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FUZZY MEDIAL FILTERS OF PSEUDO BE-ALGEBRAS
A. REZAEI*

ABSTRACT. In this paper, the notion of fuzzy medial filters of a
pseudo BE-algebra is defined, and some of the properties are in-
vestigated. We show that the set of all fuzzy medial filters of a
pseudo BE-algebra is a complete lattice. Moreover, we state that
in commutative pseudo BE-algebras fuzzy filters and fuzzy medial
filters coincide. Finally, the notion of a fuzzy implicative filter is
introduced and proved that every fuzzy implicative filter is a fuzzy
medial filter, but the converse is not valid in general.

1. INTRODUCTION

Some recent researchers led to generalizations of some types of al-
gebraic structures by pseudo structures. G. Georgescu et al. ([9]),
and independently J. Rachunek ([11]), introduced pseudo MV-algebras
which are a non-commutative generalization of MV-algebras. After
pseudo MV-algebras, the pseudo BL-algebras ([7]) and the pseudo
BCK-algebras as an extended notion of BCK-algebras by G. Georgescu
et al. ([10]), were introduced and studied. Y.B. Jun et al. intro-
duced the concepts of pseudo-atoms, pseudo BCl-ideals and pseudo
BCI-homomorphisms in pseudo BCI-algebras and characterizations of
a pseudo BCl-ideal, and provide conditions for a subset to be a pseudo
BCl-ideal ([11]). Y.H. Kim et al. ([13]), discussed on minimal elements
in pseudo BCl-algebras.
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The notion of a BE-algebra was introduced by H.S. Kim et al. ([12]).
A. Borumand Saeid et al. introduced some types of filters in BE-
algebras ([1]). Fuzzy subalgebras of BE-algebras were investigated in
[15]. Since developing algebraic models for non-commutative multiple-
valued logics is a central topic in the study of fuzzy systems, R.A.
Borzooei et al. generalized the notion of BE-algebras and introduced
the notion of pseudo BE-algebras ([2]). A. Rezaei et al. introduced
the notion of distributive pseudo BE-algebra and normal pseudo filters
and proved some basic properties ([3]). L.C. Ciungu introduced the
notion of commutative pseudo BE-algebras and proved that the class
of commutative pseudo BE-algebras is term equivalent to the class of
commutative pseudo BCK-algebras ([1]). Also, she defined commuta-
tive deductive systems and showed that a pseudo-BCK algebra X is
commutative if and only if all the deductive systems of X are commu-
tative ([5, 0]).

Fuzzy ideals of pseudo BCK-algebras were investigated in [3]. Also,
A. Walendziak et al. consider the fuzzy ideal theory in pseudo BCH-
algebras and provided conditions for a fuzzy set to be a fuzzy ideal
([18]). Recently, A. Rezaei et al. developed the fuzzy filter theory
of pseudo-BE algebras. They obtained some characterizations of Noe-
therian pseudo-BE algebras by fuzzy filters and introduced the notion
of the fuzzy commutative filter and investigated some of its properties
([17).

In this paper, we introduce the notion of a fuzzy medial filter of
a pseudo BE-algebra. Also, we show that the set of all fuzzy medial
filters of a pseudo BE-algebra is a complete lattice. Several conditions
to every fuzzy filter could be a fuzzy medial filter are given. Also, the
concept of a fuzzy implicative filter is defined and showed that every
fuzzy implicative filter is a fuzzy medial filter.

2. PRELIMINARIES

In this section, we review the basic definitions and some elementary
aspects that are necessary for this paper.

Definition 2.1. [12] An algebra (X;—,1) of type (2,0) is called a
BE-algebra, if it satisfies the following axioms:

(BE)) z—x=1,

(BEQ) r— 1= 1,

(BE;) 1—z=u,

(BEy) z—=(y—2)=y— (r—2), forall z,y,z € X.

Definition 2.2. ([2]) An algebra (X; —,~-, 1) of type (2,2,0) is called
a pseudo BE-algebra, if it satisfies the following axioms:
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( ) x—orx=x~x=1,

( ) v l=x~1=1,

(psBE3) 1 —sax=1~2=u,

( ) T (Y~ 2) =y~ (= 2),

(psBE;) z—y=1<=zx~y=1, forall z,y,z € X.

In a pseudo BE-algebra, one can introduce a binary relation < by:
r<y<—=zr—-y=1l<=z~y=1, forall x,y € X.

From now on, we will refer to (X; —,~, 1) by its universe X, unless
otherwise is stated.

Proposition 2.3. ([2, 3]) In a pseudo BE-algebra X, the following

statements hold:
p)z—=y~x)=Laz~w(y—z)=1
(p2) 2~ (y~x)=1Lz—(y—>z)=1,
(ps) @ WK%HM%M:Lx%K
(Pa) = [(z~y) =yl =1, 2~

(p5) if x <y — z, then y <z~ 2,

(pe) if & <y~ z, theny <z — 2,

(p7) 1 <z implies xz = 1,

(ps) 1fx§y,thena:gz%yandxgzwy,forall:v,y,zeX.

Definition 2.4. (Revisited [3, Definition 4]) A pseudo BE-algebra X is
said to be (—, ~»)-distributive (resp. (~, —)-distributive) if it satisfies
(disl) (resp. (dis2)).

