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DEFICIENCY ZERO GROUPS IN WHICH PRIME
POWER OF GENERATORS ARE CENTRAL

M. AHMADPOUR AND H. ABDOLZADEH*

ABSTRACT. The infinite family of groups defined by the presenta-
tion Gp = (z,ylz? = yP, xyz™y” = 1), in which p is a prime in
{2,3,5} and m,n € Ny, will be considered and finite and infinite
groups in the family will be determined. For the primes p = 2,3
the group G, is finite and for p = 5, the group is finite if and only
ifm=n=1 (mod 5) is not the case.

1. INTRODUCTION

Deficiency zero groups are those, presented by an equal number of
generators and relations, that is a finitely presented group G = (X | R)
in which X is the set of generators of G and R is the set of relations,
is called deficiency zero if | X |=| R |. Finite deficiency zero groups
are of much interest in group theory, see for example [1, 3, 5]. For a
general introduction to group presentations and deficiency zero groups
see [1].

In this article we consider the groups G, = (z,y|z? = y?, zya™y" =
1), of zero deficiency, where m,n € Ny and p = 2,3 and 5. In some
states, we use the modified Todd-Coxeter coset enumeration algorithm
in the form given in [2]. Also we use the Tietz transformations (see [1]),
to find out that the group G, is finite or infinite. Using GAP ([0]), we
checked finiteness of G, with small m and n by examining its quotients
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and subgroups and then tried to generalize the results. The notations
we use here are standard.

2. PRELIMINARIES

Let p be a prime number and let m,n be non-negative integers.
Let G, be the group defined by the presentation G, = (z,y|2? =
yP, xyxz™y™ = 1). The easiest case to think about is the case that the
prime p divides one of m or n. In that case the second relation of G,
simplifies to # = y" in which r is an integer, therefore the group G, is
generated by y. The following lemma shows the detail.

Lemma 2.1. Let p be a prime number. If m = 0 (mod p) orn =0
(mod p) then the group G, is a finite cyclic group of order p(m—+n+2).

Proof. By the first relation of G,, the elements 2P and y” are cen-
tral in G,. Let m = kp. By the second relation of G, it follows
that zyz™y" = zyx*Py” = xyy*?*™ = xy™™+tl = 1. Therefore the
relation z = y~(Mm*"+1) holds in G,. Using this relation to remove
the generator x by a Tietz transformation, we get the presentation
Gp = (ylly™ 1P = y#) = (yly?"" ™) = 1) for the group G,.
Hence G, is cyclic with |G,| = p(m+n+2). A similar argument works
if n =0 (mod p). O]

Lemma 2.2. Let p > 3 be a prime number. If m = 1 (mod p) and
n = r (mod p) with 1 < r < p then the group G, is a finite abelian
group of order p(m +n+ 2).

Proof. Let m = pky + 1 and n = pks + r. By the second relation of
G, we have 1 = zyz™y" = xyxy?*™ where k = k; + ky. Therefore
zyzy" (= y~P*) is a central element of G,, that is xyxy” = zy"zy.
Hence zy" ™! = y"~1z. Consequently y"~! commutes with z and hence
is a central element of G,. As y*,y"! € Z(G,) and ged(p,r — 1) =1
we see that [y,z] = 1. Therefore G, is abelian. Now it is easy to see
that | G, |= p(m +n + 2). O

Lemma 2.3. Let p > 3 be a prime number. Ifm =p—1 (mod p) then
the subgroup H = (y) of the group G, has a presentation of the form
H={a|R;i=1,---,p) where the relation R; is a?+(=1)"""(mFn+1)) —
1fori=1,---,p—1 and R, is a™ "1 =1,

Proof. By the first relation of G = @), the elements z” and y” are
central elements in G. Hence the second relation of G could be writ-
ten in the form zyxz~'y™t"t! = 1, that is ayz~! = y~ D A p
power of the latter relation gives us the relation y?™"+2) = 1. Con-
sider the subgroup H = (a = y) of the group G = G, = (z,y|z* =



DEFICIENCY ZERO GROUPS 37

yP, ryxr~ty™mTl = 1), We find a presentation for the subgroup H.

