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C#-IDEALS OF LIE ALGEBRAS
L. GOUDARZI*

ABSTRACT. Let L be a finite dimensional Lie algebra. A subal-
gebra H of L is called a c#-ideal of L, if there is an ideal K of L
with L = H + K and H N K is a CAP-subalgebra of L. This is
analogous to the concept of a ¢#-normal subgroup of a finite group.
Now, we consider the influence of this concept on the structure of
finite dimentional Lie algebras.

1. INTRODUCTION

In this paper, L will denote a finite dimensional Lie algebra over a
field F'. We denote the largest ideal of L contained in all the maximal
subalgebras of L, the Frattini ideal of L, by ¢(L). For a subalgebra
H of L, the core of H with respect to L, Hy, is the largest ideal of L
contained in H. Also vector space direct sums will be denoted by +.
We say the factor algebra A/B is a chief factor of L if B is an ideal of L
and A/B is a minimal ideal of L/B. Also, a Lie algebra L is called su-
persolvable, if there is a chain of ideals {0} C Ly C L, C--- C L, =1L
such that dim L; = 1.

In 1996, Wang [7] introduced the concept of c-normal subgroups. This
concept has been studied by many mathematicians. Analogously, Tow-
ers [1] introduced the notion of a c-ideal of a Lie algebra as follows:

A subalgebra H of L is a c-ideal of L, if there is an ideal K of L such
that L = H+ K and H N K < Hy. He obtained some properties of
c-ideals and used them to give some characterizations of solvable and
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supersolvable Lie algebras. Also, similarly to the case of finite groups,
Towers [5] defined the notion of C'AP-subalgebras of Lie algebras, as
follows:

Let L be a Lie algebra and H be a subalgebra of L and A/B be a chief
factor of L. We say that

(i) H covers A/B,if H+ A= H + B; and

(i1) H avoids A/B,it HN A= HN B.

A subalgebra H of L is called a C'AP-subalgebra of L, if H either cov-
ers or avoids every chief factor of L. It can be easily seen that each
ideal of L is a c-ideal as well as a C'AP-subalgebra of L.

In this paper, we define the notion of a c#-ideal of a Lie algebra and
give some conditions for solvability and supersolvability of a Lie alge-
bra.

Definition. A subalgebra H of L is called a c¢*-ideal of L, if there is
an ideal K of L with L = H + K and H N K is a C'AP-subalgebra of
L.

This is analogous to the concept of ¢#-normal subgroups of finite groups
as introduced by Wang and Wei [0].

Remark. If H is a C AP-subalgebra of L, then we have L = H+ L and
HNL=H is a CAP-subalgebra of L. Therefore H is a c¢-ideal of L.
Also, if H is a c-ideal of L, then by [2, Lemma 2.3(4)], there is an ideal
Kof Lwith L=H+K and HNK = Hy and Hy, is a C AP-subalgebra
of L, thanks to [0, Lemma 2.1(7ii)]. Therefore, C'AP-subalgebras and
c-ideals of L are c#-ideals of L

Now, in the following example, we show that a c*-ideal of L is not
necessarily a c-ideal of L.

Example. Let L = Fx + Fy + Fz be a complex Lie algebra with non-
zero multiplications [z,y] = y and [z, z] = 2z. If we put H = F(y + 2),
then H is not a c-ideal of L, but since H either covers or avoids each
chief factor of L, so H is a C' AP-subalgebra of L and therefore it is a
c-ideal of L.

2. PRELIMINARY RESULTS

This section is devoted to some basic results which are needed in our
investigation. In the following lemma, we provide a condition under
which in a Lie algebra L, a c#-ideal of L becomes a C'AP-subalgebra
of L.

Lemma 2.1. Let L be a Lie algebra and N be an ideal of L. Then
(i) If N < H, then H is a ¢ -ideal of L if and only if H/N is a c¢* -ideal
of L/N.



C#-IDEALS OF LIE ALGEBRAS 47

(i1) If K is a subalgebra of L with H < ¢(K) and H is a ¢ -ideal of
L, then H is a C AP-subalgebra of L.

Proof. (i) We suppose that H is a ¢#-ideal of L. Then there is an ideal
K of L with L = H+ K and H N K is a CAP-subalgebra of L. So
L/N =H/N+(K+N)/Nand HINN(K+N)/N = ((HNK)+N)/N.
Now, since (H N K)+ N is a C AP-subalgebra of L, by [5, Lemma 2.5],
so ((HNK)+N)/N is a C AP-subalgerbra of L/N, thanks to [5, Lemma
2.1(v)]. Therefore H/N is a c¢#-ideal of L/N.

