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THE ANNIHILATOR GRAPH FOR MODULES OVER
COMMUTATIVE RINGS

K. NOZARI AND SH. PAYROVI*

ABSTRACT. Let R be a commutative ring and M be an R-module.
The annihilator graph of M, denoted by AG(M) is a simple undi-
rected graph associated to M whose the set of vertices is Zgr(M)\
Anng(M) and two distinct vertices x and y are adjacent if and only
if Annys(zy) # Annps(x) U Annpy(y). In this paper, we study the
diameter and the girth of AG(M) and we characterize all mod-
ules whose annihilator graph is complete. Furthermore, we look
for the relationship between the annihilator graph of M and its
zero-divisor graph.

1. INTRODUCTION

Let R be a commutative ring. The zero-divisor graph of R, denoted
by I'(R) is a simple undirected graph whose vertices are the nonzero
zero-divisors of R and two distinct vertices x and y are adjacent if and
only if xy = 0, see [I, 2, 6]. The concept of the zero-divisor graph of
a ring, has been generalized for modules in many papers, see [7, 9].
Variations of the zero-divisor graph are created by changing the vertex
set, the edge condition, or both. The annihilator graph of R introduced
in [5] and studied in some literatures, see [, 10, 11]. It is a variation
of the zero-divisor graph that changes the edge condition. This graph,
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denoted by AG(R) is a graph whose vertices are the nonzero zero-
divisors of R and two distinct vertices x and y are adjacent if and only
if Anng(xy) # Anng(z) U Anng(y).

By relying this fact we introduce the annihilator graph for a module.
Let M be an R-module. The annihilator graph of M, denoted by
AG(M) is a simple undirected graph associated to M whose vertices
are the elements of Zr(M) \ Anng(M) and two distinct vertices x
and y are adjacent if and only if Anny/(ry) # Anny(x) U Anny(y).
We investigate the interplay between the graph theoretic properties of
AG(M) and some algebraic properties of M.

Let G = (V(G), E(G)) be a simple undirected graph, where V(G) is
the set of vertices and E(G) is the set of edges. Let z,y € V(G). We
write x ~ y, whenever x and y are adjacent. A universal vertex is a
vertex that is adjacent to all other vertices of the graph. We say that
G is connected if there is a path between any two distinct vertices. For
vertices x and y of G, we define d(z,y) to be the length of a shortest
path between x and y (if there is no path, then d(z,y) = oo). The
open neighborhood of a vertex z is defined to be the set N(z) = {y €
V(G) : d(xz,y) = 1}. The diameter of G is diam(G) = sup{d(z,y) :
x and y are vertices of G}. The graph G is complete if any two distinct
vertices are adjacent and a complete graph with n vertices is denoted
by K,. A complete bipartite graph G is a graph whose vertices can
be partitioned into two disjoint nonempty sets A and B such that two
distinct vertices are adjacent if and only if they are in distinct sets and
it is denoted by K| 5. The girth of G, denoted by gr(G) is the length
of a shortest cycle in G (gr(G) = oo if G contains no cycle).

Throughout this paper, R denotes a commutative ring with nonzero
identity and M is an R-module. Recall that Anng(M) = {r € R :
rM =0}, Zr(M) = {r € R : rm = 0 for some nonzero m € M} and
Asspr(M) = {p € Spec(R) : p = Anng(m) for some nonzero m € M}.
For x € R, Anny(x) = {m € M : xm = 0}. The reader is referred to
[15], for notations and terminologies not given in this paper.

2. THE ANNIHILATOR GRAPH FOR MODULES

In this section we define a simple undirected graph AG(M) and we
study the relations between graph theoretic properties of AG(M) and
module theoretic properties of M.

Definition 2.1. Let M be an R-module. The annihilator graph of
M, denoted by AG(M) is a simple undirected graph associated to M
whose the set of vertices is Zx(M)\ Anng(M) and two distinct vertices
z and y are adjacent if and only if Anny/(zy) # Anny(z) U Anny,(y).
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Lemma 2.2. Let M be an R-module and x,y be distinct vertices of
AG(M). Then the following statements are true:

(1) If Anny(z) € Anny(y) and Anny(y) € Anny(z), then x,y
are adjacent in AG(M).

(i) If z,y are not adjacent in AG(M), then either Anny(x) C
Anny,(y) or Anny(y) C Anny,(z).

