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THE ANNIHILATOR GRAPH FOR MODULES OVER
COMMUTATIVE RINGS

K. NOZARI AND SH. PAYROVI∗

Abstract. Let R be a commutative ring and M be an R-module.
The annihilator graph of M , denoted by AG(M) is a simple undi-
rected graph associated to M whose the set of vertices is ZR(M) \
AnnR(M) and two distinct vertices x and y are adjacent if and only
if AnnM (xy) ̸= AnnM (x) ∪AnnM (y). In this paper, we study the
diameter and the girth of AG(M) and we characterize all mod-
ules whose annihilator graph is complete. Furthermore, we look
for the relationship between the annihilator graph of M and its
zero-divisor graph.

1. Introduction

Let R be a commutative ring. The zero-divisor graph of R, denoted
by Γ(R) is a simple undirected graph whose vertices are the nonzero
zero-divisors of R and two distinct vertices x and y are adjacent if and
only if xy = 0, see [1, 2, 6]. The concept of the zero-divisor graph of
a ring, has been generalized for modules in many papers, see [7, 9].
Variations of the zero-divisor graph are created by changing the vertex
set, the edge condition, or both. The annihilator graph of R introduced
in [5] and studied in some literatures, see [8, 10, 14]. It is a variation
of the zero-divisor graph that changes the edge condition. This graph,
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denoted by AG(R) is a graph whose vertices are the nonzero zero-
divisors of R and two distinct vertices x and y are adjacent if and only
if AnnR(xy) ̸= AnnR(x) ∪ AnnR(y).

By relying this fact we introduce the annihilator graph for a module.
Let M be an R-module. The annihilator graph of M , denoted by
AG(M) is a simple undirected graph associated to M whose vertices
are the elements of ZR(M) \ AnnR(M) and two distinct vertices x
and y are adjacent if and only if AnnM(xy) ̸= AnnM(x) ∪ AnnM(y).
We investigate the interplay between the graph theoretic properties of
AG(M) and some algebraic properties of M .

Let G = (V (G), E(G)) be a simple undirected graph, where V (G) is
the set of vertices and E(G) is the set of edges. Let x, y ∈ V (G). We
write x ∼ y, whenever x and y are adjacent. A universal vertex is a
vertex that is adjacent to all other vertices of the graph. We say that
G is connected if there is a path between any two distinct vertices. For
vertices x and y of G, we define d(x, y) to be the length of a shortest
path between x and y (if there is no path, then d(x, y) = ∞). The
open neighborhood of a vertex x is defined to be the set N(x) = {y ∈
V (G) : d(x, y) = 1}. The diameter of G is diam(G) = sup{d(x, y) :
x and y are vertices of G}. The graph G is complete if any two distinct
vertices are adjacent and a complete graph with n vertices is denoted
by Kn. A complete bipartite graph G is a graph whose vertices can
be partitioned into two disjoint nonempty sets A and B such that two
distinct vertices are adjacent if and only if they are in distinct sets and
it is denoted by K|A|,|B|. The girth of G, denoted by gr(G) is the length
of a shortest cycle in G (gr(G) = ∞ if G contains no cycle).

Throughout this paper, R denotes a commutative ring with nonzero
identity and M is an R-module. Recall that AnnR(M) = {r ∈ R :
rM = 0}, ZR(M) = {r ∈ R : rm = 0 for some nonzero m ∈ M} and
AssR(M) = {p ∈ Spec(R) : p = AnnR(m) for some nonzero m ∈ M}.
For x ∈ R, AnnM(x) = {m ∈ M : xm = 0}. The reader is referred to
[15], for notations and terminologies not given in this paper.

2. The annihilator graph for modules

In this section we define a simple undirected graph AG(M) and we
study the relations between graph theoretic properties of AG(M) and
module theoretic properties of M .

Definition 2.1. Let M be an R-module. The annihilator graph of
M , denoted by AG(M) is a simple undirected graph associated to M
whose the set of vertices is ZR(M)\AnnR(M) and two distinct vertices
x and y are adjacent if and only if AnnM(xy) ̸= AnnM(x) ∪ AnnM(y).
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Lemma 2.2. Let M be an R-module and x, y be distinct vertices of
AG(M). Then the following statements are true:

(i) If AnnM(x) ⊈ AnnM(y) and AnnM(y) ⊈ AnnM(x), then x, y
are adjacent in AG(M).

