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DEFICIENCY ZERO GROUPS IN WHICH PRIME
POWER OF GENERATORS ARE CENTRAL

M. AHMADPOUR AND H. ABDOLZADEH∗

Abstract. The infinite family of groups defined by the presenta-
tion Gp = ⟨x, y|xp = yp, xyxmyn = 1⟩, in which p is a prime in
{2, 3, 5} and m,n ∈ N0, will be considered and finite and infinite
groups in the family will be determined. For the primes p = 2, 3
the group Gp is finite and for p = 5, the group is finite if and only
if m ≡ n ≡ 1 (mod 5) is not the case.

1. Introduction

Deficiency zero groups are those, presented by an equal number of
generators and relations, that is a finitely presented group G = ⟨X | R⟩
in which X is the set of generators of G and R is the set of relations,
is called deficiency zero if | X |=| R |. Finite deficiency zero groups
are of much interest in group theory, see for example [1, 3, 5]. For a
general introduction to group presentations and deficiency zero groups
see [4].

In this article we consider the groups Gp = ⟨x, y|xp = yp, xyxmyn =
1⟩, of zero deficiency, where m,n ∈ N0 and p = 2, 3 and 5. In some
states, we use the modified Todd-Coxeter coset enumeration algorithm
in the form given in [2]. Also we use the Tietz transformations (see [4]),
to find out that the group Gp is finite or infinite. Using GAP ([6]), we
checked finiteness of Gp with small m and n by examining its quotients
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and subgroups and then tried to generalize the results. The notations
we use here are standard.

2. Preliminaries

Let p be a prime number and let m,n be non-negative integers.
Let Gp be the group defined by the presentation Gp = ⟨x, y|xp =
yp, xyxmyn = 1⟩. The easiest case to think about is the case that the
prime p divides one of m or n. In that case the second relation of Gp

simplifies to x = yr in which r is an integer, therefore the group Gp is
generated by y. The following lemma shows the detail.
Lemma 2.1. Let p be a prime number. If m ≡ 0 (mod p) or n ≡ 0
(mod p) then the group Gp is a finite cyclic group of order p(m+n+2).
Proof. By the first relation of Gp, the elements xp and yp are cen-
tral in Gp. Let m = kp. By the second relation of Gp it follows
that xyxmyn = xyxkpyn = xyykp+n = xym+n+1 = 1. Therefore the
relation x = y−(m+n+1) holds in Gp. Using this relation to remove
the generator x by a Tietz transformation, we get the presentation
Gp = ⟨y|(y−m−n−1)p = yp⟩ = ⟨y|yp(m+n+2) = 1⟩ for the group Gp.
Hence Gp is cyclic with |Gp| = p(m+n+2). A similar argument works
if n ≡ 0 (mod p). □
Lemma 2.2. Let p ≥ 3 be a prime number. If m ≡ 1 (mod p) and
n ≡ r (mod p) with 1 < r < p then the group Gp is a finite abelian
group of order p(m+ n+ 2).
Proof. Let m = pk1 + 1 and n = pk2 + r. By the second relation of
Gp we have 1 = xyxmyn = xyxypk+r where k = k1 + k2. Therefore
xyxyr(= y−pk) is a central element of Gp, that is xyxyr = xyrxy.
Hence xyr−1 = yr−1x. Consequently yr−1 commutes with x and hence
is a central element of Gp. As yp, yr−1 ∈ Z(Gp) and gcd(p, r − 1) = 1
we see that [y, x] = 1. Therefore Gp is abelian. Now it is easy to see
that | Gp |= p(m+ n+ 2). □
Lemma 2.3. Let p ≥ 3 be a prime number. If m ≡ p−1 (mod p) then
the subgroup H = ⟨y⟩ of the group Gp has a presentation of the form
H = ⟨a | Ri, i = 1, · · · , p⟩ where the relation Ri is ap(1+(−1)i−1(m+n+1)i) =
1 for i = 1, · · · , p− 1 and Rp is a(m+n+1)p+1 = 1.
Proof. By the first relation of G = Gp the elements xp and yp are
central elements in G. Hence the second relation of G could be writ-
ten in the form xyx−1ym+n+1 = 1, that is xyx−1 = y−(m+n+1). A p
power of the latter relation gives us the relation yp(m+n+2) = 1. Con-
sider the subgroup H = ⟨a = y⟩ of the group G = Gp = ⟨x, y|xp =
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yp, xyx−1ym+n+1 = 1⟩. We find a presentation for the subgroup H.
The subgroup relation table gives us the bonus 1.y = a.1 and by defin-
ing 1.x = 2, the first row of the table of the second relation of G
deduces 2.y = a−(m+n+1).2. Now for i = 2, · · · , p− 1 define i.x = i+ 1
and the i-th row of the table of the second relation of G completes
to deduce the bonus (i + 1).y = a(−1)i(m+n+1)i .(i + 1). Now the first
row of the table of the relation xpy−p = 1 completes and we deduce
p.x = ap.1. All the tables are now complete and we have the presen-
tation H = ⟨a | Ri, i = 1, · · · , p⟩ for the subgroup H in which the
relations Ri, i = 1, · · · , p−1 is ap(1+(−1)i−1(m+n+1)i) = 1 and correspond
to the rows 2, · · · , p of the table of the relation xpy−p = 1 and the
relation Rp is a(m+n+1)p+1 = 1 and corresponds to the last row of the
table of the second relation of Gp. □

