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The uncertainty-based mine evaluation and optimization have been regarded as a
critical issue. However, it has received less attention in the underground mines than in
the open-pit mines due to the diversity of the underground mining methods, and the
underground mining parameters' complexity. The grade and commodity price
uncertainties play essential roles in mining projects. Mine planning by not
incorporating these uncertainties is accompanied by risks. The evaluation and risk
assessment of the mine plans is possible through evaluating the mineable reserve in
the presence of such uncertainties. In the present work, we evaluate the effects of grade
and commodity price uncertainties on the underground mining stope optimization and
the resultant mineable reserve. In this regard, the stope boundary is studied both
deterministically and stochastically in the presence of the grade and price
uncertainties. For this purpose, in this work, we implement the conditional simulation
in order to generate equally probable ore reserve models. Furthermore, we optimize
the stope boundary using the floating-stope algorithm in each realization. Several
decision support criteria including the 'mineable reserve,' 'metal-content,' ‘profit," and
'value-at-risk' are defined to assist the decision-maker in uncertain conditions. Finally,
a procedure is defined in order to consider two types of uncertainty sources
simultaneously in underground mining. It will guide the decision-maker toward the
most appropriate stope boundary that best fits the mining company's requirements. The
procedure is implemented in a bauxite mine, and the optimal stope boundary is
determined concerning the different criteria.

1. Introduction

The mining methods are divided into the surface
and underground methods. Generally, the use of
these methods depends on the depth of the mineral.
Underground mining is appropriate for deep
deposits in environmentally sensitive areas [1].
Optimization is considered essential for both the
surface and underground mine design and
production scheduling [2].

A proper stope design plays a significant role in
the profit and safety of the operation. It requires
several data including the ore model and some
geotechnical data. An ore model is usually
obtained by estimation or simulation using the
geostatistical tools. The geotechnical condition

E Corresponding author: map60@aut.ac.ir (M. Ataee-pour).

controls the hanging wall and footwall angles,
stope dimensions, in situ stress tensor, rock
strength, and local geological structures. Deciding
the stope's size and location will affect the
maximum profit. The number of algorithms in the
pit limit optimization exceeds the number in the
underground methods. The true optimum solution
is guaranteed for optimizing the pit limit, and
several computer packages are available for the
industry. However, only a small number of
algorithms have been developed for optimizing the
ultimate stope boundaries in underground mining

[3].
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Various approaches have been suggested for the
stope optimization [3-5]. Dynamic programming
[6] and the branch and bound technique [7] have
been utilized in order to optimize a stope in 2D
problems. Also, regarding the stope optimization in
3D problems, the mathematical morphology tools
[8, 9], floating-stope [10], maximum value
neighborhood method [11], and octree division
[12] have been implemented. Further, Manchuk
and Deutsch (2008) have presented a simulated
annealing-based algorithm [13], and Bai et al.
(2013) have developed a stope optimizer based on
graph theory [14].