(iii) If x,y are not adjacent in AG(M), then either Anng(xM) C
Anng(yM) or Anng(yM) C Anng(zM).

(iv) z,y are not adjacent in AG(M) if and only if either Anny(zy)
= Anny/(z) or Anny(zy) = Anny(y).

Proof. (i) Suppose that z,y are not adjacent in AG(M). Thus Anny(x)
U Anny(y) = Anny(zy). So Annys(zy) = Anny(x) or Anny(zy) =
Anny,(y). Hence, Anny(z) € Anny,(y) or Anny,(y) € Annyy(z) which
is a contradiction.

(ii) It is contrapositive of part (i).

(iii) Suppose that z,y are not adjacent in AG(M). It follows that
either Anny/(z) € Anny(y) or Anny(y) € Anny(z), by (ii). Let
Anny(x) € Anny(y) and » € Anng(zM). Then raM = 0 and so
rM C Anny/(z). Hence, rM C Anny,(y) and then ryM = 0. There-
fore, r € Anng(yM). So Anng(zM) C Anng(yM).

(iv) It is obvious by the proof of part (i). O

Lemma 2.3. Let M be an R-module and x,y be distinct vertices of
AG(M). Let x & r(Anng(M)) = {x € R: 2" € Anng(M) for somet €
N} and Anny(x) be a prime submodule of M. Then x,y are adjacent
in AG(M) if and only if Anny(y) € Anny(z).

Proof. Assume that Anny,(y) € Anny(2) and m € Anny(y)\Anny, ().
Then ym = 0 € Anny(x). Since Anny,(z) is a prime submodule of M,
xyM = 0. So Annys(z) U Anny(y) # Annys(zy). Conversely, suppose
that Anny(x) U Anny(y) # Annpy(xy). Thus there exists m € M
such that xym = 0 but am # 0 # ym. If Anny(y) € Anny(x), then
xm € Anny(x) and m ¢ Anny(z) which implies that 2z2M = 0 and it
is a contradiction. Hence, Anny,(y) € Anny(x). O

Theorem 2.4. Let M be an R-module and x,y be distinct vertices of
AG(M). Then the following statements are equivalent:
(i) x,y are adjacent in AG(M).
(i) M N Anny(y) # 0 and yM N Anny,(x) # 0.
(ii) x € Zr(yM) and y € Zg(zM).

Proof. (i) = (ii) Let z,y be distinct vertices of AG(M). Then there
exists m € M such that zym = 0 but xm # 0 # ym. So xM N
Anny(y) # 0 and yM N Anny(x) # 0.
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(ii) = (i) By the hypothesis there exist m,m’ € M such that zym =
xym’ =0, xm # 0 and ym' # 0. If m = m/ or ym # 0 or am’ # 0,
then there is nothing to prove. Now assume that m # m/, ym = 0
and zm’ = 0. Thus zy(m + m') = 0 but x(m + m') = xm # 0 and
y(m+m') =ym’ # 0. So z,y are adjacent in AG(M).

(i) < (iii) It is clear. O

Let M be an R-module. A submodule ) of M is said to be primary
submodule of M precisely when M/Q # 0, and for each a € Zr(M/Q),
there exists n € N such that a"(M/Q) = 0. It is well known that if
() is primary submodule of M, then Anng(M/Q) is a primary ideal
of R. In the following we offer a sufficient and necessary condition for
completeness of AG(M), whenever M is Noetherian. We begin with
the following lemma.

Lemma 2.5. Let M be a Noetherian R-module and let 0 = N}, Q);
be a minimal primary decomposition of the zero submodule of M with
r(Anng(M/Q;)) = p;, for each i = 1,--- ,n. Suppose that p; is a
minimal member of {p1,--- ,pn} = Assr(M) with respect to inclusion.
Then there exists a; € R such that QQ; = Anny(a;).

Proof. Let 0 = N!'_;@Q; be a minimal primary decomposition of the zero
submodule of M with r(Anng(M/Q;)) = p;, for each i = 1,--- |n.
Suppose that p; = r(Anng(M/Q);)) is a minimal element of Assg(M),
for some j with 1 < j <n. Then M, . ;Anng(M/Q;) € p;. Suppose
that a; € MLy, ,;Anng(M/Q;) \ p;. We show that Anny(a;) = Q;.
We have Anny(a;) = (0 iy a;) = (NP1Qi v aj) = NPy (Qi
a;) = (Q; :m a;). It is clear that Q; C (Q; :m a;). If there exists
m € (Q; :m a;) with m ¢ @, then a5M C Q; for some t € N and so
a; € p; which is a contradiction. Hence, Q; = Anny(a;). O

Let M be an R-module. Then the zero submodule is a primary
submodule of M if and only if Zr(M) = r(Anng(M)).