(ii) If x, y are not adjacent in AG(M), then either AnnM(x) ⊆
AnnM(y) or AnnM(y) ⊆ AnnM(x).

(iii) If x, y are not adjacent in AG(M), then either AnnR(xM) ⊆
AnnR(yM) or AnnR(yM) ⊆ AnnR(xM).

(iv) x, y are not adjacent in AG(M) if and only if either AnnM(xy)
= AnnM(x) or AnnM(xy) = AnnM(y).

Proof. (i) Suppose that x, y are not adjacent in AG(M). Thus AnnM(x)
∪ AnnM(y) = AnnM(xy). So AnnM(xy) = AnnM(x) or AnnM(xy) =
AnnM(y). Hence, AnnM(x) ⊆ AnnM(y) or AnnM(y) ⊆ AnnM(x) which
is a contradiction.

(ii) It is contrapositive of part (i).
(iii) Suppose that x, y are not adjacent in AG(M). It follows that

either AnnM(x) ⊆ AnnM(y) or AnnM(y) ⊆ AnnM(x), by (ii). Let
AnnM(x) ⊆ AnnM(y) and r ∈ AnnR(xM). Then rxM = 0 and so
rM ⊆ AnnM(x). Hence, rM ⊆ AnnM(y) and then ryM = 0. There-
fore, r ∈ AnnR(yM). So AnnR(xM) ⊆ AnnR(yM).

(iv) It is obvious by the proof of part (i). □
Lemma 2.3. Let M be an R-module and x, y be distinct vertices of
AG(M). Let x ̸∈ r(AnnR(M)) = {x ∈ R : xt ∈ AnnR(M) for some t ∈
N} and AnnM(x) be a prime submodule of M . Then x, y are adjacent
in AG(M) if and only if AnnM(y) ⊈ AnnM(x).
Proof. Assume that AnnM(y) ⊈ AnnM(x) and m ∈ AnnM(y)\AnnM(x).
Then ym = 0 ∈ AnnM(x). Since AnnM(x) is a prime submodule of M ,
xyM = 0. So AnnM(x) ∪ AnnM(y) ̸= AnnM(xy). Conversely, suppose
that AnnM(x) ∪ AnnM(y) ̸= AnnM(xy). Thus there exists m ∈ M
such that xym = 0 but xm ̸= 0 ̸= ym. If AnnM(y) ⊆ AnnM(x), then
xm ∈ AnnM(x) and m /∈ AnnM(x) which implies that x2M = 0 and it
is a contradiction. Hence, AnnM(y) ̸⊆ AnnM(x). □
Theorem 2.4. Let M be an R-module and x, y be distinct vertices of
AG(M). Then the following statements are equivalent:

(i) x, y are adjacent in AG(M).
(ii) xM ∩ AnnM(y) ≠ 0 and yM ∩ AnnM(x) ̸= 0.
(iii) x ∈ ZR(yM) and y ∈ ZR(xM).

Proof. (i) ⇒ (ii) Let x, y be distinct vertices of AG(M). Then there
exists m ∈ M such that xym = 0 but xm ̸= 0 ̸= ym. So xM ∩
AnnM(y) ̸= 0 and yM ∩ AnnM(x) ≠ 0.
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(ii) ⇒ (i) By the hypothesis there exist m,m′ ∈ M such that xym =
xym′ = 0, xm ̸= 0 and ym′ ̸= 0. If m = m′ or ym ̸= 0 or xm′ ̸= 0,
then there is nothing to prove. Now assume that m ̸= m′, ym = 0
and xm′ = 0. Thus xy(m + m′) = 0 but x(m + m′) = xm ̸= 0 and
y(m+m′) = ym′ ̸= 0. So x, y are adjacent in AG(M).

(ii) ⇔ (iii) It is clear. □
Let M be an R-module. A submodule Q of M is said to be primary

submodule of M precisely when M/Q ̸= 0, and for each a ∈ ZR(M/Q),
there exists n ∈ N such that an(M/Q) = 0. It is well known that if
Q is primary submodule of M , then AnnR(M/Q) is a primary ideal
of R. In the following we offer a sufficient and necessary condition for
completeness of AG(M), whenever M is Noetherian. We begin with
the following lemma.
Lemma 2.5. Let M be a Noetherian R-module and let 0 = ∩n