Lemma 2.4. Let p ≥ 5 be a prime number and let m ≡ p−1 (mod p).
Then the following hold

(i) If n ≡ r (mod p) with 2 < r < p − 1 then the group Gp is a
finite group of order p(m+ n+ 2).

(ii) If n ≡ p − 1 (mod p) then the group Gp is a finite group of
order p2(m+ n+ 2).

Proof. By the previous lemma, the index of the subgroup H in Gp is p
and the order of H is

h = gcd((p(1 + (−1)i−1(m+ n+ 1)i), i = 1, · · · , p−1), (m+n+1)p+1).

On the other hand if n ≡ r (mod p) with 2 < r < p−1 then the number
(m + n + 1)p + 1 is not divisible by p and therefore the number h is
(m+n+2) and if n ≡ p−1 (mod p) then the number (m+n+1)p+1
is divisible by p and therefore the number h is p(m+ n+ 2). □

Lemma 2.5. Let p ≥ 5 be a prime number and let m ≡ 1 (mod p). If
n ≡ 1 (mod p) then the group Gp is an infinite group.

Proof. Consider the quotient group H = ⟨x, y|xp = yp, xyxmyn =
1, xp = 1⟩ of the group Gp. As m,n ≡ 1 (mod p), the second relation
of the group H is (xy)2 = 1. Hence H = ⟨x, y|xp = yp = 1, (xy)2 = 1⟩
is isomorphic to the triangle group D(2, p, p). As p ≥ 5 the group
D(2, p, p) is an infinite group and hence Gp is infinite. □

3. Main Results

For the prime p = 2, using Lemma 2.1, the only case which remains
to consider is the case where m,n are both odd numbers.



38 AHMADPOUR AND ABDOLZADEH

Lemma 3.1. Let m and n are odd numbers. Then the group G2 is a
finite group of order 4(m+ n+ 2).
Proof. Similar to the argument in the proof of Lemma 2.3, the sub-
group H = ⟨y⟩ is of index 2 in G2 and has the presentation H = ⟨a |
a2(m+n+2) = 1, a(m+n)2−4 = 1⟩. As 2(m + n + 2) divides (m + n)2 − 4,
H is cyclic of order 2(m + n + 2) and hence the order of G2 is |G2| =
2|H| = 4(m+ n+ 2) where m and n are both odd numbers. □

The next theorem shows that the group Gp is finite for p = 2 and
m,n ∈ N0.
Theorem 3.2. Let m,n ∈ N0 and p = 2. Then the group

Gp = ⟨x, y|xp = yp, xyxmyn = 1⟩
is a finite group.
Proof. The result follows from Lemmas 2.1 and 3.1. □

We continue with the case p = 3. We need the following lemmas to
complete the case p = 3.
Lemma 3.3. Let m ≡ 1 (mod 3), then the followings hold

(i) If n ≡ 1 (mod 3), then the group G3 is a finite group of order
24(m+ n+ 2).