Theorem 2.6. Let M be a Noetherian R-module. Then AG(M) is a
complete graph if and only if Zr(M) = r(Anng(M)).

Proof. = Let 0 = N}_;(); be a minimal primary decomposition of the
zero submodule of M with r(Anng(M/Q;)) = p;, foreachi =1,--- n.
Let p; be a minimal element of Assg(M), for some 1 < j < n. Then
by Lemma 2.5, there exists a; € M, ,;;Anng(M/Q;) \ p; such that
(; = Annys(a;). Suppose that ¢ € Zp(M) \ Anng(M) and ¢ # a;. By
the hypothesis ¢, a; are adjacent in AG(M). So Annyy(a;)UAnny(c) #
Annj;(ajc). Thus there exists m € M such that a;em = 0 but a;m # 0.
Hence, ¢'M C @, for some t € Nso ' € Aung(M/Q;) C p;. Therefore,
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Zr(M) = pj U{a;}. Let p; C py, for some 1 < k < n. Since py C
Zr(M) =p; U{a;}, pr = p; U{a;} which is a contradiction. Hence,
n =1 and so 0 is a primary submodule of M. So Assg(M) = {p,} and
consequently Zr(M) = r(Anng(M)).

< Let Zr(M) = r(Anng(M)) and let x,y € Zr(M) \ Anng(M)
be two distinct vertices of AG(M). Then Anny(z) and Anny(y) are
essential submodules of M by [3, Theorem 5]. So xM N Anny(y) #
0 and yM N Anny(x) # 0. Hence, z,y are adjacent in AG(M) by
Theorem 2.4. O

The following example has been presented to show that the property
of being Noetherian is a necessary condition in Theorem 2.6.

Example 2.7. Consider M = Z,~ as a Z-module, where p is a prime
integer. It is easy to see that AG(M) is a complete graph but Zz(M) =
pZ and r(Annz(M)) = 0.

Proposition 2.8. Let M be an R-module and x,y be distinct vertices
of AG(M). If Anny(x) = Anny(y), then Nagon () = Nacow)(y)-

Proof. Let z € Zr(M) \ Anng(M) and z € Nagan(x). Then there
exists m € M such that zzm = 0 but zm # 0 # zm. So zm € Anny,(y)
and ym # 0 # zm. It means that y, z are adjacent in AG(M). Hence,
2 € Naguy(y). The reverse inclusion can be proved similarly. O

3. RELATION BETWEEN THE ZERO-DIVISOR GRAPH AND THE
ANNIHILATOR GRAPH

Let M be an R-module. The zero-divisor graph of M, denoted by
['(M) is a simple undirected graph associated to M whose vertices are
the elements of Zr(M) \ Anng(M) and two distinct vertices = and y
are adjacent if and only if xyM = 0, see [11].

Lemma 3.1. Let M be an R-module and x,y be distinct vertices of
AG(M). Then the following statements are true:

(i) If z,y are adjacent in T'(M), then x,y are adjacent in AG(M).
In particular, if P is a path in I'(M), then P is a path in
AG(M).

(ii) If dran(z,y) = 3, then x,y are adjacent in AG(M).

Proof. (i) Suppose that z,y are adjacent in I'(M). Thus zyM = 0 and
so Anny(xy) = M; but Anny(x) # M and Anny(y) # M. Hence,
Anny(xy) # Anny(z) U Anny(y) and z, y are adjacent in AG(M).
(ii) Suppose that dpon(x,y) = 3. Thus xyM # 0 and there exist
a,b € Zr(M)\ Anng(M) U {x,y} such that axM = 0, abM = 0 and
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byM = 0. If Annys(x) C Anny(y), then in view of azM = 0 it follows
that aM C Anny(x) € Annyy(y). Thus ayM = 0 which contradicts to
the hypothesis. Hence, Anny(z) € Anny(y). By a similar argument

one can show that Anny/(y) € Anny(x). Therefore, z,y are adjacent
in AG(M) by Lemma 2.2(i). O

Lemma 3.2. Let M be an R-module and x,y be distinct vertices of
AG(M). If Anny(z) and Anny(y) are distinet prime submodules of
M, then z,y are adjacent in I'(M) and so are adjacent in AG(M).