The subgroup relation table gives us the bonus 1.y = a.1 and by defin-
ing 1.z = 2, the first row of the table of the second relation of G
deduces 2.y = a~(™+t"*+D 2 Now for i = 2,--- ,p — 1 define .z =i + 1
and the i-th row of the table of the second relation of G' completes
to deduce the bonus (i + 1).y = a(=V(m++1" (5 4 1), Now the first
row of the table of the relation 2Py~ = 1 completes and we deduce
p.x = aP.1. All the tables are now complete and we have the presen-
tation H = (a | R;,i = 1,---,p) for the subgroup H in which the
relations R;, i =1,--- ,p—1is a?M+ED"Hm4n41)Y) — 1 and correspond
to the rows 2,---,p of the table of the relation 2Py~ = 1 and the
relation R, is a™ )"+ = 1 and corresponds to the last row of the
table of the second relation of G,,. 0

Lemma 2.4. Let p > 5 be a prime number and let m = p—1 (mod p).
Then the following hold

(i) If n = r (mod p) with 2 < r < p — 1 then the group G, is a
finite group of order p(m +n+ 2).

(ii) If n = p — 1 (mod p) then the group G, is a finite group of
order p*(m +mn + 2).

Proof. By the previous lemma, the index of the subgroup H in G, is p
and the order of H is

h=ged((p(1+ (=) (m+n-+1)),i=1,---,p=1), (m+n+1)P+1).

On the other hand if n = r (mod p) with 2 < r < p—1 then the number
(m 4+ mn+ 1) 4+ 1 is not divisible by p and therefore the number h is
(m+n+2)and if n =p—1 (mod p) then the number (m+n+1)?+1
is divisible by p and therefore the number A is p(m + n + 2). O

Lemma 2.5. Let p > 5 be a prime number and let m =1 (mod p). If
n =1 (mod p) then the group G, is an infinite group.

Proof. Consider the quotient group H = (x,y|zP = yP, zyz™y" =
1, 27 = 1) of the group G,. As m,n =1 (mod p), the second relation
of the group H is (zy)*> = 1. Hence H = (z,yla? = y? =1, (xy)* =1)
is isomorphic to the triangle group D(2,p,p). As p > 5 the group
D(2,p,p) is an infinite group and hence G, is infinite. O

3. MAIN RESULTS

For the prime p = 2, using Lemma 2.1, the only case which remains
to consider is the case where m,n are both odd numbers.
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Lemma 3.1. Let m and n are odd numbers. Then the group G is a
finite group of order 4(m +n + 2).

Proof. Similar to the argument in the proof of Lemma 2.3, the sub-
group H = (y) is of index 2 in G5 and has the presentation H = (a |
a2t — ] g =4 — 1) As 2(m + n + 2) divides (m + n)? — 4,
H is cyclic of order 2(m + n + 2) and hence the order of Gy is |Go| =
2|H| = 4(m + n + 2) where m and n are both odd numbers. O

The next theorem shows that the group G, is finite for p = 2 and
m,n € Ny.

Theorem 3.2. Let m,n € Ny and p = 2. Then the group
Gp = (v, yla? =y, wya™y" = 1)
s a finite group.
Proof. The result follows from Lemmas 2.1 and 3.1. 0J

We continue with the case p = 3. We need the following lemmas to
complete the case p = 3.

Lemma 3.3. Let m =1 (mod 3), then the followings hold
(i) If n =1 (mod 3), then the group G5 is a finite group of order
24(m +n +2).
(ii) If n = 2 (mod 3), then the group Gs is a finite group of order
3(m+n+2).

Proof.

(i) Let m = 3k; + 1 and n = 3ks + 1. By the second relation of Gj it
follows that zya™y" = xyx31+1y3*2+1 = 1 and therefore the following
relation holds in G

(zy)?y™ =1
where k = k; + ky. Consider the subgroup N = (a = x) of the group

Gz = (z,y | 2%y72 = 1,(zy)*y* = 1). We use the modified Todd-
Coxeter coset enumeration algorithm to find a presentation for N. By

the table of the generator a we obtain 1-x = a-1. Defining 1.y = 2 and

2.y = 3 completes the first row of the table of the relation z3y=3 = 1

to deduce 3.y = a® - 1. Now the first row of the table of the second

relation of G5 also completes to get 2.2 = a=2=*. 3. Also by defining

3.x = 4 the second row of the table of the first relation of G5 completes

and we deduce that 4.2 = a®*7 . 2. Now the third row of the table of

the second relation of G5 completes and we find 4.y = a=%%~7.4. All

the tables are complete and we obtain the following presentation for N

N ] <a|a18k‘+24 — 1>

?
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On the other hand we have |G3 : N| = 4. Hence |G3| = 4(18k + 24) =
24(m +n + 2).
(ii) Lemma 2.2. O

Lemma 3.4. Let m =2 (mod 3) and n =2 (mod 3). Then the group
Gs is a finite group of order 9(m + n + 2).

