Journal of Algebraic Systems Vol. 8, No. 2, (2021), pp 155-164

TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES

A. NAZARI* AND F. RASTGOO

ABSTRACT. Let (R, \mathfrak{m}) be a Noetherian local ring, M be a finitely generated R-module of dimension n and \mathfrak{a} be an ideal of R. In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if T is a subset of $\operatorname{Assh}_R M$, then there exists an ideal \mathfrak{a} of R such that $\operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M) = T$. As an application, we give some relationships between top local cohomology modules and top formal local cohomology modules.

1. INTRODUCTION

Throughout this paper, let (R, \mathfrak{m}) be a commutative Noetherian local ring, \mathfrak{a} be an ideal of R and M be a finitely generated R-module of dimension n. For an R-module M, the *i*-th local cohomology module of M with respect to \mathfrak{a} is defined as

$$\mathrm{H}^{i}_{\mathfrak{a}}(M) = \lim_{n \ge 1} \mathrm{Ext}^{i}_{R}(R/\mathfrak{a}^{n}, M).$$

For the basic properties of local cohomology the reader can refer to [2]. Also, for each $i \geq 0$; $\mathfrak{F}^i_{\mathfrak{a}}(M) := \lim_{\overleftarrow{t}} \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{a}^t M)$ is called the *i*-th formal local cohomology module of M with respect to \mathfrak{a} . The formal local cohomology modules have been studied by several authors; see

DOI: 10.22044/jas.2020.8830.1428.

MSC(2010): Primary: 13D45; Secondary: 13E15.

Keywords: Attached primes, Local cohomology modules, Formal local cohomology modules, Noetherian local rings.

Received: 18 August 2019, Accepted: 9 January 2020.

^{*}Corresponding author.

NAZARI AND RASTGOO

for example [1], [5] and [9]. Let M be a finitely generated R-module of dimension n, then $\operatorname{Max}\{i \in \mathbb{Z} : \operatorname{H}^{i}_{\mathfrak{a}}(M) \neq 0\} \leq n$ by [2, Theorem 6.1.2] and $\operatorname{Max}\{i \in \mathbb{Z} : \mathfrak{F}^{i}_{\mathfrak{a}}(M) \neq 0\} \leq n$ by [9, Theorem 4.5]. Recall that the module $\operatorname{H}^{n}_{\mathfrak{a}}(M)$ is called a top local cohomology module if $\operatorname{Max}\{i \in \mathbb{Z} : \operatorname{H}^{i}_{\mathfrak{a}}(M) \neq 0\} = n$ and the module $\mathfrak{F}^{n}_{\mathfrak{a}}(M)$ is called a top formal local cohomology module if $\operatorname{Max}\{i \in \mathbb{Z} : \mathfrak{F}^{i}_{\mathfrak{a}}(M) \neq 0\} = n$. For each Artinian R-module A, we denote by $\operatorname{Att}_{R} A$ the set of all attached prime ideals of A.

In section 2, we show that any subset T of $\operatorname{Assh}_R M$, where

 $\operatorname{Assh}_R M = \{ \mathfrak{p} \in \operatorname{Ass}_R M : \dim(R/\mathfrak{p}) = \dim M \},\$

can be expressed as the set of attached primes of the top local cohomology module $\operatorname{H}^{n}_{\mathfrak{a}}(M)$ for some ideal \mathfrak{a} of R. This generalizes a result of Dibaei and Jafari [3] to Noetherian local rings that are not necessarily complete.

We say that the top local cohomology module $H^n_{\mathfrak{a}}(M)$ satisfies the property (*), if

Att_R Hⁿ_a(M) = {
$$\mathfrak{p} \in \operatorname{Ass}_R M$$
 : dim $(R/\mathfrak{p}) = n$ and $\sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m}$ }.

Rezaei in [8], showed that if (R, \mathfrak{m}) is a complete Noetherian local ring and M is a finitely generated R-module of dimension n then for each ideal \mathfrak{a} of R there exists an ideal \mathfrak{b} such that $\mathrm{H}^n_{\mathfrak{a}}(M) \cong \mathfrak{F}^n_{\mathfrak{b}}(M)$ and there exists an ideal \mathfrak{c} such that $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \mathrm{H}^n_{\mathfrak{c}}(M)$. In section 3, we generalize this result. In fact, we show that over Noetherian local rings that are not necessarily complete, there exists an ideal \mathfrak{c} such that $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \mathrm{H}^n_{\mathfrak{c}}(M)$ and if $\mathrm{H}^n_{\mathfrak{a}}(M)$ satisfies the property (*) then there exists an ideal \mathfrak{b} such that $\mathrm{H}^n_{\mathfrak{a}}(M) \cong \mathfrak{F}^n_{\mathfrak{b}}(M)$.

