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4-CYCLE FREE APM-LDPC CODES WITH AN
EXPLICIT CONSTRUCTION

Z. GHOLAMI AND M. GHOLAMI*

ABSTRACT. Recently, attention has been focused on a class of
low-density parity-check codes from affine permutation matrices,
called APM-LDPC codes, having some advantages than quasi-
cyclic (QC) LDPC codes in terms of minimum-distance, cycle dis-
tribution and error-rate performance. Moreover, some explicit
constructions for exponent matrices of conventional APM-LDPC
codes with girth at least 6 have been investigated. In this paper,
a class of 4-cycle free APM-LDPC codes is constructed by a new
explicit method such that the constructed codes have better cycle
distributions rather than the recently proposed APM codes with
girth 6. As simulation results show, the constructed codes outper-
form PEG and random-like LDPC codes with the same rates and
lengths.

1. PRELIMINARIES

For given positive integer m, let Z,, = {0,1,...,m — 1} be the ring
of integers modulo m and Z}, = {a € Z,,|gcd(a, m) = 1} be the set
of elements in Z,, which are relatively prime to m. Now, for each
(s,a) € Zy, X Z,, define affine permutation (AP) matrix Z5% briefly
Z** when m is known, to be the m x m binary matrix (p;;)o<ij<m—1
in which p; ; = 1 if and only if ¢ = aj + s mod m. In fact, in Z°¢, the
row-index of 1 in the first column is s and each column is shifted down
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by a respect to the previous column. Some of the properties of AP
matrices can be seen easily as follows [3].

(1) T81:a1 5 T82,02 — TS1ta182,a102

(2) T51,01 /1'32,(12 — Islfsgalagl,alaz_l‘

(3) (Is,a)—l — (Is,a)T — I—sail,afl'

s,a\n _ IS%’“TL a#1

O E
By the above relations, it is clear that the set of all APMs of size m,
ie. {I*%: (s,a) € Zy, x Z£,}, with the multiplication operation, forms
a non-abelian group of order m x ¢(m), where ¢(m) = |Z* | is the
phi-Euler’s function.

Now, for a given Jx L fully-one matrix B, let E = (e; j)o<i<j—1,0<j<L—1
be a J x L array on Z,, X Z,, i.e. each element e, ; is a pair (s; j,a;;) €
L, X Z2%,. The (J, L) APM-LDPC code with base matrix B, APM-size
m and exponent matrix F can be defined as an LDPC code having the
following parity-check matrix.

ISo,oyao,o e _’[SO,L717a0,L71

Hon o = : : (1.1)

)

ISJ—l,OvaJ—l,O _’Z’SJ—1,L—1,aJ—1,L—1

In the literature, the J x L matrices S = (Si,j)USiSJ—l,OSjSL—l and

A = (a;)o<i<s—1,0<j<r—1 are called slope and shift matrices, respec-
tively. It is noticed that, if an element of E is greater than m, in
construction of H,, g, such element is considered to be modulo m. Es-
pecially, ifa; ; = 1 foreach0 <¢ < J—1and 0 <j < L—1, then H,, g
in (1.1) can be considered as the parity-check matrix of a QC-LDPC
code with circulant permutation matrix (CPM) size m. Moreover, after
some elementary row (column) operations on H,, g, it may be consid-
ered as the parity-check matrix of a QC-LDPC code. The following
theorem gives a necessary condition such that H,, g is the parity-check
matrix of a QC-LDPC code.
Theorem 1.1. If (s\"”,a") € Zp, xZ5,, 0 < i < J—1, and (sgc),a§c)) C
Ly X 2, 0 < 3 < L—1, are given such that for each 1, j, agr)agc)am =
1 mod m, then H,, g can be considered as the parity-check matriz of a
QC-LDPC code.