Proof. By Lemma 2.3 the subgroup H of the group G3 has the pre-
sentation H — <a|a3(m+n+2) — ¢30=(m+n+1)?) _ ,(mtn+1)3+1 _ 1) which
simplifies to H = {(a|a®™+"*2) = 1), as the numbers (m +n + 1) + 1
and 3(1 — (m + n + 1)?) are divisible by 3(m +n + 2). Therefore the
group Gj is a finite group of order 9(m + n + 2) in this case. O

Theorem 3.5. Let m,n € Ny and let p = 3. Then the group
Gp = (2,ylz" =y, aya™y" = 1),
s a finite group.
Proof. The result follows from Lemmas 2.1, 3.3 and 3.4. 0

Lemma 3.6. Let m =2 (mod 5). Then the followings hold
(i) If n =2 (mod 5), then the group G5 is a finite group of order
55(m +n +2).
(ii) If n =3 (mod b5), then the group Gs is a finite group of order
55(m +n + 2).
(iii) If n =4 (mod 5), then the group G5 is a finite group of order
5(m+n+2).

Proof.

(i) Let 5 divides both m —2 and n —2. The second relation of the group
G5 is in the form 1 = zya?y?a™ ™™ * as 2™ 2 and y" 2 are central el-
ements of G5. Therefore the element xyz?y? is also a central element
of G5. Hence the relation zyz?y? = 2?y?xy holds in the group G5 and
thus (yx)(zy) = (xy)(yx), or equivalently xy commutes with yz. In
other words the relation xy?zy 'z=2y~! = 1 holds in G5. Therefore
we have G5 = (z,y|z®y™> = 1, zyz?y?a™ ™4 = 1, ay?ey 272y~ = 1)
and we call the relations of G5 in this order, that is the first rela-
tion is 2°y~® = 1, the second is zyz?y?z™ " * = 1 and the third is
xyley ta 2y = 1.

We find a presentation for the subgroup N = (a = z) of the group
Gs. Let k = m +n — 4. The subgroup table gives us 1.z = a.1. Define
ity =1+ 1for i =1,---,4 and the first row of the table of the first
relation of G5 completes to obtain 5.y = a’.1. Now by defining 2.2 = 6
the first rows of the tables of the second and the third relations complete

and we get 6.2 = a ¥4 and 3.2 = ¢ *".5 respectively. Defining
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4.x =7 and then 7.x = 8 completes the second row of the table of the
first relation of G5, the 4 — th and the 7 — th rows of the table of the
second relation and we obtain 8.2 = a**11.2, 7.y = a7 2*711.7 and 8.y =
a***28 6 respectively. Finally defining 5.2 = 9, 9.2 = 10 and 6.y = 11
complete all the tables and we deduce 10.z = a**1°.11 from the third
row of the table of the first relation. Also by the second, 6 — th and
9—th rows of the table of the third relation we obtain 11.y = a=3%=19.9,
11.7 = a%.3 and 9.y = a=2*712.10 respectively. From the 6 — th row of
the table of the second relation we deduce 10.y = a~*22.8 and now
all the entries of the monitor table are complete. Therefore the index
of N in G5 is 11 and we have the following presentation for N

N = <& ’ a5(k+6) _ 1>’

that is N is a cyclic subgroup with order | N |= 5(m + n + 2) and
therefore | G5 |= 55(m + n + 2) in this case.

(ii) Similar to the previous case the second relation of Gj could be
written in the form 1 = aya?y32z™ ™5 as 2™ 2 and y" 2 are cen-
tral elements of G5. Therefore the element xyxz?y® is also a central
element of G5. Hence zyz?y® = 2%y3zy in the group G5 and thus
(yx)(zy?) = (2y?)(yx), or equivalently zy? commutes with yx. In
other words the relation xy3zy—2272y~! = 1 holds in G5. Therefore
we have G5 = (z,y|2®y ™ = 1, zyz?y>z™ ™5 = 1, xPry 22 2y~ = 1)
and we call the relations of G5 in this order, that is the first rela-
tion is 2°y~® = 1, the second is xyz?y>z™* "> = 1 and the third is
vyley a7y = 1.