The risk is an important issue for mine
evaluation, and it is available in all facets of mining
and is categorized into the technical, financial, and
environmental factors. All the uncertainty sources
should be considered in the feasibility study of
mining projects. The geological uncertainty is
regarded as one of the main technical uncertainties
in mining, known as a primary risk source. It is
recognized as a significant factor in mining
failures. In some research works, the geological
uncertainty modeling has been obtained using
conditional simulation [15, 16]. The economic
uncertainties are significant in mining, and
commodity price uncertainty is the primary
uncertainty source along with the mining
operations [17]. The unpredictability of the raw
mineral prices is considerably more severe than
that of the other industrial products. For example,
as illustrated in Figure 1, the aluminum price has
been highly volatile during 2000-20. Therefore, the
price uncertainty plays a significant role in
achieving the production plan's monetary goals
[18]. The researchers have recently studied the
economic uncertainties such as a combination of
the commodity price and operational cost
uncertainties [17] or the commodity price
uncertainty and exchange rate uncertainty [19].
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Figure 1. Fluctuations in aluminum price ($/t)
during 2000-20 [20].
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In designing the underground mines, evaluation
and optimization have had less applications than
the open-pit mines due to the diversity of the
underground mining methods. All these
approaches have failed to consider the uncertainty,
and accordingly, have assumed the inputs as
certain. A limited number of studies have reported
integrating simulated ore bodies and grade risk
models through the conventional optimizers. In this
regard, some geological risk-based approaches
have been introduced for optimizing the stope
layout [21, 22], paving the way for developing a
risk-based underground mine design. Recently, a
method has been introduced for evaluating the
block-cave mine production scheduling in the
presence of delays from hang-ups and grade
uncertainty [23]. More recently, two significant
studies have been conducted in order to investigate
the uncertainty in the underground mines. In one of
them, the sequential Gaussian conditional
simulation has been applied to design an
underground mine of Iran under the grade
uncertainty [24]. In the other one, the dilution risk
in underground metal mines has been investigated
[25]. However, the current studies have focused
more on the grade uncertainty. Thus, the present
work aimed to evaluate the effects of the grade and
price uncertainties simultaneously on the stope
optimization and underground mine evaluation.

2. Materials and methods

In this work, the floating-stope algorithm as the
stope boundary optimizer and the conditional
simulation as the probable reserve generator were
applied. The floating-stope is a technique to
determine the optimal boundary for the mineable
reserve. The floating-stope approach's general
concept was raised in 1995 as a heuristic approach,
compared to the moving cone method for the pit
limit optimization. Floating stope is taken from
floating a minimum stope size through the ore body
in order to evaluate the stope grades for any stope
position. Accordingly, two envelopes are created
from this process including the maximum envelope
as the union of all possible economic stope
positions and the minimum envelope as the union
of all the best grade stope positions for every ore
block in the ore body. The envelopes provide a
limit for the final stope positions, and it is
recommended that the minimum envelope be the
best option for further analysis. This algorithm is
an underground boundary optimizer available in a
commercial software [26].
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The geological uncertainty modeling is obtained
through using conditional simulation. It generates
detailed models for an orebody that considers the
orebody's spatial and statistical specifications.
Based on the conditional simulation, the simulated
models can be developed at very tight-spaced
geographical positions by covering the whole ore
body, in addition to the sampled section. The
simulated models regenerate the real variability
(histogram) and spatial continuity (variogram) of
interest attributes. They are used as a measure of
uncertainty and variability related to the evaluation
[27].

3. Model construction

In this work, the Underground Stope Boundary
(USB) is evaluated in 2 different conditions. First,
USB is evaluated in the deterministic conditions,
and then it is studied in the presence of grade and
price uncertainties. These uncertainties will
influence the total income of the mine. However, it
should be noted that the grade uncertainty is an
intrinsic uncertainty, while the price is an extrinsic
uncertainty and parametric analysis is the industry
standard for price deviations. Moreover, decision-
making in the deterministic conditions is somehow
straight forward. However, several criteria are
defined to assist the decision-maker in uncertain
situations. For this purpose, “mineable reserve,”
“metal-content,” “profit,” and “value-at-risk” were
considered as the decision support criteria. For the
sake of comparison, the stope boundary and the
resulting mineable reserve is evaluated in 3 distinct
conditions. Section 3.1 explains the steps of
deterministic stope boundary optimization. Section
3.2 explains the stope boundary optimization in the
presence of the grade uncertainty. Finally, Section
3.3 explains the stope boundary optimization in the
presence of the price uncertainty.

3.1. Stope optimization without considering
uncertainty

The floating-stope is a heuristic size optimization
algorithm to determine the optimal (boundary)
limit of an ore reserve for the aim of underground
mining [28]. The general concept of floating-stope,
raised in 1995, is similar to the moving cone
algorithm for the pit limit optimization. The
floating-stope is taken from floating a minimum
stope size through the ore body in order to evaluate
the stope grades for any stope position. Therefore,
three factors are required for the implementation of
the floating-stope. For this purpose, based on the
economic estimations, a cut-off grade is calculated
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in order to determine whether a block is an ore or a
waste. This process also requires an initial stope
shape or geometry determined based on the
required minimum stope dimension.