For any ideal \mathfrak{a} of R, the radical of \mathfrak{a} , denoted by $\sqrt{\mathfrak{a}}$, is defined to be the set $\{x \in R : x^n \in \mathfrak{a} \text{ for some } n \in \mathbb{N}\}$. Also, we denote $\{\mathfrak{p} \in \operatorname{Spec} R : \mathfrak{p} \supseteq \mathfrak{a}\}$ by $V(\mathfrak{a})$ and $\operatorname{Min} V(\mathfrak{a})$ by $\operatorname{Min}(\mathfrak{a})$. For an Rmodule M, we show the set of minimal members of associated primes of M by $\operatorname{mAss}_R(M)$. For any unexplained notation and terminology, we refer the reader to [2] and [6].

2. TOP LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES

In this section, we study the set of attached primes of top local cohomology modules.

Notation 2.1. Let \mathfrak{a} be an ideal of R and M be a finitely generated Rmodule of dimension n. Let $0 = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M} N(\mathfrak{p})$ be a reduced primary

decomposition of the submodule 0 of M. Following [7], we set

 $\operatorname{Ass}_{R}(\mathfrak{a}, M) = \{\mathfrak{p} \in \operatorname{Ass}_{R} M : \dim(R/\mathfrak{p}) = n \text{ and } \sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m}\}.$

Set $N^{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_{R}(\mathfrak{a},M)} N(\mathfrak{p})$. Note that $N^{\mathfrak{a}}$ does not depend on the choice of the reduced primary decomposition of zero because

$$\operatorname{Ass}_R(\mathfrak{a}, M) \subseteq \operatorname{mAss}_R M.$$

It is clear that $\operatorname{Ass}_R(\mathfrak{a}, M) = \operatorname{Ass}_R(M/N^{\mathfrak{a}})$ and

$$\operatorname{Ass}_R N^{\mathfrak{a}} = \operatorname{Ass}_R M \setminus \operatorname{Ass}_R(\mathfrak{a}, M).$$

For each integer $l \geq 0$ and any subset S of Spec R we define

$$S_l := \{ \mathfrak{p} \in S : \dim(R/\mathfrak{p}) = l \}.$$

Lemma 2.2. Let $N^{\mathfrak{a}}$ be defined as above. Then the following statements are equivalent:

- (i) $\operatorname{H}^{n}_{\mathfrak{a}}(N^{\mathfrak{a}}) = 0;$
- (ii) $\operatorname{H}^{n}_{\mathfrak{a}}(M) \cong \operatorname{H}^{n}_{\mathfrak{a}}(M/N^{\mathfrak{a}});$
- (iii) $\operatorname{Att}_{R} \operatorname{H}_{\mathfrak{a}}^{n}(M) = \operatorname{Att}_{R} \operatorname{H}_{\mathfrak{a}}^{n}(M/N^{\mathfrak{a}}) = \operatorname{Ass}_{R}(\mathfrak{a}, M).$

Proof. By the exact sequence

$$\mathrm{H}^{n}_{\mathfrak{a}}(N^{\mathfrak{a}}) \to \mathrm{H}^{n}_{\mathfrak{a}}(M) \to \mathrm{H}^{n}_{\mathfrak{a}}(M/N^{\mathfrak{a}}) \to 0$$

it is enough for us to prove (iii) \Rightarrow (i). Suppose, on the contrary, that $\mathrm{H}^{n}_{\mathfrak{a}}(N^{\mathfrak{a}}) \neq 0$. Then there exists $\mathfrak{p} \in \mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(N^{\mathfrak{a}})$. By [4, Theorem A], $\mathfrak{p} \in \mathrm{Ass}_{R} N^{\mathfrak{a}}$ and $\mathrm{cd}(\mathfrak{a}, R/\mathfrak{p}) = n$ and so $\mathfrak{p} \in \mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(M) = \mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(M/N^{\mathfrak{a}})$. But by Notation 2.1, $\mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(M/N^{\mathfrak{a}}) = \mathrm{Ass}_{R}(\mathfrak{a}, M)$, that means $\mathfrak{p} \in \mathrm{Ass}_{R}(\mathfrak{a}, M) = \mathrm{Ass}_{R}(M/N^{\mathfrak{a}})$, a contradiction. \Box

Definition 2.3. Let \mathfrak{a} be an ideal of R, M be a finitely generated Rmodule of dimension n and $N^{\mathfrak{a}}$ be defined as in Notation 2.1. We say $H^n_{\mathfrak{a}}(M)$ satisfies the property (*), if one of the equivalent conditions of
Lemma 2.2 holds.

Proposition 2.4. Let \mathfrak{a} and \mathfrak{b} be two ideals of R such that $\mathrm{H}^{n}_{\mathfrak{a}}(M)$ satisfies the property (*). If $\mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{b}}(M) \subseteq \mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(M)$, then there exists an epimorphism $\mathrm{H}^{n}_{\mathfrak{a}}(M) \to \mathrm{H}^{n}_{\mathfrak{b}}(M)$.

