NEW BOUNDS AND EXTREMAL GRAPHS FOR DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS | ||
Journal of Algebraic Systems | ||
دوره 8، شماره 2، فروردین 2021، صفحه 231-250 اصل مقاله (198.8 K) | ||
نوع مقاله: Original Manuscript | ||
شناسه دیجیتال (DOI): 10.22044/jas.2020.9540.1469 | ||
نویسندگان | ||
A. Alhevaz* 1؛ M. Baghipur2؛ S. Paul3 | ||
1Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box: 316-3619995161, Shahrood, Iran. | ||
2Department of Mathematics, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran. | ||
3Department of Applied Sciences, Tezpur University, Tezpur-784028, India. | ||
چکیده | ||
The distance signless Laplacian spectral radius of a connected graph $G$ is the largest eigenvalue of the distance signless Laplacian matrix of $G$, defined as $D^{Q}(G)=Tr(G)+D(G)$, where $D(G)$ is the distance matrix of $G$ and $Tr(G)$ is the diagonal matrix of vertex transmissions of $G$. In this paper, we determine some new upper and lower bounds on the distance signless Laplacian spectral radius of $G$ and characterize the extremal graphs attaining these bounds. | ||
کلیدواژهها | ||
Distance signless Laplacian matrix؛ spectral radius؛ extremal graph؛ transmission regular graph | ||
آمار تعداد مشاهده مقاله: 634 تعداد دریافت فایل اصل مقاله: 690 |