i=1Qi

be a minimal primary decomposition of the zero submodule of M with
r(AnnR(M/Qi)) = pi, for each i = 1, · · · , n. Suppose that pj is a
minimal member of {p1, · · · , pn} = AssR(M) with respect to inclusion.
Then there exists aj ∈ R such that Qj = AnnM(aj).
Proof. Let 0 = ∩n

i=1Qi be a minimal primary decomposition of the zero
submodule of M with r(AnnR(M/Qi)) = pi, for each i = 1, · · · , n.
Suppose that pj = r(AnnR(M/Qj)) is a minimal element of AssR(M),
for some j with 1 ≤ j ≤ n. Then ∩n

i=1,i ̸=jAnnR(M/Qi) ⊈ pj. Suppose
that aj ∈ ∩n

i=1,i ̸=jAnnR(M/Qi) \ pj. We show that AnnM(aj) = Qj.
We have AnnM(aj) = (0 :M aj) = (∩n

i=1Qi :M aj) = ∩n
i=1(Qi :M

aj) = (Qj :M aj). It is clear that Qj ⊆ (Qj :M aj). If there exists
m ∈ (Qj :M aj) with m ̸∈ Qj, then atjM ⊆ Qj for some t ∈ N and so
aj ∈ pj which is a contradiction. Hence, Qj = AnnM(aj). □

Let M be an R-module. Then the zero submodule is a primary
submodule of M if and only if ZR(M) = r(AnnR(M)).
Theorem 2.6. Let M be a Noetherian R-module. Then AG(M) is a
complete graph if and only if ZR(M) = r(AnnR(M)).
Proof. ⇒ Let 0 = ∩n

j=1Qi be a minimal primary decomposition of the
zero submodule of M with r(AnnR(M/Qi)) = pi, for each i = 1, · · · , n.
Let pj be a minimal element of AssR(M), for some 1 ≤ j ≤ n. Then
by Lemma 2.5, there exists aj ∈ ∩n

i=1,i ̸=jAnnR(M/Qi) \ pj such that
Qj = AnnM(aj). Suppose that c ∈ ZR(M) \AnnR(M) and c ̸= aj. By
the hypothesis c, aj are adjacent in AG(M). So AnnM(aj)∪AnnM(c) ̸=
AnnM(ajc). Thus there exists m ∈ M such that ajcm = 0 but ajm ̸= 0.
Hence, ctM ⊆ Qj for some t ∈ N so ct ∈ AnnR(M/Qj) ⊆ pj. Therefore,
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ZR(M) = pj ∪ {aj}. Let pj ⊂ pk, for some 1 ≤ k ≤ n. Since pk ⊆
ZR(M) = pj ∪ {aj}, pk = pj ∪ {aj} which is a contradiction. Hence,
n = 1 and so 0 is a primary submodule of M . So AssR(M) = {pj} and
consequently ZR(M) = r(AnnR(M)).

⇐ Let ZR(M) = r(AnnR(M)) and let x, y ∈ ZR(M) \ AnnR(M)
be two distinct vertices of AG(M). Then AnnM(x) and AnnM(y) are
essential submodules of M by [3, Theorem 5]. So xM ∩ AnnM(y) ̸=
0 and yM ∩ AnnM(x) ̸= 0. Hence, x, y are adjacent in AG(M) by
Theorem 2.4. □

The following example has been presented to show that the property
of being Noetherian is a necessary condition in Theorem 2.6.

Example 2.7. Consider M = Zp∞ as a Z-module, where p is a prime
integer. It is easy to see that AG(M) is a complete graph but ZZ(M) =
pZ and r(AnnZ(M)) = 0.

Proposition 2.8. Let M be an R-module and x, y be distinct vertices
of AG(M). If AnnM(x) = AnnM(y), then NAG(M)(x) = NAG(M)(y).

Proof. Let z ∈ ZR(M) \ AnnR(M) and z ∈ NAG(M)(x). Then there
exists m ∈ M such that xzm = 0 but xm ̸= 0 ̸= zm. So zm ∈ AnnM(y)
and ym ̸= 0 ̸= zm. It means that y, z are adjacent in AG(M). Hence,
z ∈ NAG(M)(y). The reverse inclusion can be proved similarly. □

3. Relation between the zero-divisor graph and the
annihilator graph

Let M be an R-module. The zero-divisor graph of M , denoted by
Γ(M) is a simple undirected graph associated to M whose vertices are
the elements of ZR(M) \ AnnR(M) and two distinct vertices x and y
are adjacent if and only if xyM = 0, see [11].