Proof. Since $\operatorname{H}^{n}_{\mathfrak{a}}(M)$ satisfies the property (*), we have

$$\mathrm{H}^{n}_{\mathfrak{a}}(M) \cong \mathrm{H}^{n}_{\mathfrak{a}}(M/N^{\mathfrak{a}}) \cong \mathrm{H}^{n}_{\mathfrak{m}}(M/N^{\mathfrak{a}})$$

and

$$\operatorname{Att}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M) = \operatorname{Att}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M/N^{\mathfrak{a}}) = \operatorname{Ass}_{R}(\mathfrak{a}, M) = \operatorname{Ass}_{R}(M/N^{\mathfrak{a}})$$

where, $N^{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_{R}(\mathfrak{a},M)} N(\mathfrak{p})$. Now we show that $\operatorname{H}^{n}_{\mathfrak{b}}(N^{\mathfrak{a}}) = 0$. Suppose, on the contrary, that $\operatorname{H}^{n}_{\mathfrak{b}}(N^{\mathfrak{a}}) \neq 0$. Then there exists a prime ideal

 $\mathfrak{p} \in \operatorname{Att}_R \operatorname{H}^n_{\mathfrak{b}}(N^{\mathfrak{a}})$ and therefore for this prime ideal, by [4, Theorem A] we have, $\mathfrak{p} \in \operatorname{Ass}_R N^{\mathfrak{a}}$ and $\operatorname{cd}(\mathfrak{b}, R/\mathfrak{p}) = n$. Since $\operatorname{Ass}_R N^{\mathfrak{a}} \subseteq \operatorname{Ass}_R M$, we have $\mathfrak{p} \in \operatorname{Att}_R \operatorname{H}^n_{\mathfrak{b}}(M)$ and therefore $\mathfrak{p} \in \operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M)$ that is a contradiction by Notation 2.1. So, $\operatorname{H}^n_{\mathfrak{b}}(M) \cong \operatorname{H}^n_{\mathfrak{b}}(M/N^{\mathfrak{a}})$. By [2, Proposition 8.1.2], for each $x \in \mathfrak{m} \setminus \mathfrak{b}$, there is a long exact sequence

$$\cdots \longrightarrow \mathrm{H}^{n}_{\mathfrak{b}+Rx}(M/N^{\mathfrak{a}}) \longrightarrow \mathrm{H}^{n}_{\mathfrak{b}}(M/N^{\mathfrak{a}}) \longrightarrow \mathrm{H}^{n}_{\mathfrak{b}}((M/N^{\mathfrak{a}})_{x}) \longrightarrow \cdots$$

where $(M/N^{\mathfrak{a}})_x$ is the localization of $M/N^{\mathfrak{a}}$ at $\{x^i : i \geq 0\}$. Note that $\mathrm{H}^n_{\mathfrak{b}}(M/N^{\mathfrak{a}})$ is Artinian and $\mathrm{H}^n_{\mathfrak{b}}((M/N^{\mathfrak{a}})_x) \cong (\mathrm{H}^n_{\mathfrak{b}}(M/N^{\mathfrak{a}}))_x$. It follows that $\mathrm{H}^n_{\mathfrak{b}}((M/N^{\mathfrak{a}})_x) = 0$ and so there exists an epimorphism $\mathrm{H}^n_{\mathfrak{b}+Rx}(M/N^{\mathfrak{a}}) \to \mathrm{H}^n_{\mathfrak{b}}(M/N^{\mathfrak{a}})$. Repeating the argument with $\mathfrak{b} + Rx$ in place of \mathfrak{b} and continuing gives an epimorphism $\mathrm{H}^n_{\mathfrak{m}}(M/N^{\mathfrak{a}}) \to$ $\mathrm{H}^n_{\mathfrak{b}}(M/N^{\mathfrak{a}})$ and so we have the epimorphism $\mathrm{H}^n_{\mathfrak{a}}(M) \to \mathrm{H}^n_{\mathfrak{b}}(M)$. \Box

Corollary 2.5. Let \mathfrak{a} and \mathfrak{b} be two ideals of R such that $\mathrm{H}^{n}_{\mathfrak{b}}(M)$ and $\mathrm{H}^{n}_{\mathfrak{a}}(M)$ satisfy the property (*). If $\mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(M) = \mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{b}}(M)$, then $\mathrm{H}^{n}_{\mathfrak{a}}(M) \cong \mathrm{H}^{n}_{\mathfrak{b}}(M)$.

Proof. As in the proof of Proposition 2.4, since

$$\operatorname{Att}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M) = \operatorname{Att}_{R} \operatorname{H}^{n}_{\mathfrak{h}}(M),$$

we have $N^{\mathfrak{a}} = N^{\mathfrak{b}}$ and so

$$\mathrm{H}^{n}_{\mathfrak{a}}(M) \cong \mathrm{H}^{n}_{\mathfrak{m}}(M/N^{\mathfrak{a}}) \cong \mathrm{H}^{n}_{\mathfrak{m}}(M/N^{\mathfrak{b}}) \cong \mathrm{H}^{n}_{\mathfrak{b}}(M).$$

Dibaei and Jafari in [3], have shown that if R is a complete Noetherian local ring and M is a finitely generated R-module of dimension n, then any subset T of $\operatorname{Assh}_R M$ can be expressed as the set of attached primes of the top local cohomology module $\operatorname{H}^n_{\mathfrak{a}}(M)$ for some ideal \mathfrak{a} of R (see [3, Theorem 2.8]). In the next theorem, we generalize this result to Noetherian local rings that are not necessarily complete.