Proof. Assume that P, = Anny(z), P, = Anny(y) are two distinct
prime submodules of M and m € P, \ P,. Thus am = 0 € P, which
implies that *tM C P, = Anny,(y). Hence, xyM = 0 and so x,y are
adjacent in I'(M). The second assertion follows by Lemma 3.1(i). O

Let M be an R-module and Specy(M) denote the set of prime
submodules of M. Then m — Assg(M) = {P € Specy(M) : P =
Anny(a) for some 0 # a € R}.

Corollary 3.3. Let M be an R-module such that for every edge of
AG(M), z ~ y say, either Anny(x) € m — Assgr(M) or Anny(y) €
m — Assg(M). Then I'(M) = AG(M).

Proof. In view of Lemma 3.1(i), I'(M) is a subgraph of AG(M). Let
z,y be distinct adjacent vertices of AG(M) and let either Anny,(z) €
m — Assg(M) or Anny(y) € m — Assg(M). Without loss of generality
we may assume that Anny(z) € m — Assg(M). Thus Anny(zy) #
Annyy(x) U Anny(y). Hence, there is m € M such that zym = 0 but
xm # 0 # ym. Therefore, ym € Anny(x) and m ¢ Anny(z). So
xyM = 0 since Anny(x) is a prime submodule of M and z and y are
adjacent in I'(M). O

Theorem 3.4. Let M be an R-module and I'(M) be a connected graph.
Then AG(M) is a connected graph and diam(AG(M)) < 2.

Proof. Suppose that z,y are distinct non-adjacent vertices of AG(M).
Thus by Lemma 2.2(ii), either Anny/(x) € Anny(y) or Anny(y) C
Anny(z). Without loss of generality we may assume that Anny(z) C
Anny(y). Thus Anng(2M) C Anng(yM), by Lemma 2.2(iii). Since x
is not an isolated vertex of I'(M), thus there exists z € Anng(zM) \
Anng(M) such that xzzM = 0. So yzM = 0. Hence, x ~ z ~ y is a
path in ['(M) and so is a path in AG(M). O]

Theorem 3.5. Let M be a Noetherian R-module and I'(M) be a con-
nected graph. Then gr(AG(M)) € {3,4,00}.
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Proof. IfT'(M) = AG(M), then in view of [1 |, Teorem 3.3|, gr(AG(M))
€ {3,4,00}. Now, suppose that I'(M) # AG(M) and z,y are two
distinct adjacent vertices of AG(M) such that they are non-adjacent
in I'(M). Since I'(M) is a connected graph, there exist a,b € Zr(M)\
Anng(M)U{z,y} such that axM = byM = 0. Ifa = b, thenz ~a ~y
is a path in I'(M) and so  ~ a ~ y ~ x is a cycle in AG(M) of length
three. So we may assume that a # 0. If abM =0, thenz ~a~b~y
is a path in I'(M). Thus 2 ~a ~ b ~ y ~ x is a cycle in AG(M)
of length four. If abM # 0, then = ~ ab ~ y is a path in I'(M) and
sox ~ ab ~y ~ xis a cycle in AG(M) of length three. Therefore,
gr(AG(M)) € {3,4, 00}. O

Consider Zg as a Zg-module. It is easy to see that gr(AG(Zg)) = 3
and gr(I'(Zs)) = oo.

Theorem 3.6. Let M be a Noetherian R-module and AG(M) be a
complete graph. Then ¢ € Zr(M) \ Anng(M) is a universal vertex of
['(M) if and only if Anny,(c) is a prime submodule of M.

Proof. Let ¢ € Zr(M) \ Anng(M) be a universal vertex of I'(M). We
show that Annjy/(c) is a prime submodule of M. Assume that = €
R.m € M \ Anny(c) and zm € Anny(c). By [l1, Theorem 2.1],
Zr(M) = Anng(cM) and x € Zr(M) thus M C Anny(c) as desired.
Hence, Anny,(c) is a prime submodule of M.