Lemma 3.1. Let M be an R-module and x, y be distinct vertices of
AG(M). Then the following statements are true:

(i) If x, y are adjacent in Γ(M), then x, y are adjacent in AG(M).
In particular, if P is a path in Γ(M), then P is a path in
AG(M).

(ii) If dΓ(M)(x, y) = 3, then x, y are adjacent in AG(M).

Proof. (i) Suppose that x, y are adjacent in Γ(M). Thus xyM = 0 and
so AnnM(xy) = M ; but AnnM(x) ̸= M and AnnM(y) ̸= M . Hence,
AnnM(xy) ̸= AnnM(x) ∪ AnnM(y) and x, y are adjacent in AG(M).

(ii) Suppose that dΓ(M)(x, y) = 3. Thus xyM ̸= 0 and there exist
a, b ∈ ZR(M) \ AnnR(M) ∪ {x, y} such that axM = 0, abM = 0 and
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byM = 0. If AnnM(x) ⊆ AnnM(y), then in view of axM = 0 it follows
that aM ⊆ AnnM(x) ⊆ AnnM(y). Thus ayM = 0 which contradicts to
the hypothesis. Hence, AnnM(x) ⊈ AnnM(y). By a similar argument
one can show that AnnM(y) ⊈ AnnM(x). Therefore, x, y are adjacent
in AG(M) by Lemma 2.2(i). □

Lemma 3.2. Let M be an R-module and x, y be distinct vertices of
AG(M). If AnnM(x) and AnnM(y) are distinct prime submodules of
M , then x, y are adjacent in Γ(M) and so are adjacent in AG(M).

Proof. Assume that P1 = AnnM(x), P2 = AnnM(y) are two distinct
prime submodules of M and m ∈ P1 \ P2. Thus xm = 0 ∈ P2 which
implies that xM ⊆ P2 = AnnM(y). Hence, xyM = 0 and so x, y are
adjacent in Γ(M). The second assertion follows by Lemma 3.1(i). □

Let M be an R-module and SpecR(M) denote the set of prime
submodules of M . Then m − AssR(M) = {P ∈ SpecR(M) : P =
AnnM(a) for some 0 ̸= a ∈ R}.

Corollary 3.3. Let M be an R-module such that for every edge of
AG(M), x ∼ y say, either AnnM(x) ∈ m − AssR(M) or AnnM(y) ∈
m− AssR(M). Then Γ(M) = AG(M).

Proof. In view of Lemma 3.1(i), Γ(M) is a subgraph of AG(M). Let
x, y be distinct adjacent vertices of AG(M) and let either AnnM(x) ∈
m−AssR(M) or AnnM(y) ∈ m−AssR(M). Without loss of generality
we may assume that AnnM(x) ∈ m − AssR(M). Thus AnnM(xy) ̸=
AnnM(x) ∪ AnnM(y). Hence, there is m ∈ M such that xym = 0 but
xm ̸= 0 ̸= ym. Therefore, ym ∈ AnnM(x) and m ̸∈ AnnM(x). So
xyM = 0 since AnnM(x) is a prime submodule of M and x and y are
adjacent in Γ(M). □

Theorem 3.4. Let M be an R-module and Γ(M) be a connected graph.
Then AG(M) is a connected graph and diam(AG(M)) ⩽ 2.

Proof. Suppose that x, y are distinct non-adjacent vertices of AG(M).
Thus by Lemma 2.2(ii), either AnnM(x) ⊆ AnnM(y) or AnnM(y) ⊆
AnnM(x). Without loss of generality we may assume that AnnM(x) ⊆
AnnM(y). Thus AnnR(xM) ⊆ AnnR(yM), by Lemma 2.2(iii). Since x
is not an isolated vertex of Γ(M), thus there exists z ∈ AnnR(xM) \
AnnR(M) such that xzM = 0. So yzM = 0. Hence, x ∼ z ∼ y is a
path in Γ(M) and so is a path in AG(M). □