Theorem 2.6. Let M be a finitely generated R-module of dimension n and T be a subset of $Assh_R(M)$, then there exists an ideal \mathfrak{a} of R such that $Att_R H^n_{\mathfrak{a}}(M) = T$.

Proof. Let $\operatorname{Assh}_R M = \{\mathfrak{p}_1, \dots, \mathfrak{p}_k\}$ and $T = \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$, where $r \leq k$. When r = k, the result is immediate from [2, Theorem 7.3.2], just take $\mathfrak{a} = \mathfrak{m}$. We therefore assume henceforth in this proof that r < k. So $\operatorname{Assh}_R M \setminus T = \{\mathfrak{p}_{r+1}, \dots, \mathfrak{p}_k\}$. Since, for each $1 \leq i \leq k, \mathfrak{p}_i$ is a minimal associated prime of M, we have $\bigcap_{i=r+1}^k \mathfrak{p}_i \notin \bigcup_{i=1}^r \mathfrak{p}_i$. So we can choose an element $y \in \bigcap_{i=r+1}^k \mathfrak{p}_i \setminus \bigcup_{i=1}^r \mathfrak{p}_i$. Set $\overline{M} = \frac{M}{(\bigcap_{i=1}^r \mathfrak{p}_i)M}$, then $\operatorname{Assh}_R \overline{M} = T$ and $\dim(\overline{M}) = n$. Since $y \notin \bigcup_{i=1}^r \mathfrak{p}_i$, there are

elements x_1, \ldots, x_{n-1} such that y, x_1, \ldots, x_{n-1} forms a system of parameters for R- module \overline{M} . Set $\mathfrak{a} = \langle y, x_1, \ldots, x_{n-1} \rangle$. It follows from [2, Independence Theorem 4.2.1 and Exercise 6.1.9] that

$$\mathrm{H}^{n}_{\mathfrak{a}}(M) \otimes \frac{R}{\bigcap_{i=1}^{r} \mathfrak{p}_{i}} \cong \mathrm{H}^{n}_{\mathfrak{a}}(M \otimes \frac{R}{\bigcap_{i=1}^{r} \mathfrak{p}_{i}}) \cong \mathrm{H}^{n}_{\mathfrak{a}}(\overline{M}) \cong \mathrm{H}^{n}_{\mathfrak{m}}(\overline{M}) \neq 0.$$

We can now use [2, Theorem 7.3.2 and Exercise 7.2.6] to deduce that

$$T = \operatorname{Att}_R \operatorname{H}^n_{\mathfrak{m}}(\overline{M}) \subseteq \operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M).$$

On the other hand, if $\mathfrak{p}_i \in \operatorname{Assh}_R M \setminus T$, then

$$\begin{aligned} & \operatorname{H}^{n}_{\mathfrak{a}}\left(\frac{R}{\mathfrak{p}_{i}}\right) &= \operatorname{H}^{n}_{\langle y, x_{1}, \dots, x_{n-1} \rangle}\left(\frac{R}{\mathfrak{p}_{i}}\right) \\ & [\operatorname{Since} y \in \mathfrak{p}_{i}] &\cong \operatorname{H}^{n}_{\langle x_{1}, \dots, x_{n-1} \rangle}\left(\frac{R}{\mathfrak{p}_{i}}\right) \\ & \text{by } [2, \text{ Theorem 3.3.1}] &= 0. \end{aligned}$$

It follows from this observation and [4, Theorem A] that $\operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M) \subseteq T$. Hence $\operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M) = T$ and this completes the proof. \Box

Remark 2.7. Let M be a finitely generated R-module of dimension n and T be a subset of $\operatorname{Assh}_R M$. By Theorem 2.6, there exists an ideal \mathfrak{a} of R such that $\operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M) = T$. By the choice of this ideal in the proof of Theorem 2.6, one can see that, for each $\mathfrak{p} \in T, \sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m}$. Therefore

$$\operatorname{Att}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M) = \{\mathfrak{p} \in \operatorname{Assh}_{R}M : \sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m}\} = \operatorname{Ass}_{R}(\mathfrak{a}, M)$$

and so $\operatorname{Att}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M) = \operatorname{Att}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M/N^{\mathfrak{a}})$. Hence $\operatorname{H}^{n}_{\mathfrak{a}}(M)$ satisfies the property (*).

3. Some results on top formal local cohomology

In [8], Rezaei proved that if (R, \mathfrak{m}) is a complete Noetherian local ring and M is a finitely generated R-module of dimension n, then for each ideal \mathfrak{a} of R there exists an ideal \mathfrak{b} such that $\mathrm{H}^n_{\mathfrak{a}}(M) \cong \mathfrak{F}^n_{\mathfrak{b}}(M)$ and there exists an ideal \mathfrak{c} such that $\mathfrak{F}^n_{\mathfrak{a}}(M) = \mathrm{H}^n_{\mathfrak{c}}(M)$. In this section we give a generalization of this result.