(ii) If n ≡ 2 (mod 3), then the group G3 is a finite group of order
3(m+ n+ 2).

Proof.
(i) Let m = 3k1 + 1 and n = 3k2 + 1. By the second relation of G3 it
follows that xyxmyn = xyx3k1+1y3k2+1 = 1 and therefore the following
relation holds in G3

(xy)2y3k = 1,

where k = k1 + k2. Consider the subgroup N = ⟨a = x⟩ of the group
G3 = ⟨x, y | x3y−3 = 1, (xy)2y3k = 1⟩. We use the modified Todd-
Coxeter coset enumeration algorithm to find a presentation for N . By
the table of the generator a we obtain 1 ·x = a ·1. Defining 1.y = 2 and
2.y = 3 completes the first row of the table of the relation x3y−3 = 1
to deduce 3.y = a3 · 1. Now the first row of the table of the second
relation of G3 also completes to get 2.x = a−3k−4 · 3. Also by defining
3.x = 4 the second row of the table of the first relation of G3 completes
and we deduce that 4.x = a3k+7 · 2. Now the third row of the table of
the second relation of G3 completes and we find 4.y = a−6k−7 · 4. All
the tables are complete and we obtain the following presentation for N

N ∼= ⟨a|a18k+24 = 1⟩.
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On the other hand we have |G3 : N | = 4. Hence |G3| = 4(18k + 24) =
24(m+ n+ 2).

(ii) Lemma 2.2. □
Lemma 3.4. Let m ≡ 2 (mod 3) and n ≡ 2 (mod 3). Then the group
G3 is a finite group of order 9(m+ n+ 2).
Proof. By Lemma 2.3 the subgroup H of the group G3 has the pre-
sentation H = ⟨a|a3(m+n+2) = a3(1−(m+n+1)2) = a(m+n+1)3+1 = 1⟩ which
simplifies to H = ⟨a|a3(m+n+2) = 1⟩, as the numbers (m + n + 1)3 + 1
and 3(1 − (m + n + 1)2) are divisible by 3(m + n + 2). Therefore the
group G3 is a finite group of order 9(m+ n+ 2) in this case. □
Theorem 3.5. Let m,n ∈ N0 and let p = 3. Then the group

Gp = ⟨x, y|xp = yp, xyxmyn = 1⟩,
is a finite group.
Proof. The result follows from Lemmas 2.1, 3.3 and 3.4. □
Lemma 3.6. Let m ≡ 2 (mod 5). Then the followings hold

(i) If n ≡ 2 (mod 5), then the group G5 is a finite group of order
55(m+ n+ 2).

(ii) If n ≡ 3 (mod 5), then the group G5 is a finite group of order
55(m+ n+ 2).

(iii) If n ≡ 4 (mod 5), then the group G5 is a finite group of order
5(m+ n+ 2).

Proof.
(i) Let 5 divides both m−2 and n−2. The second relation of the group
G5 is in the form 1 = xyx2y2xm+n−4 as xm−2 and yn−2 are central el-
ements of G5. Therefore the element xyx2y2 is also a central element
of G5. Hence the relation xyx2y2 = x2y2xy holds in the group G5 and
thus (yx)(xy) = (xy)(yx), or equivalently xy commutes with yx. In
other words the relation xy2xy−1x−2y−1 = 1 holds in G5. Therefore
we have G5 = ⟨x, y|x5y−5 = 1, xyx2y2xm+n−4 = 1, xy2xy−1x−2y−1 = 1⟩
and we call the relations of G5 in this order, that is the first rela-
tion is x5y−5 = 1, the second is xyx2y2xm+n−4 = 1 and the third is
xy2xy−1x−2y−1 = 1.