Additionally, a target grade (referred to as head
grade) is specified in order to evaluate the
generated stopes. In each iteration, the algorithm
generates several stope options for a given ore
block, and checks for the average grade of material
inside each stope. If the average grade of blocks
inside the stope is equal or greater than the head
grade, they are flagged as the mineable blocks.
Finally, the mineable blocks' union will generate
the underground mine limits (referred to as the
mine envelope). The algorithm follows two
strategies for the determination of mine envelopes.
The first one is called the 'inner envelope' or
'minimum envelope,’ and it is constructed by
adding the blocks having a grade more than the cut-
off grade. The second envelope, called the 'outer
envelope' or 'maximum envelope, is built
concerning all the possible stope union for each ore
block. Accordingly, two envelopes are created
from this process including the maximum
envelope, as the union of all the possible economic
stopes, and the minimum envelope, as the union of
all best grade stope positions for every ore block in
the ore body. These envelopes provide a limit for
the final stope positions, and it is recommended
that the final stope design fits the minimum
envelope as close as possible. In order to determine
the stope boundary deterministically, the following
steps are required:

Step 1: Reserve estimation using the exploration
data.

Step 2: Stope optimization using the floating-stope
algorithm.

Step 3: Determine the minable reserve (Equation 1).

Rm = Z Rixi

6]
ieB

where R, is the mineable reserve, R; is the
tonnage of reserve in block i (defined in step 1), B
is the set of blocks in the block model, and x; is a
decision variable (defined in step 2) that
determines whether block i should be mined
(assumes the value 1) or not (assumes the value 0).

Step 4: Determination of the metal-content
(Equation 2).

M= Z Rigix;

i€eB

@)

where M is the metal content and g; is the grade
of block 7 (defined in step 1).
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Step 5: Determination of profit of the optimized
stopes (Equation 3).

p= Z(vmgir — o), (3)
i€EB

where P is the profit, v is the metal price, r is the
metal recovery, and c is the metal extraction cost.

3.2. Stope optimization by considering grade
uncertainty

In this section, the grade uncertainty and its effect
on the stope boundary is evaluated. For this
purpose, the geological uncertainty modeling is
obtained using the conditional simulation. The
simulated models regenerate the real variability
(histogram) and the spatial continuity (variogram)
of the attributes of interest. They are used in order
to solve the uncertainty and variability related to
the evaluation [29, 30]. The following steps are
required to determine the stope boundary in the
presence of the grade uncertainty.

Step 1: Generate the equally probable reserve model
realization by applying the conditional simulation
technique. In this step, a number of reserve
realizations will be generated, and they are stored
in set E.

Step 2: Optimize the stope using the floating-stope
algorithm in each realization. In this step, a
number of n stope boundaries will be determined.
These boundaries are referred to as the scenarios
that we are going to select the best one, and they
are treated in set S.

Step 3: Evaluate each scenario with respect to the
available reserve realizations in £, and determine
the minable reserve in each scenario. Then select
the scenario with the maximum expected minable
reserve (Egs. 4 and 5).

=73 i @

i€EB e€E

Z, =Max (R, Vs €S) 5)

where Z; is the best scenario with respect to the
goal of maximum expected minable reserve, EV ()
refers to the expected value, R, is the expected
mineable reserve of scenario s, X;s is the decision
variable that determines whether block i should be
mined or not under scenario s, R;, is the tonnage of
reserve in block i within the realization e, S is the
set of stope scenarios, and F is the set of available
reserve realizations.