Lemma 3.1. (See [8, Theorem 2.2].) Let (R, \mathfrak{m}) be a Noetherian local ring and M be a finitely generated R-module of dimension n. If T is a proper subset of $\operatorname{Assh}_R M$, then $\operatorname{Att}_R \mathfrak{F}^n_{\mathfrak{a}}(M) = T$ where $\mathfrak{a} := \bigcap_{\mathfrak{p}_i \in T} \mathfrak{p}_i$ is an ideal of R.

Lemma 3.2. (See [8, Lemma 2.4].) Let \mathfrak{a} be an ideal of a Noetherian local ring R and M be a finitely generated R-module. If M is an \mathfrak{a} -torsion module, then $\mathfrak{F}^i_{\mathfrak{a}}(M) \cong \mathrm{H}^i_{\mathfrak{m}}(M)$ for all $i \geq 0$.

By [5, Proposition 2.1], if \mathfrak{a} is an ideal of R and M is a finitely generated R-module of dimension n, then $\mathfrak{F}^n_{\mathfrak{a}}(M)$ is an Artinian Rmodule and there exists an integer n_0 such that $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \frac{\mathrm{H}^n_{\mathfrak{m}}(M)}{\mathfrak{a}^{n_0}\mathrm{H}^n_{\mathfrak{a}}(M)}$. Now we can reduce the completeness assumption in [8, Theorem 2.5] to the assumption that $\mathrm{H}^n_{\mathfrak{a}}(M)$ satisfies the property (*).

Theorem 3.3. Let \mathfrak{a} and \mathfrak{b} be two ideals of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n such that $\mathrm{H}^{n}_{\mathfrak{a}}(M)$ satisfies the property (*). If $\mathrm{Att}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(M) = \mathrm{Att}_{R} \mathfrak{F}^{n}_{\mathfrak{b}}(M)$, then $\mathrm{H}^{n}_{\mathfrak{a}}(M) \cong \mathfrak{F}^{n}_{\mathfrak{b}}(M)$.

Proof. Since $H^n_{\mathfrak{a}}(M)$ satisfies the property (*), by Notation 2.1 and Definition 2.3 we have $H^n_{\mathfrak{a}}(N^{\mathfrak{a}}) = 0$ and

$$\operatorname{Att}_{R} \mathfrak{F}^{n}_{\mathfrak{b}}(M) = \operatorname{Att}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M)$$
$$= \{ \mathfrak{p} \in \operatorname{Ass}_{R} M : \dim(R/\mathfrak{p}) = n \text{ and } \sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m} \}$$
$$= \operatorname{Ass}_{R}(\mathfrak{a}, M).$$

Now we show that the Artinian module $\mathfrak{F}^n_{\mathfrak{b}}(N^{\mathfrak{a}})$ is zero. Suppose, on the contrary, that $\mathfrak{F}^n_{\mathfrak{b}}(N^{\mathfrak{a}}) \neq 0$. Therefore there exists a prime ideal $\mathfrak{p} \in \operatorname{Att}_R \mathfrak{F}^n_{\mathfrak{b}}(N^{\mathfrak{a}})$. By [5, Proposition 2.1], $\mathfrak{p} \in \operatorname{Ass}_R N^a$, $\dim(R/\mathfrak{p}) = n$ and $\mathfrak{b} \subseteq \mathfrak{p}$. Therefore $\mathfrak{p} \in \operatorname{Att}_R \mathfrak{F}^n_{\mathfrak{b}}(M) = \operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M) = \operatorname{Ass}_R(\mathfrak{a}, M)$, a contradiction. Therefore $\mathfrak{F}^n_{\mathfrak{b}}(N^{\mathfrak{a}}) = 0$ and $\mathfrak{F}^n_{\mathfrak{b}}(M) \cong \mathfrak{F}^n_{\mathfrak{b}}(M/N^{\mathfrak{a}})$. On the other hand, since $\operatorname{Att}_R \mathfrak{F}^n_{\mathfrak{b}}(M) = \operatorname{Ass}_R(M/N^{\mathfrak{a}})$, we have $\mathfrak{b} \subseteq \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R(M/N^{\mathfrak{a}})} \mathfrak{p}$. Therefore $M/N^{\mathfrak{a}}$ is a \mathfrak{b} -torsion R-module and by Lemma 3.2, we have $\mathfrak{F}^n_{\mathfrak{b}}(M/N^{\mathfrak{a}}) \cong \operatorname{H}^n_{\mathfrak{m}}(M/N^{\mathfrak{a}}) \cong \operatorname{H}^n_{\mathfrak{a}}(M)$.