Suppose that ¢ € Zr(M) \ Anng(M) and Anny(c) is a prime sub-
module of M. We show that ¢ is a universal vertex of I'(M). Let
x € Zr(M)\ Anng(M) be a vertex of I'(M) and x # c¢. In view of the
assumption AG(M) is a complete graph so there exists m € Anny(cz)
such that am # 0 # ¢m. Thus zm € Anny/(c) and em # 0. Hence,
xeM = 0 and so ¢,z are adjacent in I'(M). O

Corollary 3.7. Let M be a Noetherian R-module and AG(M) be a
complete graph with |Zr(M)\ Anng(M)| > 3. IfI'(M) is a star graph,
then |m — Assgp(M)| = 1.

Proof. Let Zp(M) \ Anng(M) = {a,b,c,---} and let T'(M) be a star
graph. If P, = Anny(a) and P, = Anny,(b) are prime submodules of
M, then by Theorem 3.6, a and b are universal vertices of I'(M) which
is a contradiction. Thus |m — Assg(M)| < 1. Since M is Noetherian,
|m — Assg(M)| > 1. O

Consider Zg as a Z-module. It is easy to check that AG(Zsg) is a
complete graph and m — Assy(Zg) = {2Z} but I'(Zg) is not a star
graph. Note that 4 is a universal vertex of I'(Zg). Also, 2 ~ 12 in
['(Zsg).
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Theorem 3.8. Let M be an R-module and I'(M) be a star graph with
the universal vertex c. Then the following statements are true:

(i) If ¢ ¢ r(Anng(M)), then I'(M) = K;.

(ii) If ¢ € r(Anng(M)), then T'(M) = K11 or Re = cZp(M) U {c}.

Proof. (i) In [11, Theorem 2.1], it has been proved that Zgr(M) =
Anng(cM) U {c} and ¢ = 2. If there exists a € R\ Zr(M) such that
ac # ¢, then ac and z are adjacent for all x € Zgx(M) \ Anng(M)
which is a contradiction. So ac = ¢ and I'(M) = K;. Let ac = ¢, for all
a € R\Zr(M). Then Rc = cZr(M)Uc(R\Zr(M)) = cZr(M)U{c} =
cAnng(ecM)U{c}. In this case we have R = Zy® R and M = ©&Zyd M’
where R’ is a subring of R and M’ is an R-submodule of M. Moreover
¢ = (1,0) and Anng(cM) = 0 x R, see [I1, Theorem 2.2]. Thus
cAnng(cM) = ¢(0 x R') = {(0,0)}. Hence, Rc = {(0,0),c= (1,0)}.
(i) Tt is easy to see that ¢ # ¢®. If ¢ ¢ Anngz(M), then I'(M) = K;.
Let ¢*M = 0. If there exists a € R\ Zgr(M) such that ac # ¢, then
I'(M) = Ki1. Suppose that ac = ¢ for each a € R\ Zr(M). Thus
Re=cZpr(M)Uc(R\ Zr(M)) = cZr(M) U {c}. O

A proper submodule P of M is said to be a weakly prime submodule
whenever 0 # rm € P with r € R and m € M, then either m € P or
r € Anng(M/P).

Lemma 3.9. Let M be an R-module and x € Zr(M)\Anng(M). Then
Anny () is a weakly prime submodule of M if and only if Nran(x) =
Nac() ().

Proof. =) It is enough to show that N (2) € Nran(x). Suppose
that x,y are adjacent in AG(M). Then there exists m € Anny(zy)
such that m ¢ Anny/(z) U Anny(y). So 0 # ym € Anny(z) and
m ¢ Anny(x). Since Anny(x) is a weakly prime submodule of M,
thus zyM = 0. Hence, z,y are adjacent in I'(M) and the proof is
completed.