Step 4: Determine the metal content for each
scenario, and select the scenario with respect to
different strategies (Egs. 6-9),
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M = Z Rie GieXis

i€B (6)
Z, = Max (Max{M,;,Ve € E}Vs€YS) 7)
Z, = Max (Min{M, ,Ve € E}Vs€S) (8)
Z, = Max (Ave{M; , Ve EE}Vs €S) 9)

where M, is the metal content of scenario s, Z, is
the best scenario with respect to the goal of
maximum metal-content. Z, that can be calculated
with respect to different strategies (Egs. 7-9), gie 1s
the grade of block 7 in simulation e, and E is the set
of reserve realizations.

According to Eqgs. 7-9, Z, can be calculated
concerning different strategies. The Max-Max
strategy (Equation 7) yields the ‘best of the best’
outcome. It is often referred to as an aggressive or
optimistic  strategy. The Max-Min strategy
(Equation 8) yields the ‘best of the worst” outcome.
It is also referred to as a pessimistic or conservative
strategy. The Max-Ave strategy (Equation 9) yields
the ‘best of the average’ outcome. Decision-
making in the uncertain condition is somehow a
subjective task, and each decision-maker may
choose a strategy based on his risk-taking behavior.

Step 5: Determine the project profit in each scenario,
and select the scenario with the maximum profit
(Egs. 10-13).

K= Z(URiegier —O)x;s (10)
i€EB

Z3 = Max (Max{P,,Ye € E}Vs€S) (11)

Zy = Max (Min{P, ,Ve EE}Vs€EYS) (12)

Z3 = Max (Ave{P, ,Ve EE}VsEYS) (13)

where P, is the profit of scenario s and Z5 is the
best scenario with respect to the goal of maximum
profit. Z3 can be calculated with respect to different
strategies similar to the metal-content (Eqgs. 11-13),
and each decision-maker may choose a strategy
based on his/her risk-taking behavior, v is the metal
price, r is the metal recovery that is assumed to be
constant, and c is the metal extraction cost.

Step 6: Determine the Value-at-Risk (VaR) for
profit, and select the lowest risk scenario
(Equation 14).

VaR,(P) = inf{P'|Pr(P > P") >} (14)

where « € (0,1) is the confidence level, VaRo(P)
is the value at risk of P (i.e. profit) at a confidence
level of a, Pr() is the probability, and inf(A) refers
to the greatest number that is less than or equal to
all elements of set A.
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VaR is a well-known risk management tool,
which measures the worst expected damage in the
normal conditions, and it is computed for a
particular time period at a certain confidence level.
By definition, VaR(q) finds the amount one can
lose over a pre-set horizon with a probability of %
[30].

3.3. Stope optimization considering both grade
and prices uncertainties

In this section, the combined effect of the price
and grade uncertainties on the stope boundary is
evaluated. For this purpose, the geological
uncertainty is obtained using the conditional
simulation. There are various methods available for
generating the price scenarios such as the
bootstrapping, geometric Brownian motion, and
mean reverting. In this work, the bootstrapping
method was applied in order to model the price
variations. Bootstrapping is a kind of sampling
method. In order to predict the future prices by
bootstrapping, the individual returns should be
calculated for each period. The main advantage of
this method is that it does not require any
assumptions about the distribution of returns.
According to bootstrapping the price forecasts, the
minimum and maximum values of price were
considered during the last years. These prices were
used in order to evaluate the ore reserve value.

Step 1: Generate the price scenarios. Put the price
scenarios in set K.

Step 2: Calculate the expected profit of each
scenario considering the price variations (Equation 15).
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Py = BV (ZZ D GeRegr - O ) (15)

i€EB e€E ke€K

where P, is the expected profit of scenario s in the
case of different price and ore reserve realizations,
and K is the set of prices.

Step 3: Inspection of different scenarios in different
price ranges (Equation 16).

Z, = Max(Pg, ,s € 5) (16)

Step 4: Determine VaR of the profit, and select the
lowest risk scenario (Equation 17).