Corollary 3.4. Let \mathfrak{a} be an ideal of a Noetherian local ring (R, \mathfrak{m}) such that $\operatorname{H}^{n}_{\mathfrak{a}}(M)$ satisfies the property (*). Then $\operatorname{H}^{n}_{\mathfrak{a}}(M) \cong \mathfrak{F}^{n}_{\mathfrak{b}}(M)$, where $\mathfrak{b} = \operatorname{Ann}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M)$.

Proof. Let $\mathfrak{b} = \operatorname{Ann}_R \operatorname{H}^n_{\mathfrak{a}}(M)$, then $\sqrt{\mathfrak{b}} = \bigcap_{\mathfrak{p} \in \operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M)} \mathfrak{p}$. Since $\operatorname{Att}_R \operatorname{H}^n_{\mathfrak{a}}(M) \subseteq \operatorname{Assh}_R M$,

it follows from Lemma 3.1 that $\operatorname{Att}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M) = \operatorname{Att}_{R} \mathfrak{F}^{n}_{\sqrt{\mathfrak{b}}}(M)$ and so by Theorem 3.3, we have $\operatorname{H}^{n}_{\mathfrak{a}}(M) \cong \mathfrak{F}^{n}_{\sqrt{\mathfrak{b}}}(M) \cong \mathfrak{F}^{n}_{\mathfrak{b}}(M)$. \Box

Now we can generalize [8, Theorem 2.6 (ii)] and [8, Corollary 2.7] to Noetherian local rings that are not necessarily complete.

Theorem 3.5. Let \mathfrak{a} be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n. Then there exists an ideal \mathfrak{c} of R such that $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \mathrm{H}^n_{\mathfrak{c}}(M)$.

Proof. Since $\operatorname{Att}_R \mathfrak{F}^n_{\mathfrak{a}}(M) \subseteq \operatorname{Assh}_R M$, it follows from Theorem 2.6 that there exists an ideal \mathfrak{c} of R such that $\operatorname{Att}_R \operatorname{H}^n_{\mathfrak{c}}(M) = \operatorname{Att}_R \mathfrak{F}^n_{\mathfrak{a}}(M)$. By Remark 2.7, $\operatorname{H}^n_{\mathfrak{c}}(N^{\mathfrak{c}}) = 0$, where $N^{\mathfrak{c}}$ is defined as in Notation 2.1. Therefore $\operatorname{H}^n_{\mathfrak{c}}(M)$ satisfies the property (*). Now by Theorem 3.3, $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \operatorname{H}^n_{\mathfrak{c}}(M)$.

Corollary 3.6. Let \mathfrak{a} be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n. Then

$$\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \mathfrak{F}^n_{\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)}(M).$$

Proof. By Theorem 3.5, there exists an ideal \mathfrak{c} of R such that $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \mathrm{H}^n_{\mathfrak{c}}(M)$. As $\mathrm{H}^n_{\mathfrak{c}}(M)$ satisfies the property (*), we have $\mathrm{H}^n_{\mathfrak{c}}(M) \cong \mathfrak{F}_{\mathrm{Ann}_R \mathrm{H}^n_{\mathfrak{c}}(M)}(M)$ by Corollary 3.4, and so $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \mathfrak{F}_{\mathrm{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)}(M)$, as required.

Theorem 3.7. Let \mathfrak{a} be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n such that $\mathrm{H}^{n}_{\mathfrak{a}}(M)$ satisfies the property (*). Then $\mathrm{H}^{n}_{\mathfrak{a}}(M) \cong \frac{\mathrm{H}^{n}_{\mathfrak{m}}(M)}{(\mathrm{Ann}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(M)) \mathrm{H}^{n}_{\mathfrak{m}}(M)}$.

Proof. By Corollary 3.4, we have $\operatorname{H}^{n}_{\mathfrak{a}}(M) \cong \mathfrak{F}^{n}_{\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M)}(M)$ and by [5, Proposition 2.1], there exists an integer t_{0} such that

$$\mathfrak{F}^{n}_{\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M)}(M) = \frac{\operatorname{H}^{n}_{\mathfrak{m}}(M)}{(\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M))^{t}\operatorname{H}^{n}_{\mathfrak{m}}(M)} \text{ for all } t \geq t_{0}.$$

Hence $\operatorname{H}^{n}_{\mathfrak{a}}(M) \cong \frac{\operatorname{H}^{n}_{\mathfrak{m}}(M)}{(\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M))^{t}\operatorname{H}^{n}_{\mathfrak{m}}(M)} \text{ for all } t \geq t_{0} \text{ and so}$
 $\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M) = \operatorname{Ann}_{R}(\frac{\operatorname{H}^{n}_{\mathfrak{m}}(M)}{(\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M))^{t}\operatorname{H}^{n}_{\mathfrak{m}}(M)}) \text{ for all } t \geq t_{0}.$

It follows that

$$(\operatorname{Ann}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M)) \operatorname{H}^{n}_{\mathfrak{m}}(M) \subseteq (\operatorname{Ann}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M))^{t} \operatorname{H}^{n}_{\mathfrak{m}}(M) \text{ for all } t \geq t_{0}$$

