define
S :={p e S:dim(R/p) =1}

Lemma 2.2. Let N® be defined as above. Then the following statements
are equivalent:
(1) Hg(N“) = Oiz
(i) Hy (M) = Hy(M/N°®);
(iii) Attg HY (M) = Attg Hy (M/N*®) = Assg(a, M).
Proof. By the exact sequence
H}(N®) — Hy(M) — Hy(M/N*®) — 0

it is enough for us to prove (iii)=-(i). Suppose, on the contrary, that
H?(N®) # 0. Then there exists p € Attgp H;(N®). By [/, Theorem
Al, p € Assg N® and cd(a,R/p) = n and so p € AttgHy (M) =
Attg HY (M /N®). But by Notation 2.1, Attg HY (M /N®) = Assg(a, M),
that means p € Assg(a, M) = Assg(M/N*), a contradiction. O

Definition 2.3. Let a be an ideal of R, M be a finitely generated R-
module of dimension n and N® be defined as in Notation 2.1. We say
H7 (M) satisfies the property (x), if one of the equivalent conditions of
Lemma 2.2 holds.

Proposition 2.4. Let a and b be two ideals of R such that Hy (M)
satisfies the property (x). If Attgp Hy(M) C Attgp Hy (M), then there
exists an epimorphism Hy (M) — Hy (M).

Proof. Since H} (M) satisfies the property (), we have
Hg (M) = Hy(M/N*®) = Hy (M/NF)
and
AttR HZ(M) = AttR H:(M/Na) = ASSR<C1, M) = ASSR(M/Na)

where, N* = (\,caccp(anr) V(). Now we show that Hg(N®) = 0. Sup-
pose, on the contrary, that Hy (N®) # 0. Then there exists a prime ideal
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p € Attg Hy (N®) and therefore for this prime ideal, by [/, Theorem A]
we have, p € Assg N® and cd(b, R/p) = n. Since Assp N® C Assp M,
we have p € Attg Hy (M) and therefore p € Attg HY (M) that is a con-
tradiction by Notation 2.1. So, Hy (M) = Hy (M /N*®). By [2, Proposi-
tion 8.1.2], for each = € m'\ b, there is a long exact sequence

- = Hyy gy (M/N®) — Hy (M/N®) — Hg (M/N%),) — -+

where (M/N*®), is the localization of M/N® at {z' : ¢ > 0}. Note
that H"(M/N®) is Artinian and H((M/N®),) = (H'(M/N®)),. It
follows that Hy((M/N®),) = 0 and so there exists an epimorphism
Hy, po(M/N®) — Hy(M/N*®). Repeating the argument with b + Rz
in place of b and continuing gives an epimorphism Hp (M/N®) —
Hy (M/N*®) and so we have the epimorphism Hj (M) — Hy (M). O

Corollary 2.5. Let a and b be two ideals of R such that Hy (M) and
HY (M) satisfy the property (x). If Attg Hy (M) = Attg Hy (M), then
HP (M) & H2 (M),

Proof. As in the proof of Proposition 2.4, since
Attg HY (M) = Attg Hy (M),
we have N* = N® and so
H™(M) = H(M/N*®) = H?.(M/N®) = H}(M).
OJ

Dibaei and Jafari in [3], have shown that if R is a complete Noether-
ian local ring and M is a finitely generated R-module of dimension n,
then any subset T" of Asshiy M can be expressed as the set of attached
primes of the top local cohomology module H} (M) for some ideal a of
R (see [3, Theorem 2.8]). In the next theorem, we generalize this result
to Noetherian local rings that are not necessarily complete.

Theorem 2.6. Let M be a finitely generated R-module of dimension
n and T be a subset of Asshgr(M), then there exists an ideal a of R
such that Attg Hy (M) =T.

Proof. Let Asshg M = {p1,...,px}t and T = {p1,...,p,}, where r < k.
When r = k, the result is immediate from [2, Theorem 7.3.2|, just
take a = m. We therefore assume henceforth in this proof that r < k.
So Asshg M\ T = {p,41,..., P} Since, for each 1 < i < k, p; is a
minimal associated prime of M, we have (-, P € Ui pi- So we

can choose an element y € ﬂf:TH pi \U_, pi. Set M = T podl
— — i=1T11
then Asshp M = T and dim(M) = n. Since y ¢ |J._, p;, there are
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elements x1,..., 2,1 such that y,z1,..., 2,1 forms a system of pa-
rameters for R- module M. Set a = (y,x1,...,2,-1). It follows from
[2, Independence Theorem 4.2.1 and Exercise 6.1.9] that

R R — —
S HI(M @ ) = HE(M) 2 H(M) £ 0.
mi:1 pi ﬂi:l pi "

We can now use [2, Theorem 7.3.2 and Exercise 7.2.6] to deduce that

HY (M) ®

T = Attp H™. (M) C Atty H?(M).
On the other hand, if p; € Asshg M \ T', then

n(R _ " R
' Ha (E) - Hily,a:l ..... xn*ﬁ}éE)
[SIHCG Yy e pl] = (T1y0ees rn,1>(a)

by [2, Theorem 3.3.1] =0.