VaR(Py,) = inf{P'|Pr(Pg, > P") >} 17)

4. Results and discussion

A flow diagram of the presented underground
mine evaluation model is introduced in this section
for a better understanding. It was used for the
Golbini bauxite mine of Iran. In the flow diagram
presented in Figure 2, an attempt was made in order
to summarize the mineable reserves assessment
process in the presence of the mentioned
uncertainties. This mine is planned to operate using
the “cut and fill” mining method. According to the
initial assessments, the local mining cost is about
$28.5 per ton of bauxite ore, and the selling price
is $300 per ton of alumina. Approximately 3 tons
of bauxite are required to produce 1 ton of alumina,
and to produce 1 ton of aluminum, 2 tons of
alumina is required. In this section, the stope
optimization and minable reserve evaluation are
conducted according to the steps explained in
Section 2.
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Stope optimization without considering uncertainty

Step 1: Reserve estimation.

Step 2: Stope optimization using floating-stope algorithm.

This stage will result in
a base case for the sake
of comparison

Step 3: Calculate minable reserve (Eq. 1). A
N

Step 4: Calculate metal content (Eq. 2).

Step 5: Calculate stopes profit (Eq. 3).

Stope optimization by considering grade uncertainty

Step 1: Apply conditional simulation to generate several grade
realizations

Step 2: Stope optimization in each realization.

Step 3: Calculate minable reserve in each scenario. Biggest reserve selection

Step 4: Calculate metal content for each scenario (Egs. 6-9) Max metal content scenario

Step 5: Calculate profit (Eqs. 10-13). Profitable scenario selection

Step6: calculate VaR of each scenario (Eq. 14) Lowest risk scenario

Stope optimization considering both grade and prices uncertainties

Step 1: Price scenario generation.

Step 2: Calculate the expected profits (Eq. 15).

Step 3: Rank the results respecting the expected profits (Eq. 16). Profitable scenario selection

Step 4: VaR calculation (Eq. 17). ¢ |

Figure 2. A flow diagram of the presented underground mine evaluation model.

Lowest risk scenario

(e O L e L T

dimension is 10 x 5x 1 cubic meter, the cut-off
grade of ALO; is 40%, and the head grade is

4.1. Golbini mine stope optimization without
considering uncertainty

Step 1: The geologic model is generated on the basis
of exploratory boreholes, and the grades are
estimated by the Kriging method. According to the
model, the mine reserve is estimated at about 3.5
Mt with average grade of ALOsat 46.3% and SiO»
at 12.8%. Figure 3 shows the block model of the
deposit. The silica content is far below the
maximum acceptable level, and therefore, its
deviations and its effects on the mine design are
not considered here.

Step 2: Using the floating-stope algorithm, the
optimal stope layout is determined for the deposit
(Figure 4). In this case, the minimum stope
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assumed to be 45% according to the run of mine
requirements.

Step 3: Based on the resulting stope layout, and
using Equation 1, the mineable reserve within the
stope boundary is 1.5 Mt.

Step 4: Using Equation 2, the metal-content and the
average grade are calculated. The metal contained
within the stope boundary is about 720,000 tons.

Step 5: Using Equation 3 and based on the estimated
mineable reserve, the metal-content, the bauxite
ore price, and the mining costs, the profit of the
operation is about 8.9 M$.
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Legend

Ao
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H [FLOOR,38]
[38,47]
[42,48]

I 146,501

Il [50,CEILING]

Legend

stope layout
[4BSENT]
Il not mined
W mined
Figure 4. Deterministic stope layout.
4.2. Golbini mine stope optimization 10 x 5 x 1 cubic meter and ALLOs cutoff grade was
considering grade uncertainty 40%. Also the head grade was assumed to be 45%

. according to the run of mine requirements.
Step 1: The block model consists of 266,937 blocks

with the dimensions of I x 1 x 1 cubic meter. Using Step 3: Using Equation 4, the mineable reserve of
the conditional simulation, and the exploration each scenario and their average grade (Table 1)
boreholes, 10 simulated reserves were generated. were calculated based on the results of the optimal
Table 1 shows the average grade of each scenario. stope layout. If the goal was to maximize the
. . amount of mineable reserve, then according to

Step 2: In this step, the optimal stope layout was Equation 5, the 4% scenario (i.e. mine 4) was
determined for each one of the generated block founded as the optimum one, where the amount of

models using the floating-stope algorithm

: = ‘ < mineable reserve was the maximum compared to
assuming that the minimum stope dimension was

the other scenarios.
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Table 1. Average grade of generated scenarios.