We find again a presentation for the subgroup N = (b = x) of the
group G5 and show that its index is 11. Let d = m +n — 5. The
subgroup table gives us 1.x = b.1. Define i.y =i+ 1fori=1,---,4
and the first row of the table of the first relation of G5 completes to
obtain 5.y = b°.1. Now by defining 2.z = 6 the first rows of the tables of
the second and the third relations complete and we got 6.2 = b=476.3
and 4.0 = b~%"7.5 respectively. Defining 3.2 = 7 and then 7.2 = 8
completes the second row of the table of the first relation of G5 and
we obtain 8.2z = b4+ 2. Now define 7.y = 9 to completing the third
row of the table of the second relation to get the bonus 9.2 = b?.4 and
define 6.y = 10 to complete and get the bonus 10.z = b=4=7.9 from
the second row of that table. Finally defining 5.x = 11 completes all
the tables and we deduce 11.z = b?**17.10 from the 5 — th row of the
table of the first relation. Also by the 8 — th and 11 — th rows of the
table of the third relation we obtain 8.y = b%8.8 and 10.y = b=48.11
respectively. From the 5 —th and 6 —th rows of the table of the second

relation we deduce 11.y = b=29711.7 and 9.y = 3246 respectively.
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Now all the entries of the monitor table are complete. Therefore the
index of NV in G5 is 11 and we have the presentation

N = <b ‘ b5(d+7)>,

that is N is a cyclic subgroup with order | N |= 5(m + n + 2) and
therefore | G5 |= 55(m + n + 2) in this case.
(iii) Lemma 2.4. O

Lemma 3.7. Let m =3 (mod 5). Then the followings hold

(i) If n = 3 (mod b), then the group G is a finite group of order
55(m +n + 2).

(ii) If n =4 (mod b5), then the group Gs is a finite group of order
5(m+n+2).

Proof.

(i) Let 5 divides both m — 3 and n — 3. The second relation of the
group G5 is in the form 1 = zyz3y32™ +n — 6 as 2™ 3 and 33
are central elements of G5. Therefore the element xyx3y® is also a
central element of G5. Hence the relation zyz®y® = 2*y3xy holds in
the group G5 and thus (yz)(z%y*) = (2%y?)(yz), or equivalently z?y?

commutes with yz. In other words the relation z2y2zy 223y~ =1

holds in G5. Therefore we have G5 = (x,y|2°y™> = 1, zyx3y3z™ ™0 =
1, 2%y 22 3y~! = 1) and we call the relations of G5 in this order,
that is the first relation is 2°y~=® = 1, the second is xyx3y3z™+ "6 =1
and the third is 2%y3zy 223y~ ! = 1.

Suppose a = yz, b = 2%y?, ¢ = 2°, u = 2y and w = 23y®. Consider
the subgroup N = (a, b, ¢, u, w) of the group G5. We find a presentation
for N. Defining 1.y = 2 completes the table of the generator a and gives
us the bonus 2.z = a.1 and defining 1.2 = 3 completes the table of u
with bonus 3.y = u.1. By defining 3.2 = 4 the table of b completes
with the result 4.y = bu~'.3 and finally by defining 4.2 = 5 all the
tables became complete and from the table of the generator ¢ we get
5.2 = ca 1.2 and from the table of w we conclude 5.y = wb~'.4 and
from the first row of the table of the first relation of G5 we deduce
2.y = cw™L.5. Now the relations of N are as follows, from the rows of
the table of the first relation we get the relations [c, a] = [c,u] = [¢,b] =
[c,w] = 1, that is the generator ¢ is central in N. From the table of the
third relation of G5 we deduce the relations [b,a] = auw™'a 'u"lw =
[w,u] = a'u"tbaub™! = [b,w] = 1 and from the table of the second
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relation the following relations for N,
Ry : uwc® =1,
Ry : a®bc® =1,
Ry :buta tu "2 =1,
Ryt wb™ 22 =1,

Ry :atw tuw 1t =1,

where k = (m+n—6)/5. It is easy to show that N is abelian and after
some straightforward calculations we get the following presentation for
N

N 2 (a,c|[a,d] = 1,a" ™2 = 1,58 = 1).

The subgroup N is cyclic if and only if ged(11,4k + 2) = 1 and the
order of N is |[N| = 11(5k + 8). As the index of N in G5 is 5, we see
that G is finite with order |G5| = 55(5k + 8) = 55(m +n + 2).

(ii) Lemma 2.3. O

Lemma 3.8. Let m =4 (mod 5) andn =4 (mod 5). Then the group
G is a finite group of order 25(m + n + 2).

Proof. Lemma 2.4. OJ
Theorem 3.9. Let m,n € Ny and p = 5. Then the group
Gy = (@, yla” =y, zya™y" = 1),

is a finite group except in the case that m = 1 (mod 5) and n = 1
(mod 5).

Proof. The result follows from Lemmas 2.1, 2.2, 2.5, 3.6, 3.7 and 3.8.
O
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