It follows from this observation and [1, Theorem A] that Attg Hy (M) C
T. Hence Attg Hy (M) = T and this completes the proof. O

Remark 2.7. Let M be a finitely generated R-module of dimension n
and T be a subset of Asshgr M. By Theorem 2.6, there exists an ideal
a of R such that Attg H, (M) = T. By the choice of this ideal in the
proof of Theorem 2.6, one can see that, for each p € T'\/a +p = m.
Therefore

AttRHg<M) = {p € Asshp M : a+p= m} = ASSR(G, M)

and so Attgp Hy (M) = Attg H}(M/N®). Hence H} (M) satisfies the
property (x).

3. SOME RESULTS ON TOP FORMAL LOCAL COHOMOLOGY

In [8], Rezaei proved that if (R, m) is a complete Noetherian local
ring and M is a finitely generated R-module of dimension n, then for
cach ideal a of R there exists an ideal b such that HJ (M) = Fi(M)
and there exists an ideal ¢ such that 2 (M) = HZ'(M). In this section
we give a generalization of this result.

Lemma 3.1. (See [8, Theorem 2.2].) Let (R, m) be a Noetherian local
ring and M be a finitely generated R-module of dimension n. If T is a
proper subset of Asshp M, then Attg§h(M) =T where a := ﬂpieT pi
is an ideal of R.

Lemma 3.2. (See [¢, Lemma 2.4].) Let a be an ideal of a Noetherian
local Ting R and M be a finitely generated R-module. If M is an
a-torsion module, then §:(M) = H. (M) for all i > 0.



160 NAZARI AND RASTGOO

By [, Proposition 2.1], if a is an ideal of R and M is a finitely
generated R-module of dimension n, then F7 (M) is an Artinian R-
module and there exists an integer ng such that §(M) = %
Now we can reduce the completeness assumption in [3, Theorem 2.5]

to the assumption that Hy (M) satisfies the property (x).

Theorem 3.3. Let a and b be two ideals of a Noetherian local ring
(R,m) and M be a finitely generated R-module of dimension n such
that Hy (M) satisfies the property (). If Attg Hy (M) = Attr (M),
then HY (M) = Fp(M).

Proof. Since Hj (M) satisfies the property (%), by Notation 2.1 and
Definition 2.3 we have H}(N®) = 0 and

Attp § (M) = Atty H'(M)

={p € Assg M : dim(R/p) =n and Va+p =m}
= Assg(a, M).

Now we show that the Artinian module §¢(N®) is zero. Suppose, on
the contrary, that §7(N®) # 0. Therefore there exists a prime ideal
p € Attg §¢(N®). By [, Proposition 2.1, p € Assp N, dim(R/p) =n
and b C p. Therefore p € Attg §p (M) = Attg Hy (M) = Assg(a, M),
a contradiction. Therefore Fy(N®) = 0 and Fp(M) = Fp(M/N°).
On the other hand, since Attg§¢ (M) = Assp(M/N®), we have b C
Mpeassp(ar/ney B Therefore M/N® is a b-torsion R-module and by
Lemma 3.2, we have §(M/N®) = Hy (M/N®) 2 H}(M/N*®) = H} (M).

0J

Corollary 3.4. Let a be an ideal of a Noetherian local ring (R, m) such
that Hy (M) satisfies the property (). Then HJ (M) = Fp (M), where
b = Anng H} (M).

Proof. Let b = Anng H*(M), then vb = (Mpeaten mr(ar) P- Since

AttR HZ(M) g ASShR M,
it follows from Lemma 3.1 that Attg H (M) = Attg S’\L/E(M) and so by
Theorem 3.3, we have Hy (M) = §7-(M) = §y (M). O

Now we can generalize [8, Theorem 2.6 (ii)] and [3, Corollary 2.7] to
Noetherian local rings that are not necessarily complete.