Label Grade variation g?::iﬁ%/i) Stope boundary rzg;‘s:l():ft) Mﬁag:szve'
ar e
Mine 1 47.07 1,543 47.51
Mine 2 46.92 1,586 47.50
Mine 3 47.07 1,568 47.53
Mine 4 46.90 1,590 47.50
Mine 5 46.98 1,560 47.52
Mine 6 46.94 1,581 47.52
Mine 7 46.97 1,556 47.50
Mine 8 47.01 1,555 47.52
Mine 9 47.03 1,552 47.51
Mine 10 46.88 1,586 47.51

Step 4: In this step, using Eqs. 6-9 and based on the
tonnage and average grade of each scenario, the
metal-content of each scenario was calculated.
According to Figure 5, in all the three modes of
Max-Min, Max-Max, and Max-Ave. the 4t
scenario (i.e. mine 4) was the best option. Thus if
the goal is to maximize the amount of metal-
content, again the 4™ scenario will be the optimal
option.

Step 5: According to Egs. 10-13 and the sale figures,
the profit of each scenario was calculated (Figure
6). Using this figure, the most profitable scenario
could be selected, and accordingly, the most
profitable minable reserve could be estimated.
Considering Figure 6, in the modes of Max-Min
and Max-Ave, the 4th scenario (i.e. mine 4), and
in the mode of Max-Max, the 6th (i.e. mine 6)

392

scenario is the best option. The 6th scenario is the
most optimistic option but due to the high variance
of profit in the 6th scenario, selecting this option
is risky. Thus if the goal is to maximize the profit
of the mineable reserve, the 4th scenario is again
the optimal scenario.

Step 6: In this step, VaR of the profit was

determined, and the lowest risk scenario was
selected. According to the simulation results and
Equation 14, VaR (10%) of each scenario was
calculated (Table 2). The results obtained show
that the 4™ scenario (i.e. mine 4) is the low-risk
option. This means that by completing the 4®
scenario, the probability of achieving a profit of
10.765 MS$ is 90%, which is the maximum
achievable profit compared to the others.
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765000
Minel0
760000 * —#—Mine9
§
H —eo—Mine8
755000
Mine7
2750000 Mine6
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g 745000 I ; Mine4
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740000 *
H —+—Mine2
735000 H —s—Minel
Ave
730000
0o 1 2 3 4 5 6 7 8 9 10
Scenario
Figure 5. Metal-content of each scenario.
Table 2. VaR (10%) of profit for scenarios
($1000).
Mine VaR (10%)
Mine 1 10480
Mine 2 10750
Mine 3 10604
Mine 4 10765
Mine 5 10556
Mine 6 10731
Mine 7 10508
Mine 8 10538
Mine 9 10514
Mine 10 10762
4.3. Golbini mine stope optimization

considering both grade and prices uncertainties

Step 1: Here, the minimum and maximum values of
the bauxite price were considered during the past
three years. The minimum price minus 20% and
the maximum price plus 20% were considered for
the minimum and maximum price range of the
scenarios, and then the price scenarios were
generated between these two values.

Step 2: According to Equation 15, using the bauxite
price scenarios and the local mining cost (28.5 $/t),
the profit of each scenario was calculated. The
results obtained are given in Table 3.

Step 3: According to the results obtained and using
Equation 16, the best scenario with respect to
maximization of profit in variable prices can be
selected. As shown in Table 3, from price 65 up to
84 the best scenario is Mine 1, from price 84 up to
87 the best scenario is Mine 3, from the price 88
up to 89, the best scenario is mine 6, and from
above the price 89, the best scenario is mine 4. It
should be noted that the project is unfeasible if the
price is lower than 86 $/t.
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Profit ($1000)

Mine4
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—=—Minel
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10300
0 1 2 3 4 5 6 7 8 9 10
Scenario

Figure 6. Profit of each scenario.