Theorem 3.5. Let M be a Noetherian R-module and Γ(M) be a con-
nected graph. Then gr(AG(M)) ∈ {3, 4,∞}.
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Proof. If Γ(M) = AG(M), then in view of [11, Teorem 3.3], gr(AG(M))
∈ {3, 4,∞}. Now, suppose that Γ(M) ̸= AG(M) and x, y are two
distinct adjacent vertices of AG(M) such that they are non-adjacent
in Γ(M). Since Γ(M) is a connected graph, there exist a, b ∈ ZR(M) \
AnnR(M)∪{x, y} such that axM = byM = 0. If a = b, then x ∼ a ∼ y
is a path in Γ(M) and so x ∼ a ∼ y ∼ x is a cycle in AG(M) of length
three. So we may assume that a ̸= b. If abM = 0, then x ∼ a ∼ b ∼ y
is a path in Γ(M). Thus x ∼ a ∼ b ∼ y ∼ x is a cycle in AG(M)
of length four. If abM ̸= 0, then x ∼ ab ∼ y is a path in Γ(M) and
so x ∼ ab ∼ y ∼ x is a cycle in AG(M) of length three. Therefore,
gr(AG(M)) ∈ {3, 4,∞}. □

Consider Z8 as a Z8-module. It is easy to see that gr(AG(Z8)) = 3
and gr(Γ(Z8)) = ∞.

Theorem 3.6. Let M be a Noetherian R-module and AG(M) be a
complete graph. Then c ∈ ZR(M) \ AnnR(M) is a universal vertex of
Γ(M) if and only if AnnM(c) is a prime submodule of M .

Proof. Let c ∈ ZR(M) \ AnnR(M) be a universal vertex of Γ(M). We
show that AnnM(c) is a prime submodule of M . Assume that x ∈
R,m ∈ M \ AnnM(c) and xm ∈ AnnM(c). By [11, Theorem 2.1],
ZR(M) = AnnR(cM) and x ∈ ZR(M) thus xM ⊆ AnnM(c) as desired.
Hence, AnnM(c) is a prime submodule of M .

Suppose that c ∈ ZR(M) \ AnnR(M) and AnnM(c) is a prime sub-
module of M . We show that c is a universal vertex of Γ(M). Let
x ∈ ZR(M) \AnnR(M) be a vertex of Γ(M) and x ̸= c. In view of the
assumption AG(M) is a complete graph so there exists m ∈ AnnM(cx)
such that xm ̸= 0 ̸= cm. Thus xm ∈ AnnM(c) and cm ̸= 0. Hence,
xcM = 0 and so c, x are adjacent in Γ(M). □
Corollary 3.7. Let M be a Noetherian R-module and AG(M) be a
complete graph with |ZR(M)\AnnR(M)| ⩾ 3. If Γ(M) is a star graph,
then |m− AssR(M)| = 1.

Proof. Let ZR(M) \ AnnR(M) = {a, b, c, · · · } and let Γ(M) be a star
graph. If P1 = AnnM(a) and P2 = AnnM(b) are prime submodules of
M , then by Theorem 3.6, a and b are universal vertices of Γ(M) which
is a contradiction. Thus |m − AssR(M)| ≤ 1. Since M is Noetherian,
|m− AssR(M)| ≥ 1. □

Consider Z8 as a Z-module. It is easy to check that AG(Z8) is a
complete graph and m − AssZ(Z8) = {2Z} but Γ(Z8) is not a star
graph. Note that 4 is a universal vertex of Γ(Z8). Also, 2 ∼ 12 in
Γ(Z8).
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Theorem 3.8. Let M be an R-module and Γ(M) be a star graph with
the universal vertex c. Then the following statements are true:

(i) If c /∈ r(AnnR(M)), then Γ(M) = K1.
(ii) If c ∈ r(AnnR(M)), then Γ(M) = K1,1 or Rc = cZR(M) ∪ {c}.

Proof. (i) In [11, Theorem 2.1], it has been proved that ZR(M) =
AnnR(cM) ∪ {c} and c = c2. If there exists a ∈ R \ ZR(M) such that
ac ̸= c, then ac and x are adjacent for all x ∈ ZR(M) \ AnnR(M)
which is a contradiction. So ac = c and Γ(M) = K1. Let ac = c, for all
a ∈ R\ZR(M). Then Rc = cZR(M)∪c(R\ZR(M)) = cZR(M)∪{c} =
cAnnR(cM)∪{c}. In this case we have R = Z2⊕R′ and M = ⊕Z2⊕M ′,
where R′ is a subring of R and M ′ is an R-submodule of M . Moreover
c = (1, 0) and AnnR(cM) = 0 × R′, see [11, Theorem 2.2]. Thus
cAnnR(cM) = c(0×R′) = {(0, 0)}. Hence, Rc = {(0, 0), c = (1, 0)}.