Theorem 3.5. Let a be an ideal of a Noetherian local ring (R, m) and
M be a finitely generated R-module of dimension n. Then there exists

an ideal ¢ of R such that Fo (M) = H (M).
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Proof. Since Attg § (M) C Asshg M, it follows from Theorem 2.6 that
there exists an ideal ¢ of R such that Attgp H' (M) = Attr i (M). By
Remark 2.7, H'(N®) = 0, where N°® is defined as in Notation 2.1.
Therefore HY' (M) satisfies the property (). Now by Theorem 3.3,
F(M) = H'(M). O

Corollary 3.6. Let a be an ideal of a Noetherian local ring (R, m) and
M be a finitely generated R-module of dimension n. Then

'SZ(M) = annR%’Q(M) (M>

Proof. By Theorem 3.5, there exists an ideal ¢ of R such that §7 (M)
HY(M). As H!(M) satisfies the property (x), we have H[ (M)
Samg () (M) by Corollary 3.4, and so §3(M) = Fanng gz on) (M
as required.

11

O

Theorem 3.7. Let a be an ideal of a Noetherian local ring (R, m) and
M be a finitely generated R-module of dimension n such that HJ (M)

Hi (M
satisfies the property (x). Then Hy (M) = @ H”?EW)% (1)
nnpg i, m

Proof. By Corollary 3.4, we have Hy (M) = §} Hn(M)(M) and by [5,
Proposition 2.1], there exists an integer ¢, such that
Hii (M)
n n M - o
Swease o0 M) = G H () HG (01
HR (M)
H H' (M) = o forallt >t d
ence H7 (M) (Annp H7 (M) T2 (M) or all t >t and so
Hi (M)
(Anng Hy (M)t Hy (M)

for all t > t,.

Anng HY (M) = Anng(

) for all t > t.

It follows that
(Anng HY(M))HE (M) C (Anng HY (M)  HL(M) for all t > t,.

Hence (Anng HJ(M))'Hp (M) = Anng HY (M) Hp (M) for all t > ¢

and therefore
Hy, (M)

(Anng HY (M) Hy (M)

m

HY (M) =

a

OJ

Theorem 3.8. Let a be an ideal of a Noetherian local ring (R, m) and
M be a finitely generated R-module of dimension n. Then

N H (M)
Se(M) = R s (M) (V)
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Proof. By Corollary 3.6, §3(M) = Famngzean)(M). So an argument
similar to the proof of Theorem 3.7 completes the proof. OJ

Corollary 3.9. Let a and b be two ideals of a Noetherian local ring
(R,m) and M be a finitely generated R-module of dimension n.

(i) If Anng§2(M) = Anng (M), then Fo(M) = Fp(M);
(i) If Hy (M) satisfies the property (%) and

Anng H} (M) = Anng §3 (M),

then Hy (M) = F(M);
(iii) If both HY (M) and Hy (M) satisfy the property (x) and

Anngp HY (M) = Anng Hy (M),
then H (M) = Hy (M).
Proof. All items are clear by Theorem 3.7 and Theorem 3.8. O

Theorem 3.10. Let a be an ideal of a Noetherian local ring (R, m)
and M be a finitely generated R-module of dimension n. Then

(i) We have the equalities
Attgr o (M) = V(Anng §5(M)) N Asshg M
= Min V(Anng §5 (M)).
(ii) If Hy (M) satisfies the property (%), then
Attg HY (M) = V(Anng HY (M)) N Asshg M = Min V(Anng H} (M)).
Proof. (i) Since for each Artinian R-module A,
Attgp(A/aA) = Attg ANV(a),
by Theorem 3.8, we have
Attp §0 (M) = Attg Hyp (M) N V(Anng §, (M))
= Asshg M N V(Anng §7 (M))
C Min V(Anng g5 (M)).
On the other hand
Min V(Anng §5(M)) = Min Attg §, (M)
C Asshp M N V(Anng §y (M)).
Therefore
Attp §5 (M) = Asshgp M N V(Anng §,(M)) = Min V(Anng §, (M)).
(ii) The proof is similar to the proof (i). O
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Corollary 3.11. Let a be an ideal of a Noetherian local ring (R, m)
and M be a finitely generated R-module of dimension n. Then

(i) Attn3o(M) = AssR(#W).

(i) If Hy (M) satisfies the property (x), then
Attp HY (M) = Assp(—————+——).
ttr Hy (M) SSR(AnnR HZ(M))
Proof. (i) Since (M) is Artinian, it follows from [10, Theorem 3.1 and
Theorem 3.3 (b)] that Assg(R/Anng§7(M)) C Attr(F2(M)). But
the sets V(Anng 7 (M)) and Assg(R/ Anng §2(M)) have the same

minimal elements, by [10, Theorem 3.3 (c)]. Thus, by Theorem 3.10,
Attp(FR(M)) C Assgr(R/ Anng §7(M)). Therefore

Attr(§L(M)) = Assg(R/ Anng 5 (M)).
(ii) The proof is similar to the proof (i). O
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