Step 4: In this step, in order to evaluate the profit of
the candidate stope boundaries, more price
scenarios are generated. In this work, the mine-life
is 3 years; therefore, the price forecasts are
generated with respect to the price variations in the
previous three years. In this step, the bootstrapping
method is applied for this purpose. The main
advantage of the bootstrapping method is that it
does not require any assumptions about the
distribution of the returns. Assuming a given set of
(yearly or monthly) price data, the yearly or
monthly returns are calculated. The return is equal
to the natural logarithm of the division of two
consecutive prices (Equation 18).

=In i
s

where 1 is the return, and g g are the mineral

(18)

price in periods t and t-1.

Using the historical price data, and applying the
bootstrapping method, 50 price scenarios are
generated. After that, the average of the generated
prices in each scenario is calculated. Then each
stope's profit is simulated using the price scenarios,
and then VaR of the profit is determined.
According to the simulation results and Equation
17, VaR (10%) of each scenario is calculated and
presented in Table 4. Based on the results obtained,
the 4th scenario (i.e. mine 4) is the low-risk option
in this work. It means that by completing the 4th
scenario, the probability of achieving a profit of
10.501 MS in variable prices is 90%, which is the
maximum achievable profit compared to the
others.
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Table 3. Simulation result of profit ($1000); the optimal scenarios for variable prices are colored.

Price Minel Mine 2 Mine 3 Mine 4 Mine 5 Mine 6 Mine 7 Mine 8 Mine 9 Mine 10
65 -10625 -10927 -10785 -10955 -10740 -10880 -10716 -10702 -10681 -10920
84 -870 902 -870 -903 -875 -886 -883 -872 -872 -897
85 -357 -374 -348 -374 -356 -360 -365 -354 -356 -369
86 156 152 172 154 162 165 151 162 159 158
87 669 680 694 683 681 691 669 679 676 685
88 1182 1208 1216 1212 1200 1217 1186 1197 1192 1213
89 1696 1735 1738 1741 1720 1743 1704 1714 1708 1740
90 2209 2263 2260 2270 2239 2269 2221 2232 2224 2268
142 28905 29700 29394 29780 29237 29621 29132 29135 29069 29701

Table 4. VaR (10%) of profit for scenarios in
variable prices ($1000).

Mine VaR (10%)
Mine 1 10196
Mine 2 10472
Mine 3 10378
Mine 4 10501
Mine 5 10316
Mine 6 10452
Mine 7 10273
Mine 8 10281
Mine 9 10256

Mine 10 10475

5. Conclusions

The optimization of the stope boundary and
minable reserve determination is an essential issue
in the underground mine design and planning.
Mining is inherited with uncertainty. The grade and
price uncertainties are considered as the main
sources of uncertainty. These uncertainties will
affect the amount of mineable reserve and the
operation's profitability. In this work, in order to
evaluate the underground mining projects, a risk-
based procedure was developed to determine the
optimum stope layout in the presence of the grade
and price uncertainties. For this purpose, several
reserve realizations and various price scenarios
were generated in order to evaluate the effect of the
price uncertainty. By applying the procedure,
different designs were regarded as the candidate
stope boundaries. Several decision support criteria
were defined in order to assist the decision-maker
in uncertain conditions. The results obtained
indicated that the mineable reserve evaluation
depended on the decision-maker’s strategy. The
procedure presented in this paper uses two types of
uncertainties  simultaneously in underground
mining. It will guide the decision-maker toward the
most appropriate stope boundary that best fits the
mining company's requirements. The procedure
was implemented in a bauxite mine. According to
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the VaR results, the 4th scenario (i.e. mine 4) is
recommended as the optimal stope boundary. This
scenario has the lowest risk compared to the other
scenarios, and the total profit is increased by 18%
compared to the deterministic stope boundary.
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