<) Suppose that v € Zr(M)\Anng(M) and Ny (x) = Nagon) ().
We have to show that Ann,,(z) is a weakly prime submodule of M. Let
0 # ym € Anny,(z), forsomem € M andy € Rwithx #y. If zm =0
we are done; otherwise y € Zgr(M) \ Anng(M) and zym = 0. Thus
m € Anny(zy) \ Anny (z) U Anny(y). It means that z, y are adjacent
in AG(M) and so they are adjacent in I'(M). Hence, zyM = 0 and
yM C Anny(z), as desired. Now, assume that 0 # xm € Anny(x), for
some m € M. Thus 2?m = 0 and so x # 22. We show that 22M = 0.
In this case (z — 2%)m = xzm # 0, so x — 2% is a vertex of AG(M) and
let x # x — x2. Moreover x(x —x?)m = 0 thus z, z — 22 are adjacent in
AG(M) so by the hypotheses z(z —2?)M = 0. Hence, z*(1—x)M = 0.
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If 1 —x € Zr(M), then 2?2M = 0 and we are done. Otherwise, 1 —x €
Zr(M). Since (x—x*)m # 0, 1—x € Zr(M)\Anng(M). Hence, 1—z is
a vertex of AG(M); moreover Anny ()N Anny (1 —x) = 0. Therefore,
Anny(1—x) € Anny(z) and Anny(z) € Anngy(1—2z). So z, 1 —x are
are adjacent in AG(M), by Lemma 2.2(i). Thus z(1 — 2)M = 0 which
implies that (z — 2?)m = xm = 0 contrary to the assumption. O

Lemma 3.10. Let M be an R-module and x € r(Anng(M))\Anng(M).
Then Anny(x) is a prime submodule of M if and only if Npay(z) =
Nac) ().

Proof. = 1t is clear that a prime submodule of M is a weakly prime
submodule so the result follows by Lemma 3.9.

< Let x € r(Anng(M)) \ Anng(M). We show that Anny(z) is
a prime submodule of M. Assume that zm € Anny(z), for some
m € M. If xm = 0 there is nothing to prove; so suppose that xm # 0.
Thus x # x?. We show that M = 0. If 2°M # 0, then 2% €
r(Anng(M)) \ Anng(M) and so x,z? are adjacent in AG(M), see [3,
Theorem 5] and Theorem 2.4, so z,x? are adjacent in T'(M). Hence,
#3M = 0. In this case x — 22 is a vertex of AG(M) and x # = — 2°.
Moreover z,z — 2% are adjacent in AG(M) and so z(z — 2*)M = 0.
Thus 0 = 22M — 23M = 22M contrary to the assumption. Therefore,
2?M = 0, as desired. Let 0 # ym’ € Anny(z), for some m' € M
and y € R with x # y. If either xm’ = 0 or yM = 0, then there is
nothing to prove. Otherwise, zm’ # 0 and y € Zr(M) \ Anng(M).
Thus m’ € Anny(zy) \ Anny () U Anny(y). It means that x,y are
adjacent in AG(M) and so z,y are adjacent in I'(M). Hence, xyM =
0 and so yM C Anny(x) as desired. If ym’ = 0 and zyM # 0,
then m’ € Anny(y) \ Annys(z) and there exists m” € M such that
xm” € Anny(z) \ Anny(y). By Lemma 2.2(i), z,y are adjacent in
AG(M) and so are adjacent in I'(M) which is a contradiction. Hence,
xyM = 0. OJ

Corollary 3.11. Let M be an R-module. If I'(M) = AG(M), then
Anny(z) € m — Assg(M), for each x € r(Anng(M)) \ Anng(M).

4. TWO ABSORBING SUBMODULES AND THE ANNIHILATOR GRAPH

Let M be an R-module. A proper submodule N of M is called 2-
absorbing if whenever abm € N for a,b € R and m € M, then am € N
or bm € N or ab € Anng(M/N). The reader is referred to [12, 13] for
more results and examples about 2-absorbing submodules.

Theorem 4.1. Let M be an R-module. Then I'(M) = AG(M) if and
only if 0 is a 2-absorbing submodule of M.
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Proof. =) Let I'(M) = AG(M), z,y € R and m € M be such that
xym = 0. First of all assume that + = y. In this case 2?m = 0. If
xm = 0 we are done; otherwise x € Zgr(M)\ Anng(M). By Lemma 3.9,
Anny(z) is a weakly prime submodule of M. z*m = 0 and xm # 0
imply that 22M = 0. Hence, 0 is a 2-absorbing submodule of M.
Now suppose that x # y. If either xm = 0 or ym = 0, we are done.
Let xm # 0 and ym # 0. Then z,y € Zr(M) \ Anng(M) and m €
Annys(zy) \ Annys(x) U Annys(y). It means that x,y are adjacent in
AG(M) and so they are adjacent in I'(M). So zyM = 0 which implies
that 0 is a 2-absorbing submodule of M.