(ii) It is easy to see that c ̸= c2. If c2 /∈ AnnR(M), then Γ(M) = K1.
Let c2M = 0. If there exists a ∈ R \ ZR(M) such that ac ̸= c, then
Γ(M) = K1,1. Suppose that ac = c for each a ∈ R \ ZR(M). Thus
Rc = cZR(M) ∪ c(R \ ZR(M)) = cZR(M) ∪ {c}. □

A proper submodule P of M is said to be a weakly prime submodule
whenever 0 ̸= rm ∈ P with r ∈ R and m ∈ M , then either m ∈ P or
r ∈ AnnR(M/P ).
Lemma 3.9. Let M be an R-module and x ∈ ZR(M)\AnnR(M). Then
AnnM(x) is a weakly prime submodule of M if and only if NΓ(M)(x) =
NAG(M)(x).
Proof. ⇒) It is enough to show that NAG(M)(x) ⊆ NΓ(M)(x). Suppose
that x, y are adjacent in AG(M). Then there exists m ∈ AnnM(xy)
such that m ̸∈ AnnM(x) ∪ AnnM(y). So 0 ̸= ym ∈ AnnM(x) and
m ̸∈ AnnM(x). Since AnnM(x) is a weakly prime submodule of M ,
thus xyM = 0. Hence, x, y are adjacent in Γ(M) and the proof is
completed.

⇐) Suppose that x ∈ ZR(M)\AnnR(M) and NΓ(M)(x) = NAG(M)(x).
We have to show that AnnM(x) is a weakly prime submodule of M . Let
0 ̸= ym ∈ AnnM(x), for some m ∈ M and y ∈ R with x ̸= y. If xm = 0
we are done; otherwise y ∈ ZR(M) \ AnnR(M) and xym = 0. Thus
m ∈ AnnM(xy) \AnnM(x)∪AnnM(y). It means that x, y are adjacent
in AG(M) and so they are adjacent in Γ(M). Hence, xyM = 0 and
yM ⊆ AnnM(x), as desired. Now, assume that 0 ̸= xm ∈ AnnM(x), for
some m ∈ M . Thus x2m = 0 and so x ̸= x2. We show that x2M = 0.
In this case (x− x2)m = xm ̸= 0, so x− x2 is a vertex of AG(M) and
let x ̸= x−x2. Moreover x(x−x2)m = 0 thus x, x−x2 are adjacent in
AG(M) so by the hypotheses x(x−x2)M = 0. Hence, x2(1−x)M = 0.
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If 1− x ̸∈ ZR(M), then x2M = 0 and we are done. Otherwise, 1− x ∈
ZR(M). Since (x−x2)m ̸= 0, 1−x ∈ ZR(M)\AnnR(M). Hence, 1−x is
a vertex of AG(M); moreover AnnM(x)∩AnnM(1−x) = 0. Therefore,
AnnM(1−x) ̸⊆ AnnM(x) and AnnM(x) ̸⊆ AnnM(1−x). So x, 1−x are
are adjacent in AG(M), by Lemma 2.2(i). Thus x(1− x)M = 0 which
implies that (x− x2)m = xm = 0 contrary to the assumption. □
Lemma 3.10. Let M be an R-module and x ∈ r(AnnR(M))\AnnR(M).
Then AnnM(x) is a prime submodule of M if and only if NΓ(M)(x) =
NAG(M)(x).
Proof. ⇒ It is clear that a prime submodule of M is a weakly prime
submodule so the result follows by Lemma 3.9.