We find a presentation for the subgroup N = ⟨a = x⟩ of the group
G5. Let k = m+ n− 4. The subgroup table gives us 1.x = a.1. Define
i.y = i + 1 for i = 1, · · · , 4 and the first row of the table of the first
relation of G5 completes to obtain 5.y = a5.1. Now by defining 2.x = 6
the first rows of the tables of the second and the third relations complete
and we get 6.x = a−k−6.4 and 3.x = a−k−7.5 respectively. Defining
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4.x = 7 and then 7.x = 8 completes the second row of the table of the
first relation of G5, the 4 − th and the 7 − th rows of the table of the
second relation and we obtain 8.x = ak+11.2, 7.y = a−2k−11.7 and 8.y =
a4k+28.6 respectively. Finally defining 5.x = 9, 9.x = 10 and 6.y = 11
complete all the tables and we deduce 10.x = ak+10.11 from the third
row of the table of the first relation. Also by the second, 6 − th and
9−th rows of the table of the third relation we obtain 11.y = a−3k−19.9,
11.x = a2.3 and 9.y = a−2k−12.10 respectively. From the 6− th row of
the table of the second relation we deduce 10.y = a−4k−22.8 and now
all the entries of the monitor table are complete. Therefore the index
of N in G5 is 11 and we have the following presentation for N

N = ⟨a | a5(k+6) = 1⟩,

that is N is a cyclic subgroup with order | N |= 5(m + n + 2) and
therefore | G5 |= 55(m+ n+ 2) in this case.

(ii) Similar to the previous case the second relation of G5 could be
written in the form 1 = xyx2y3xm+n−5 as xm−2 and yn−3 are cen-
tral elements of G5. Therefore the element xyx2y3 is also a central
element of G5. Hence xyx2y3 = x2y3xy in the group G5 and thus
(yx)(xy2) = (xy2)(yx), or equivalently xy2 commutes with yx. In
other words the relation xy3xy−2x−2y−1 = 1 holds in G5. Therefore
we have G5 = ⟨x, y|x5y−5 = 1, xyx2y3xm+n−5 = 1, xy3xy−2x−2y−1 = 1⟩
and we call the relations of G5 in this order, that is the first rela-
tion is x5y−5 = 1, the second is xyx2y3xm+n−5 = 1 and the third is
xy3xy−2x−2y−1 = 1.

We find again a presentation for the subgroup N = ⟨b = x⟩ of the
group G5 and show that its index is 11. Let d = m + n − 5. The
subgroup table gives us 1.x = b.1. Define i.y = i + 1 for i = 1, · · · , 4
and the first row of the table of the first relation of G5 completes to
obtain 5.y = b5.1. Now by defining 2.x = 6 the first rows of the tables of
the second and the third relations complete and we got 6.x = b−d−6.3
and 4.x = b−d−7.5 respectively. Defining 3.x = 7 and then 7.x = 8
completes the second row of the table of the first relation of G5 and
we obtain 8.x = bd+11.2. Now define 7.y = 9 to completing the third
row of the table of the second relation to get the bonus 9.x = b2.4 and
define 6.y = 10 to complete and get the bonus 10.x = b(−d−7).9 from
the second row of that table. Finally defining 5.x = 11 completes all
the tables and we deduce 11.x = b2d+17.10 from the 5 − th row of the
table of the first relation. Also by the 8 − th and 11 − th rows of the
table of the third relation we obtain 8.y = bd+8.8 and 10.y = b−d−8.11
respectively. From the 5− th and 6− th rows of the table of the second
relation we deduce 11.y = b−2d−11.7 and 9.y = b3d+24.6 respectively.
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Now all the entries of the monitor table are complete. Therefore the
index of N in G5 is 11 and we have the presentation

N = ⟨b | b5(d+7)⟩,

that is N is a cyclic subgroup with order | N |= 5(m + n + 2) and
therefore | G5 |= 55(m+ n+ 2) in this case.