Proof. For 0 < i < J—1and 0 < j < L — 1, multiplying the ith

row-block of H,, g by 767a”) and then multiplying the jth column-
(e (o

block of H,p by T ') ), the matrix H,, z with exponent matrix
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E' = (€, .), will be obtained, in which

Z7J

e = ((agr)sm + sgr))agc) + sgc), agr)ay)ai,j) € Loy X 7Y,
Now, if agr)af)am = 1, for each i,7j, then H,, g is the parity-check
matrix of a QC-LDPC code and the proof is completed. O

Example 1.2. For given positive integers J and L, and prime number
m, m > JL, the matrix A = (a;;), a;; = (i+1)(j +1),0<i < J—1,
0 <j < L-—1, can be considered as a (J, L)—shift matrix of an APM-
LDPC code C, because for each i,j we have ged(a; j,m) = 1. Now,
substituting a\” = (i+1)~! (mod m) and ag-c) = (j+1)"! (mod m) in

Theorem 1.1, we have aET)ag.c)

to a QC-LDPC code.

a;; =1 (mod m), and so C is equivalent

The following theorem gives a necessary and sufficient condition for
the existence of a 2[—cycle in the Tanner graph of a (J, L) APM-LDPC
code with the parity-check matrix H,, g.

Theorem 1.3. ([3]) A 2i-cycle in TG(H,, g) exists if and only if there
is a chain (io, jo); (i1,J1); -5 (-1, 01-1); (@0, 51) = (G0, Jo), 0 < ig #
i1 < J—1and 0 < jg # jry1 < L — 1, such that one of the following
relations holds:

(1) pp=1and A=0.
(2) ged(po — 1,m)|A.

in which p, = 2_:1,1 aik+17jka’;}jjk modm, 0 < h <[—1, pp = py, and

-1
A= o(PrSiy g, — Prr1Si,, ;) mod m.

In particular case, if [ = 2, then Theorem 1.3 can be summarized as
follows.

Corollary 1.4. TG(H,, ) is free of 4-cycles if and only if for each
0<ig<in<J—land 0<jy<jy <L—1, wehave v #0if u =10
or otherwise ged(u, m) { v, in which u = a;, jo @iy j; — iy jy Qip,jo MO M
and v = a5, @iy j, (Siodo - Sio,jl) Qi jo Qig, jr (Sim& - 3i1,j0) mod m.

Proof. Setting [ = 2 in Theorem 1.3, we have py = a;, j,a ! a; ', mod

i0.do Bio.1 Fig
mand A = ail,joa%}maio’jla%}ﬁ(siwo—sio,jl)—i—aiodla;()}jl(silﬁjl—sil,jo) mod
m. On the other hand, by the proof of Theorem 1.3 in [3], the ex-
istence of a 4-cycle in TG(H) is related to the resolvability of the
equation (pg — 1)z = A mod m, which can be solved if and only
if @iy jo@i (Do — 1)z = @iy 400i, j; A (mod m) is resolvable, because
ged(aiy jotiy o, m) = 1. Now, this equation is simplified as ux = v
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(mod m) which has no solution if and only if v # 0 and v = 0 or
ged(u,m) to. O

Cycles, especially cycles of length 4, in the Tanner graph of an LDPC
code degrade the performance of LDPC decoders. Therefore, design of
LDPC codes free of 4-cycles is of great interest. Here, for enough large
m, we give some exponent matrices £ explicitly such that H,, p has
girth 6. In fact, an exponent matrix F is constructed explicitly with
the lower-bound Q(F), such that g(H,, g) > 6 for each m > Q(E).

2. ExpLIicIT CONSTRUCTIONS OF APM-LDPC CODES WITH
GIRTH AT MOST 6

In order to construct APM-LDPC codes with girth 6, we start from
the following theorem. Before that, for positive integers m and prime p,
define v,(m) to be the largest power of p which divides m, i.e. v,(m) =
e if and only if p¢|m and p*™! ¥ m. Clearly, for two integers a, b, we have
vp(ab) = vy(a) + v,(b), so vy(pa) = k + vp(a), v, ((kp + 1)a) = v,(a)
and if a|b, then v,(a) < v,(b). Moreover, by the Legendre’s formula [13]

for the factorial of an integer number, we have v,(m!) = > 7, L%J ,

where |z is the floor function. Moreover, for each integer m = 1 x 3 X
5X -+ x (2N — 1), we have v,(m) = v,((2N)!) — v,(N!).

Theorem 2.1. For prime p and integers J, L, J < L, let £ = (e;;), be
a (J, L)—exponent matrix, such that e; ; = (s;;,a; ), in which s; ; = ij
and a;; = (i +Jj)p+1,0<i<J—1land 0 <j <L —1. Then, for
each m = p*, k > log, (J — 1)(L — 1), we have g(Hpm,g) > 6.