⇐ Let x ∈ r(AnnR(M)) \ AnnR(M). We show that AnnM(x) is
a prime submodule of M . Assume that xm ∈ AnnM(x), for some
m ∈ M . If xm = 0 there is nothing to prove; so suppose that xm ̸= 0.
Thus x ̸= x2. We show that x2M = 0. If x2M ̸= 0, then x2 ∈
r(AnnR(M)) \ AnnR(M) and so x, x2 are adjacent in AG(M), see [3,
Theorem 5] and Theorem 2.4, so x, x2 are adjacent in Γ(M). Hence,
x3M = 0. In this case x − x2 is a vertex of AG(M) and x ̸= x − x2.
Moreover x, x − x2 are adjacent in AG(M) and so x(x − x2)M = 0.
Thus 0 = x2M − x3M = x2M contrary to the assumption. Therefore,
x2M = 0, as desired. Let 0 ̸= ym′ ∈ AnnM(x), for some m′ ∈ M
and y ∈ R with x ̸= y. If either xm′ = 0 or yM = 0, then there is
nothing to prove. Otherwise, xm′ ̸= 0 and y ∈ ZR(M) \ AnnR(M).
Thus m′ ∈ AnnM(xy) \ AnnM(x) ∪ AnnM(y). It means that x, y are
adjacent in AG(M) and so x, y are adjacent in Γ(M). Hence, xyM =
0 and so yM ⊆ AnnM(x) as desired. If ym′ = 0 and xyM ̸= 0,
then m′ ∈ AnnM(y) \ AnnM(x) and there exists m′′ ∈ M such that
xm′′ ∈ AnnM(x) \ AnnM(y). By Lemma 2.2(i), x, y are adjacent in
AG(M) and so are adjacent in Γ(M) which is a contradiction. Hence,
xyM = 0. □
Corollary 3.11. Let M be an R-module. If Γ(M) = AG(M), then
AnnM(x) ∈ m− AssR(M), for each x ∈ r(AnnR(M)) \ AnnR(M).

4. Two absorbing submodules and the annihilator graph

Let M be an R-module. A proper submodule N of M is called 2-
absorbing if whenever abm ∈ N for a, b ∈ R and m ∈ M , then am ∈ N
or bm ∈ N or ab ∈ AnnR(M/N). The reader is referred to [12, 13] for
more results and examples about 2-absorbing submodules.
Theorem 4.1. Let M be an R-module. Then Γ(M) = AG(M) if and
only if 0 is a 2-absorbing submodule of M .
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Proof. ⇒) Let Γ(M) = AG(M), x, y ∈ R and m ∈ M be such that
xym = 0. First of all assume that x = y. In this case x2m = 0. If
xm = 0 we are done; otherwise x ∈ ZR(M)\AnnR(M). By Lemma 3.9,
AnnM(x) is a weakly prime submodule of M . x2m = 0 and xm ̸= 0
imply that x2M = 0. Hence, 0 is a 2-absorbing submodule of M .
Now suppose that x ̸= y. If either xm = 0 or ym = 0, we are done.
Let xm ̸= 0 and ym ̸= 0. Then x, y ∈ ZR(M) \ AnnR(M) and m ∈
AnnM(xy) \ AnnM(x) ∪ AnnM(y). It means that x, y are adjacent in
AG(M) and so they are adjacent in Γ(M). So xyM = 0 which implies
that 0 is a 2-absorbing submodule of M .

⇐) It is enough to show that an arbitrary edge of AG(M) is an
edge of Γ(M). Let x, y ∈ ZR(M) \ AnnR(M) be distinct adjacent
vertices of AG(M). Then there exists m ∈ M such that xym = 0 but
xm ̸= 0 ̸= ym. Hence, xyM = 0 since 0 is a 2-absorbing submodule of
M . Therefore, x and y are adjacent in Γ(M). □

The following corollary is a generalization of [5, Theorem 3.6].

Corollary 4.2. Let M be an R-module. If Γ(M) = AG(M), then
|MinAss(M)| ≤ 2.

Proof. It follows easily by Theorem 4.1, [12, Theorem 2.3] and [4, The-
orem 2.4]. □

Theorem 4.3. Let N be a 2-absorbing submodule of a Noetherian R-
module M such that r(N :R M) = p ∩ q, where p and q are distinct
prime ideals of R that are minimal over N :R M . Then AssR(M/N) is
union of two totally ordered sets.

Proof. Let N = ∩n
i=1Qi be a minimal primary decomposition of N

with r(AnnR(M/Qi)) = pi, for each 1 ⩽ i ⩽ n. Then r(N :R M) =
∩n

i=1r(Qi :R M) = ∩n
i=1pi and so p ∩ q = ∩n

i=1pi. Without loss of
generality we may assume that p = p1 and q = p2. Suppose that
3 ⩽ k, t ⩽ n and k ̸= t. By the definition of a minimal primary
decomposition there exist mk ∈ ∩i ̸=kQi\Qk and mt ∈ ∩i ̸=tQi\Qt. Thus
r(N :R mk) = r(∩n