(iii) Lemma 2.4. □

Lemma 3.7. Let m ≡ 3 (mod 5). Then the followings hold

(i) If n ≡ 3 (mod 5), then the group G5 is a finite group of order
55(m+ n+ 2).

(ii) If n ≡ 4 (mod 5), then the group G5 is a finite group of order
5(m+ n+ 2).

Proof.
(i) Let 5 divides both m − 3 and n − 3. The second relation of the
group G5 is in the form 1 = xyx3y3xm + n − 6 as xm−3 and yn−3

are central elements of G5. Therefore the element xyx3y3 is also a
central element of G5. Hence the relation xyx3y3 = x3y3xy holds in
the group G5 and thus (yx)(x2y2) = (x2y2)(yx), or equivalently x2y2

commutes with yx. In other words the relation x2y3xy−2x−3y−1 = 1
holds in G5. Therefore we have G5 = ⟨x, y|x5y−5 = 1, xyx3y3xm+n−6 =
1, x2y3xy−2x−3y−1 = 1⟩ and we call the relations of G5 in this order,
that is the first relation is x5y−5 = 1, the second is xyx3y3xm+n−6 = 1
and the third is x2y3xy−2x−3y−1 = 1.

Suppose a = yx, b = x2y2, c = x5, u = xy and w = x3y3. Consider
the subgroup N = ⟨a, b, c, u, w⟩ of the group G5. We find a presentation
for N . Defining 1.y = 2 completes the table of the generator a and gives
us the bonus 2.x = a.1 and defining 1.x = 3 completes the table of u
with bonus 3.y = u.1. By defining 3.x = 4 the table of b completes
with the result 4.y = bu−1.3 and finally by defining 4.x = 5 all the
tables became complete and from the table of the generator c we get
5.x = ca−1.2 and from the table of w we conclude 5.y = wb−1.4 and
from the first row of the table of the first relation of G5 we deduce
2.y = cw−1.5. Now the relations of N are as follows, from the rows of
the table of the first relation we get the relations [c, a] = [c, u] = [c, b] =
[c, w] = 1, that is the generator c is central in N . From the table of the
third relation of G5 we deduce the relations [b, a] = auw−1a−1u−1w =
[w, u] = a−1u−1baub−1 = [b, w] = 1 and from the table of the second
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relation the following relations for N ,
R1 : uwc

k = 1,

R2 : a
2bck = 1,

R3 : bu
−1a−1u−1ck+2 = 1,

R4 : wb
−2ck+2 = 1,

R5 : a
−1w−1uw−1ck+4 = 1,

where k = (m+n−6)/5. It is easy to show that N is abelian and after
some straightforward calculations we get the following presentation for
N

N ∼= ⟨a, c|[a, c] = 1, a11c4k+2 = 1, c5k+8 = 1⟩.
The subgroup N is cyclic if and only if gcd(11, 4k + 2) = 1 and the
order of N is |N | = 11(5k + 8). As the index of N in G5 is 5, we see
that G5 is finite with order |G5| = 55(5k + 8) = 55(m+ n+ 2).

(ii) Lemma 2.3. □
Lemma 3.8. Let m ≡ 4 (mod 5) and n ≡ 4 (mod 5). Then the group
G5 is a finite group of order 25(m+ n+ 2).

Proof. Lemma 2.4. □
Theorem 3.9. Let m,n ∈ N0 and p = 5. Then the group

Gp = ⟨x, y|xp = yp, xyxmyn = 1⟩,
is a finite group except in the case that m ≡ 1 (mod 5) and n ≡ 1
(mod 5).

Proof. The result follows from Lemmas 2.1, 2.2, 2.5, 3.6, 3.7 and 3.8.
□
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