Hence $(\operatorname{Ann}_R \operatorname{H}^n_{\mathfrak{a}}(M))^t \operatorname{H}^n_{\mathfrak{m}}(M) = \operatorname{Ann}_R \operatorname{H}^n_{\mathfrak{a}}(M) \operatorname{H}^n_{\mathfrak{m}}(M)$ for all $t \ge t_0$ and therefore

$$\mathrm{H}^{n}_{\mathfrak{a}}(M) \cong \frac{\mathrm{H}^{n}_{\mathfrak{m}}(M)}{(\mathrm{Ann}_{R} \mathrm{H}^{n}_{\mathfrak{a}}(M)) \mathrm{H}^{n}_{\mathfrak{m}}(M)}.$$

Theorem 3.8. Let \mathfrak{a} be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n. Then

$$\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \frac{\mathrm{H}^n_{\mathfrak{m}}(M)}{(\mathrm{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)) \,\mathrm{H}^n_{\mathfrak{m}}(M)}$$

Proof. By Corollary 3.6, $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \mathfrak{F}_{\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)}(M)$. So an argument similar to the proof of Theorem 3.7 completes the proof.

Corollary 3.9. Let \mathfrak{a} and \mathfrak{b} be two ideals of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n.

- (i) If $\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M) = \operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{b}}(M)$, then $\mathfrak{F}^n_{\mathfrak{a}}(M) \cong \mathfrak{F}^n_{\mathfrak{b}}(M)$;
- (ii) If $H^n_{\mathfrak{a}}(M)$ satisfies the property (*) and

$$\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M) = \operatorname{Ann}_{R}\mathfrak{F}^{n}_{\mathfrak{b}}(M),$$

then $\operatorname{H}^{n}_{\mathfrak{a}}(M) \cong \mathfrak{F}^{n}_{\mathfrak{b}}(M);$

(iii) If both $\operatorname{H}^{n}_{\mathfrak{a}}(M)$ and $\operatorname{H}^{n}_{\mathfrak{b}}(M)$ satisfy the property (*) and

 $\operatorname{Ann}_{R} \operatorname{H}^{n}_{\mathfrak{a}}(M) = \operatorname{Ann}_{R} \operatorname{H}^{n}_{\mathfrak{b}}(M),$

then $\operatorname{H}^{n}_{\sigma}(M) \cong \operatorname{H}^{n}_{h}(M)$.

Proof. All items are clear by Theorem 3.7 and Theorem 3.8.

Theorem 3.10. Let \mathfrak{a} be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n. Then

(i) We have the equalities

$$\operatorname{Att}_{R} \mathfrak{F}^{n}_{\mathfrak{a}}(M) = \operatorname{V}(\operatorname{Ann}_{R} \mathfrak{F}^{n}_{\mathfrak{a}}(M)) \cap \operatorname{Assh}_{R} M$$
$$= \operatorname{Min} \operatorname{V}(\operatorname{Ann}_{R} \mathfrak{F}^{n}_{\mathfrak{a}}(M)).$$

(ii) If $H^n_{\mathfrak{a}}(M)$ satisfies the property (*), then

$$\operatorname{Att}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M) = \operatorname{V}(\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M)) \cap \operatorname{Assh}_{R} M = \operatorname{Min}\operatorname{V}(\operatorname{Ann}_{R}\operatorname{H}^{n}_{\mathfrak{a}}(M)).$$

Proof. (i) Since for each Artinian R-module A,

$$\operatorname{Att}_R(A/\mathfrak{a} A) = \operatorname{Att}_R A \cap \operatorname{V}(\mathfrak{a}),$$

by Theorem 3.8, we have

$$\operatorname{Att}_{R} \mathfrak{F}_{\mathfrak{a}}^{n}(M) = \operatorname{Att}_{R} \operatorname{H}_{\mathfrak{m}}^{n}(M) \cap \operatorname{V}(\operatorname{Ann}_{R} \mathfrak{F}_{\mathfrak{a}}^{n}(M))$$
$$= \operatorname{Assh}_{R} M \cap \operatorname{V}(\operatorname{Ann}_{R} \mathfrak{F}_{\mathfrak{a}}^{n}(M))$$
$$\subseteq \operatorname{Min} \operatorname{V}(\operatorname{Ann}_{R} \mathfrak{F}_{\mathfrak{a}}^{n}(M)).$$

On the other hand

$$\operatorname{Min} \operatorname{V}(\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)) = \operatorname{Min} \operatorname{Att}_R \mathfrak{F}^n_{\mathfrak{a}}(M)$$
$$\subseteq \operatorname{Assh}_R M \cap \operatorname{V}(\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)).$$

Therefore

Att_R
$$\mathfrak{F}^n_{\mathfrak{a}}(M) = \operatorname{Assh}_R M \cap \operatorname{V}(\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)) = \operatorname{Min} \operatorname{V}(\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)).$$

(ii) The proof is similar to the proof (i).