Conversely, if H/N is a c¢#-ideal of L/N, then there is an ideal K/N
of L/N with L/N = H/N + K/N = (H + K)/N and H/ NN K/N =
(HNK)/N is a CAP-subalgebra of L/N. Therefore L = H + K and
H N K is a CAP-subalgebra of L, by [5, Lemma 2.1(v)].

(i1) Since H is a c¢#-ideal of L, there exists an ideal N of L such that L =
H+ N and HNN is a CAP-subalgebra of L. Also, K = H+ (K NN).
Now, by using [3, Lemma 2.1], we conclude that K = K N N and so
HCK CN. Hence L= N and H = HN N is a C'AP-subalgebra of
L. 0

In the following example, we show that the relation ‘to be a c¢#-ideal’
Is not transitive.

Example 2.2. Let L be a real Lie algebra with basis {eq, e, €3, €4} and
with non-zero multiplications [eq, e3] = ey, [ea, €3] = ea, [e1,€4] = —e2
and [eg, e4] = e3. (See Example 1.1 of [7])

If we put H = Re; +Res and K = Re; + Rey + Reg, then K is an ideal
of L and so K is a ¢”-ideal of L. Also, we can easily show that H is a
c”-ideal of K. But H is not a ¢*-ideal of L, because for every non-zero
ideal A of L that L = H + A, we have HN A =Re; or HNA = H.
But neither Req, nor H is a C'AP-subalgebra of L, thanks to Example
1.1 of [5].

A non-zero Lie algebra L is called ¢#-simple, if for each c¢#-ideal H of
L, either H=0or H = L.

Lemma 2.3. A Lie algebra L is ¢ -simple if and only if L is a simple
Lie algebra.

Proof. Suppose that L is ¢”-simple and is non-simple. Then there is
a non-zero proper ideal N of L. But N is a ¢#-ideal of L, so we have
N =L or N =0, a contradiction.

Conversely, we suppose that L is not ¢”-simple and H is a non-zero
proper subalgebra of L that is ¢#-ideal of L. Then there is an ideal K
of L such that L = H+ K and HN K is a C'AP-subalgebra of L. Since
L is simple, so either K = L or K =0. If K =0, then H = L that is
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contradiction. But if K = L, then HN K = H andso H+ L=H +0
or HN L = HNO, that is a contradiction again. 0

Lemma 2.4. Let L be a Lie algebra and N be a minimal ideal of L
and M be a mazimal subalgebra of N. If M is a c*-ideal of L, then
dimN = 1.

Proof. Since M is a c*-ideal of L, there is an ideal K of L such that L =
M+ K and M N K is a CAP-subalgebra of L. Also N = M +(NNK)
and N N K is an ideal of L. Hence NN K = 0or NN K = N .
Because the former case is impossible, we have N N K = N. In this
case, M = M N K is a C'AP-subalgebra of L and so covers or avoids
N/{0}. But M can not cover N. Therefore M N N = M N0 which
concludes that dimN = 1. 0

Also, we will use the following lemma where proved in [4].

Lemma 2.5. [1, Lemma 4.1] Let L be a Lie algebra over any field F,
let N be an ideal of L, and let U/N be a mazimal nilpotent subalgebra
of L/IN. Then U = A+ N, where A is a mazimal nilpotent subalgebra
of L.

3. MAIN RESULTS

In this section, we will first give a condition to imply Lie algebras to
be solvable.

Theorem 3.1. Let L be a Lie algebra over a field of characteristic
zero. Then L is solvable if and only if every mazimal subalgebra of L
is a ¢ -ideal of L.

Proof. First, we suppose that L is a non-solvable Lie algebra of the
smallest dimension satisfying the hypothesis. We can easily show that
L is non-simple. Now, if N is a minimal ideal of L and M/N is a
maximal subalgebra of L/N, then M is a maximal subalgebra of L and
it is a c#-ideal of L, by the assumption. By using Lemma 2.1(4), we
conclude that M/N is a c#-ideal of L/N and so L/N is solvable. Since
the class of all solvable Lie algebras is a saturated formation, we can
assume that N is a unique minimal ideal of L. If N < ¢(L), then L
is solvable. But if N &£ ¢(L), then there is a maximal subalgebra M
of L such that N £ M and L = M + N. Also, M is a ¢*-ideal of
L and there is an ideal K of L such that L = M + K and M N K
is a C AP-subalgebra of L. Therefore M N K covers or avoids N/{0}.
Hence either (M NK)+ N = MNK andso NC MNK C M, a
contradiction, or MNKNN =MNKNO. Since NC K, MNN = 0.
It follows that L = M + N and so M is a solvable maximal subalgebra
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that is a c-ideal of L. Therefore L is solvable, by [, Theorem 3.2].
Conversely, If L is solvable, then it follows from [, Theorem 3.1], all
maximal subalgebras of L are c-ideals of L and so are c#-ideals of L. [

Theorem 3.2. Let L be a Lie algebra over a field of characteristic zero.