i=1Qi :R mk) = ∩n
i=1r(Qi :R mk) = r(Qk :R mk) =

r(Qk :R M) = pk and r(N :R mt) = r(∩n
i=1Qi :R mt) = r(Qt :R mt) =

r(Qt :R M) = pt. Let pt ⊈ pk; we show that pk ⊆ pt. By the hypotheses
we may assume that p1 ⊆ pk moreover we can assume that pt ⊈ pk∪p2.
Suppose that a ∈ pk and b ∈ pt \ pk ∪ p2. So there exists s ∈ N such
that asmk ∈ N, bsmt ∈ N and bsmk /∈ N . If as(mk + mt) ∈ N , then
a ∈ pt and the proof is completed. Now, let as(mk +mt) /∈ N . Then
asbs ∈ N :R M since bs(mk +mt) /∈ N and asbs(mk +mt) ∈ N . From
ab ∈ p1∩p2 and b /∈ p1∪p2 it follows that a ∈ p1∩p2. So asM ⊆ N and
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asmt ∈ N which implies that a ∈ pt. Hence, AssR(M/N) is union of
two totally ordered sets such as AssR(M/N) = {p = p1}∪{p2, p3, ..., pn}
or AssR(M/N) = {q = p2} ∪ {p1, p3, ..., pn}. □

In [10, Theorem 2.5], it is shown that Γ(R) = AG(R) whenever
for every edges of AG(R), x ∼ y say, either AnnR(x) ∈ Ass(R) or
AnnR(y) ∈ Ass(R). Also the following question is posed: Let R be a
non-reduced ring and x ∼ y be an edge of AG(R). If Γ(R) = AG(R),
then is it true either AnnR(x) ∈ Ass(R) or AnnR(y) ∈ Ass(R)?

The following theorem is an affirmative answer to this question.
Theorem 4.4. Let M be a Noetherian R-module. Then the following
statements are equivalent:

(i) For each edge of AG(M), x ∼ y say, AnnM(x) ∈ m−AssR(M)
or AnnM(y) ∈ m− AssR(M).

(ii) Γ(M) = AG(M).
(iii) For each x ∈ ZR(M) \ AnnR(M), AnnM(x) is a weakly prime

submodule of M .
Proof. It is enough to prove (ii) ⇒ (i). Let x ∼ y be an edge of
AG(M). Since Γ(M) = AG(M) by Theorem 4.1 the zero submodule
of M is 2-absorbing. Thus r(AnnR(M)) = p or r(AnnR(M)) = p1∩ p2,
where p1, p2 are prime ideals of R that are minimal over AnnR(M). If
r(AnnR(M)) = p, then by xyM = 0 it follows that xy ∈ AnnR(M) ⊆ p.
So x ∈ p or y ∈ p. Hence, AnnM(x) ∈ m−AssR(M) or AnnM(y) ∈ m−
AssR(M). Now, let r(AnnR(M)) = p1 ∩ p2. If either x or y belongs to
r(AnnR(M)), there is nothing to prove. So assume that x ∈ p1 \p2 and
y ∈ p2\p1. Then by using Theorem 4.3 we get either AnnM(x) = Q2 or
AnnM(y) = Q1. Without loss of generality suppose that AnnM(x) =
Q2. We show that the primary submodule AnnM(x) = Q2 is prime.
Let a ∈ R, m ∈ M \ AnnM(x) and am ∈ AnnM(x) = Q2. Then a ∈ p2
and so ax ∈ p1p2 ⊆ AnnR(M) which implies that aM ⊆ AnnM(x).
Therefore, AnnM(x) is a prime submodule of M . □
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جابجایی حلقه های روی مدول ها برای پوچساز گراف

پیروی ٢شیرویه و نوذری ١کتایون

ایران قزوین، خمینی، امام المللی بین دانشگاه پایه، علوم دانشکده ریاضی، ١,٢گروه

نشان AG(M) نماد با M پوچساز گراف باشد. R-مدول یک M و جابجایی حلقه یک R کنید فرض
و است ZR(M) \ AnnR(M) آن رئوس مجموعه که است غیرجهت دار و ساده گرافی و می شود داده
و قطر مقاله، این در .AnnM(xy) ̸= AnnM(x)∪AnnM(y) هرگاه مجاورند آن از y و x راس دو
مشخص را است کامل آنها پوچساز گراف که مدول هایی همه و می کنیم محاسبه را AG(M) گراف کمر

می آوریم. بدست را آن صفر علیه مقسوم گراف و M پوچساز گراف بین رابطه علاوه برآن، می کنیم.

اول. زیرمدول های صفر، علیه مقسوم گراف پوچساز، گراف کلیدی: کلمات
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