Corollary 3.11. Let \mathfrak{a} be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n. Then

(i)
$$\operatorname{Att}_{R} \mathfrak{F}_{\mathfrak{a}}^{n}(M) = \operatorname{Ass}_{R}(\frac{R}{\operatorname{Ann}_{R} \mathfrak{F}_{\mathfrak{a}}^{n}(M)}).$$

(ii) If $\operatorname{H}_{\mathfrak{a}}^{n}(M)$ satisfies the property (*), then
 $\operatorname{Att}_{R} \operatorname{H}_{\mathfrak{a}}^{n}(M) = \operatorname{Ass}_{R}(\frac{R}{\operatorname{Ann}_{R} \operatorname{H}_{\mathfrak{a}}^{n}(M)}).$

Proof. (i) Since $\mathfrak{F}^n_{\mathfrak{a}}(M)$ is Artinian, it follows from [10, Theorem 3.1 and Theorem 3.3 (b)] that $\operatorname{Ass}_R(R/\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M)) \subseteq \operatorname{Att}_R(\mathfrak{F}^n_{\mathfrak{a}}(M))$. But the sets $\operatorname{V}(\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M))$ and $\operatorname{Ass}_R(R/\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M))$ have the same minimal elements, by [10, Theorem 3.3 (c)]. Thus, by Theorem 3.10, $\operatorname{Att}_R(\mathfrak{F}^n_{\mathfrak{a}}(M)) \subseteq \operatorname{Ass}_R(R/\operatorname{Ann}_R \mathfrak{F}^n_{\mathfrak{a}}(M))$. Therefore

$$\operatorname{Att}_{R}(\mathfrak{F}^{n}_{\mathfrak{a}}(M)) = \operatorname{Ass}_{R}(R/\operatorname{Ann}_{R}\mathfrak{F}^{n}_{\mathfrak{a}}(M)).$$

(ii) The proof is similar to the proof (i).

Acknowledgments

The authors are deeply grateful to the referee for his/her careful reading of the paper and valuable suggestions.

References

- M. Asgharzadeh and K. Divaani-Aazar, Finiteness properties of formal local cohomology modules and Cohen-Macaulayness, *Comm. Algebra*, **39** (2011), 1082– 1103.
- M. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Vol. 60, Cambridge University Press, (1998).
- M. T. Dibaei and R. Jafari, Top local cohomology modules with specified attached primes, *Algebra Collog.*, 15 (2008), 341–344.
- M. T. Dibaei and S. Yassemi, Attached primes of the top local cohomology modules with respect to an ideal, Arch. Math., 84 (2005), 292–297.
- M. Eghbali, On Artinianness of formal local cohomology, colocalization and coassociated prims, *Math. Scand.*, **113** (2013), 5–19.
- 6. H. Matsumura, Commutative Ring Theory, Cambridge University Press, (1986).
- F. Rastgoo and A. Nazari, Some results on Artinian cofinite top local cohomology modules, Arch. Math., 111 (2018), 599–610.
- S. Rezaei, Some results on top local cohomology and top formal local cohomology modules, Comm. Algebra, 45 (2017), 1935–1940.
- P. Schenzel, On formal local cohomology and connectedness, J. Algebra, 315 (2007), 894–923.
- S. Yassemi, Coassociated primes of modules over a commutative ring, *Math. Scand.*, 80 (1997), 175–187.

Alireza Nazari

Department of Mathematics, Lorestan University, P.O. Box 68151-44316, Khorram Abad, Iran. Email: nazari.ar@lu.ac.ir

Fahimeh Rastgoo

Department of Mathematics, Lorestan University, P.O. Box 68151-44316, Khorram Abad, Iran.

Email: rastgoo.fa@fs.lu.ac.ir

Journal of Algebraic Systems

TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES

A. NAZARI AND F. RASTGOO

بالاترین مدولهای کوهمولوژی موضعی و کوهمولوژی موضعی صوری با ایدهآلهای اول چسبیدهی مشخص علیرضا نظری و فهیمه راستگو^۲

^{۱,۲} گروه ریاضی و علوم کامپیوتر، دانشکده علوم پایه، دانشگاه لرستان، خرم آباد، ایران

فرض کنید (R, \mathfrak{m}) یک حلقه یموضعی نوتری، M یک R_{-} مدول متناهی مولد از بعد n و \mathfrak{n} ایده آلی از R باشد. در این مقاله نشان می دهیم که به ازای هر زیر مجموعه یT از $Assh_R M$ ، ایده آل از R موجود است به طوری که $T = (M_{\mathfrak{a}}^n(M) = 1$. با استفاده از این مطلب برخی ارتباطات بین \mathfrak{n} از R موجود است که مولوژی موضعی و کوهمولوژی موضعی صوری بیان می شود. مطالب بیان شده، نتایج اصلی به دست آمده توسط دیبایی و جعفری در مرجع $[\mathfrak{n}]$ و رضایی در مرجع $[\mathfrak{n}]$ را تعمیم می دهد.

کلمات کلیدی: ایدهآلهای اول چسبیده، مدولهای کوهمولوژی موضعی، مدولهای کوهمولوژی موضعی صوری، حلقههای نوتری موضعی.