Then L is solvable if and only if L has a solvable mazimal subalgebra
which is ¢ -ideal of L.

Proof. Let L be a minimal counterexample and let M be a solvable
maximal subalgebra of L which is a ¢#-ideal of L. clearly, My < R(L).
Now, if R(L) £ M, then L = R(L) + M and so L/R(L) is solvable,
that is contradiction.

If R(L) < M, then M/R(L) is a c¢#-ideal of L/R(L), by Lemma
2.1(7). Therefore L/R(L) satisfies the hypothesis of this theorem and
so L/R(L) is solvable, a contradiction.

The converse follows from the previous theorem. O

Proposition 3.3. Let L be a Lie algebra, in which all mazimal sub-
algebras of each mazimal nilpotent subalgebra of L are ¢ -ideals of L.
If N is a minimal ideal of L, then all maximal subalgebras of each
mazximal nilpotent subalgebra of L/N are ¢ -ideals of L/N.

Proof. We suppose that U/N is a maximal nilpotent subalgebra of
L/N. Then U = A+ N, where A is a maximal nilpotent subalge-
bra of L, by Lemma 2.5. If B/N is a maximal subalgebra of U/N,
then B=BN(A+N)=(BNA)+N =D+ N, where D is a maximal
subalgebra of A and BNA < D. Since D is a c-ideal of L, there exists
an ideal K of L with L = D+ K and DN K is a C AP-subalgebra of L.
Therefore DN K covers or avoids N/{0}. If DNK + N = DN K, then
NCDNK CDandsoB=D. It follows from Lemma 2.1(7) that
B/N is a c#-ideal of L/N and so the result holds. If DN K NN =0,
then we consider two cases:

1. N < K: In this case, L/N = (D+ N)/N + K/N = B/N + K/N
and (D + N)/NNK/N = (DNK)+ N)/N. Since DN K is a
C' AP-subalgebra of L and N is an ideal of L, then by [5, Lemma 2.5],
(DN K)+ N is a CAP-subalgebra of L and so (DN K)+ N)/N is
a C' AP-subalgebra of L/N, thanks to [, Lemma 2.1]. Thus B/N is a
c#-ideal of L/N.

2. N £ K: In this case, NN K = 0 and (N + K)/K is a minimal
ideal of L/K and so (N + K)/K C Z(L/K). This concludes that
[N+ K,L] C K andso [N,L] C NNK =0and N C Z(L). Con-
sequently, U = A + N is a nilpotent subalgebra of L and so we must
have A = A+ N. Therefore N < A and so N < BN A. Hence N < D
and therefore B/N is a ¢#-ideal of L/N. O
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Finally, we obtain a condition implying a Lie algebra L to be super-
solvable.

Theorem 3.4. Let L be a solvable Lie algebra, in which all maximal
subalgebras of each mazimal nilpotent subalgebra of L are c¢*-ideals of
L. Then L is supersolvable.

Proof. Let L be a minimal counterexample and N be a minimal ideal
of L. Then by the previous proposition, L/N satisfies the hypothesis
of this theorem and so L/N is supersolvable. It is enough to show that
dimN = 1. If there is another ideal N” of L, then N 2 (N4 N')/N’ <
L/N" and so dimN = 1 and L is supersolvable, a contradiction.
Therefore, we suppose that N is a unique minimal ideal of L. If
N < ¢(L), then L/¢(L) is supersolvable and so L is supersolvable
by [1, Theorem 7], a contradiction. If N £ ¢(L), then there is a max-
imal subalgebra of L such that L = N + M. Now, if C' is a maximal
nilpotent subalgebra of L with N < C', then we consider two cases:

1. ¢'= N: In this case, N is a maximal nilpotent subalgebra of L and
so by the assumption, every maximal subalgebra of N is a ¢#-ideal of
L. Hence dimN = 1, thanks to Lemma 2.4.

2. N < C: In this case, we have C' = N + (C N M). Now, let B be a
maximal subalgebra of C that contains C' N M. Then B is a ¢*-ideal
of L and so there is an ideal K of L such that L = B+ K and BN K
is a C'AP-subalgebra of L. Therefore B N K covers or avoids N/{0}.
If ( BNK)+ N=BNK,then N<BNK < Bandso(C < B, a
contradiction.

If BNKNN =0, then BN N = 0. It follows that C = B+ N. Thus
C'/B = N and consequently dimN = 1 and therefore L is supersolv-
able, a contradiction. O
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