Proof. Substituting s; ; and a; ; in Corollary 1.4, we have u = p?(j; —
Jo)(i1 — ip) mod m and v = (ip — i1)(jo — 71)(kp + 1) mod m, where
k = (iojo + jogi)p + io + jo + j1- Set e = v,((j1 — Jo) (i1 — %0)). Now,
if e < k — 2, then u # 0, because v,(u) = e+ 2 < v,(m) = k and
(j1—7Jo)(i1—ig) # 0. In this case, ged(u, m) = p®™2 which is not divisible
by v, because v,(v) = v,((j1 —Jo) (i1 —1i0)) = e < e+2 = v,(ged(u, m)).
On the other hand, if e > k — 2, then u = 0, but v # 0, because v = 0
if and OIlly if (]1 —]0)(21 — Zo) = 0 mod m. HOWGVGI‘, (]1 —jo)(ll - Zg) 7£
0 mod m, because 0 < (j; —jo) (i1 —d0) < (J—=1)(L—-1) < pF=m. O

It is worth noticing that the APM-LDPC code constructed by Theo-
rem 2.1 is not equivalent to a QC-LDPC code, because by Theorem 1.1,
the expression m can not be decomposed to the multiplications
of two functions in terms of the variables ¢ and j. On the other hand,
aij = (i+j)p+1is always prime respect to m = p*, for each i, j.
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v|ik| m| neg || mi[l2]]| mes ma [1] | ne,s || m3 [5] | me,s
5 16 744 16 1192 17 850 16 888
3|6 16 1856 16 2432 17 1938 16 1952
71 16 | 3832 16 4568 17 3859 16 3928
8 16 | 7008 16 7904 17 6817 16 7200
5 16 | 3232 16 3984 17 3604 16 3536
4|6 16 | 7760 16 8800 17 8446 16 8144
7 16 | 16112 16 17040 17 16439 16 16400
8 16 | 29540 16 30528 17 29529 16 29952
6 || 32 | 23808 32 37536 31 25296 32 29472
5|7 32 | 49232 32 68336 31 50623 32 56816
8 || 32 | 89600 32 113344 31 91729 32 97088

TABLE 1. A comparison between the number of 6,8-
cycles of the constructed codes with some explicit QC,
APM and AQC-LDPC codes in [12], [1] and [7]

Example 2.2. For p = 5, let E be the following 5 x 7 exponent matrix
given by Theorem 2.1.

(0,1) (0,6) (0,11) (0,16) (0,21)  (0,26)  (0,31)
(0,6) (1,11) (2,16) (3,21) (4,26) (5,31)  (6,36)
(0,11) (2,16) (4,21) (6,26) (8,31) (10,36) (12,41)
(0,16) (3,21) (6,26) (9,31) (12,36) (15,41) (18,46)
(0,21) (4,26) (8,31) (12,36) (16,41) (20,46) (24,51)

For k > [log;(5—1)(7—1)] = 2, we have g(H,, ) > 6. It is note that
each element of F is reduced in modulo m. For example, for m = 25,
the element (24, 51) in the above exponent matrix is reduced to (24, 1).

3. OUTPUTS

Table 1 provides some comparisons between the 6,8-cycle multiplic-
ities of the constructed codes with block-size m, on one hand, and
some QC-LDPC codes [12] with CPM-size m;, APM-LDPC codes [/]
with APM-size my and AQC-LDPC codes [5] with block size m3 with
some explicit constructions, on the other hand. All of the codes con-
sidered in this comparison have girth at least 6. In the table, ngg is
the summation of 6,8 cycle multiplicities of the corresponding codes.
As Table 1 shows, the constructed codes have better ngg rather than
QC and AQC-LDPC codes, although, they have a close comparisons
with the APM-LDPC codes in [1].

4. SIMULATION RESULTS

For simulation results, we have used an additive white Gaussian noise
(AWGN) channel, using software available online [7]. The decoding al-
gorithm is sum-product with iteration number 50 and block number
1000. Figure 1 shows a bit error performance comparison between two
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F1GURE 1. The constructed APM codes with different
girths against Random and PEG LDPC codes

QC-LDPC codes with different girths having lifting degree 9600 lifted
from the base matrix of the (3,6) APM-LDPC code constructed explic-
itly, on one hand and a 4-cycle free randomly constructed LDPC code
and an LDPC code from progressive edge growth (PEG) [9] with target
girth 14, on the other hand. As the figure confirms, the constructed
codes outperform random and PEG codes with the same lengths, rates
and girths.
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