<) It is enough to show that an arbitrary edge of AG(M) is an
edge of T'(M). Let z,y € Zr(M) \ Anng(M) be distinct adjacent
vertices of AG(M). Then there exists m € M such that zym = 0 but
xm # 0 # ym. Hence, xyM = 0 since 0 is a 2-absorbing submodule of
M. Therefore, x and y are adjacent in I'(M). O

The following corollary is a generalization of [5, Theorem 3.6].

Corollary 4.2. Let M be an R-module. If I'(M) = AG(M), then
IMinAss(M)| < 2.

Proof. It follows easily by Theorem 4.1, [12, Theorem 2.3] and [/, The-
orem 2.4]. H

Theorem 4.3. Let N be a 2-absorbing submodule of a Noetherian R-
module M such that (N :g M) = p N q, where p and q are distinct
prime ideals of R that are minimal over N :p M. Then Assgr(M/N) is
union of two totally ordered sets.

Proof. Let N = NI ;Q; be a minimal primary decomposition of N
with 7(Anng(M/Q;)) = p;, for each 1 < i < n. Then r(N g M) =
N r(Qi :r M) = Niyp; and so pNq = N p;. Without loss of
generality we may assume that p = p; and q = p,. Suppose that
3 < k,t < nand k # t. By the definition of a minimal primary
decomposition there exist my € N, Q;\Qx and my; € M;£Q;\ Q. Thus
T(N ‘R mk) = T(ﬂ?lei ‘R mk) = ﬂ?le(Qi ‘R mk) = T’(Qk ‘R mk) =
r(Qr :r M) = pr and (N g my) = r(N,Q; :r my) = 1(Qr :g M) =
r(Qt :r M) = pi. Let p; € pi; we show that pj, C p,. By the hypotheses
we may assume that p; C p, moreover we can assume that p, ,@ PrUpos.
Suppose that a € pr and b € p; \ pr U po. So there exists s € N such
that a®my, € N,b°m; € N and b*my, ¢ N. If a®*(my + my) € N, then
a € p; and the proof is completed. Now, let a®*(my + m;) ¢ N. Then
a’b® € N :g M since b*(my + m¢) ¢ N and a®b*(my +my) € N. From
ab € p1Npy and b & p; Up, it follows that a € p;Nps. So a®*M C N and
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a*m; € N which implies that a € p;. Hence, Assgr(M/N) is union of
two totally ordered sets such as Assg(M/N) = {p = p1 }U{p2, 3, ..., Pn}
or Assp(M/N) = {q =p2} U{p1,p3, ... pu}. O

In [10, Theorem 2.5], it is shown that I'(R) = AG(R) whenever
for every edges of AG(R), x ~ y say, either Anng(z) € Ass(R) or
Anng(y) € Ass(R). Also the following question is posed: Let R be a
non-reduced ring and = ~ y be an edge of AG(R). If I'(R) = AG(R),
then is it true either Anng(z) € Ass(R) or Anng(y) € Ass(R)?

The following theorem is an affirmative answer to this question.

Theorem 4.4. Let M be a Noetherian R-module. Then the following
statements are equivalent:
(i) For each edge of AG(M), x ~ y say, Anny () € m — Assg(M)
or Anny(y) € m — Assr(M).
(ii) D(M) = AG(M).
(iii) For each x € Zr(M) \ Anng(M), Anny(z) is a weakly prime
submodule of M.

Proof. 1t is enough to prove (ii) = (i). Let x ~ y be an edge of
AG(M). Since T'(M) = AG(M) by Theorem 4.1 the zero submodule
of M is 2-absorbing. Thus r(Anng(M)) = p or r(Anng(M)) = p; Npa,
where py, po are prime ideals of R that are minimal over Anng(M). If
r(Anng(M)) = p, then by xyM = 0 it follows that xy € Anng(M) C p.
Sox € pory € p. Hence, Anny,(z) € m—Assg(M) or Anny,(y) € m—
Assr(M). Now, let r(Anng(M)) = py N py. If either = or y belongs to
r(Anng(M)), there is nothing to prove. So assume that x € p; \ p2 and
y € p2\p1. Then by using Theorem 4.3 we get either Anny(z) = @ or
Anny(y) = Q1. Without loss of generality suppose that Anny(z) =
()2. We show that the primary submodule Anny,(z) = Q9 is prime.
Let a € R, m € M \ Anny/(z) and am € Anny(x) = Q2. Then a € py
and so ax € p1py € Anng(M) which implies that aM C Anny,(z).
Therefore, Anny,(z) is a prime submodule of M. O
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