(disy) 2= (y~2)=(r—=y)~(z—2),

(disg) z~ (y—=2)=(x~y) = (x~z), for all z,y,z€ X.

Note that if (X;—,~>, 1) is a pseudo BE-algebra, then (X;~», —,1)
is a pseudo BE-algebra, too. By [3, Theorem 2|, if X satisfies (dis;)
and (disy), then —=~~ . The following we bring another proof of [3,
Theorem 2|. Take x := y in (dis;) and (disy) and applying (psBE3), we
get
r—=(rwz)=x—z)w(@x—=>2)=1~(r—2)=x— zand
T (r—=z)=(x~wz)>(Tw2)=1=(x~z)=x~ 2
Now, using (psBE,), we have
r—oz=x—=>(@~z)=0~(r = z2)=1x~ 2z forall z,z € X.
Consequently, ==~ .

Also, note that if x — (2~ y) = x ~ (2 = y), for all z,y,z € X,
then —=~~, since if z := 1 and using (psBE3), we get

roy=zr—->1~wy =z~ 1>y =x~uy.

Theorem 2.5. ([3]) Let X be a (—, ~»)-distributive pseudo BE-algebra.
Then



64 REZAEI

(i)ifx <y, thenz w2 <z—>y, z—x <z~ yand
2T <2 =Y, 2 < 2y,
i)y—z<(z—y)—=(r—2)andy = z < (x = y) ~ (
(i) y~wz<(z—y) = (r—2)andy~z2< (x> y) ~ (z — 2
for all x,y,z € X.

Definition 2.6. ([2]) Let X be a pseudo-BE algebra. A subset F of
X is called a filter of X if for all z,y € X:

(Fl) le F7

(Fy) ifz »yeFandxe F,thenye F.

Proposition 2.7. ([2]) Let X be a pseudo-BE algebra and F be a
subset of X satisfy (F;). Then F' is a filter of X if and only if for all
x,y € X,

(F3) ifx~ye€ Fandx € F, theny € F.

We will denote by F(X) the set of all filters of X.
Obviously, {1}, X € F(X).

Definition 2.8. ([17]) A fuzzy set &t of X is called a fuzzy filter, if it
satisfies the following conditions:

(FF\) (1) > z),

(FF») Jily) > min{fi(x), iz > )}, for all 2,y € X.

Let FF(X) be the set of all fuzzy filters of a pseudo BE-algebra X.

Proposition 2.9. ([17]) A fuzzy set 1z in X is a fuzzy filter of X if and
only if i verifies (FF;) and for all z,y € X,

(FFs)  H(y) 2 min{7(z), iz ~ y)}.

Definition 2.10. ([1]) A pseudo-BE algebra X is said to be commu-
tative, if it satisfies the following conditions:

(C1) (z—=y)w»y=(y— )~

(Cy) (z~y) —wy=(y~x) —uz foralzyeX.

Proposition 2.11. ([!]) Any commutative pseudo-BE algebra is a
pseudo-BCK algebra, therefore commutative pseudo-BE algebras co-
incide with commutative pseudo-BCK algebras.

Definition 2.12. ([5]) A filter F is called commutative, if it satisfies
the following conditions:

(CFy) y — x € Fimplies [(z — y) ~ y] = x € F,

(CFy) y~» 2 € Fimplies [(x ~y) > y] ~z € F, forall z,y € X.

Definition 2.13. ([17]) A fuzzy filter & is called fuzzy commutative
filter, if it satisfies the following conditions:

(FCF1) Bl((z = y) ~ y) = 2] > [y — ),

(FCF2) B[((z ~y) = y) ~ ] = Ay ~ ), for all z,y € X.



FUZZY MEDIAL FILTERS OF PSEUDO BE-ALGEBRAS 65

Let FCF(X) be the set of all fuzzy commutative filters of X.

Definition 2.14. ([10]) A non-empty subset F' of X is called a medial
filter, if it satisfies (F;) and the following condition:
(MF) z—z2€ Fandz—y € Fimplyzx —y € F,forallz,y,z € X.

3. A NEW FUZZY FILTER ON PSEUDO BE-ALGEBRAS

This section aims is to extend the notion of medial filters in BE-
algebras ([10]), to the fuzzy medial filters in pseudo BE-algebras, and
give a number of it’s useful properties. In the following theorems, a
necessary and sufficient condition is derived for every fuzzy set to be a
fuzzy filter.

Theorem 3.1. A fuzzy set 1u is a fuzzy filter if and only if it satisfies
the following conditions:

(i) m(1) = p(z),
(i) g(z — y) > min{p(2), glz — (z ~ y)|}, forall z,y,z € X.

Proof. Assume that [ is a fuzzy filter of X and z,y,z € X. Applying
(psBEy4) and (FF3), we get
iz - y) = min{7(2), iz ~ (@ = y)]} = minfa(=), wle > (= ~ ).

Conversely, let 7z satisfy (i), (ii) and z,y,z € X. Take x := 1 and
using (psBEj3), we have

AL = y) = ily) > min{7a(z). 7l (= ~ y)]} = min{7(=), 7= ~ y)}.
O

Theorem 3.2. A fuzzy set [t is a fuzzy filter if and only if it satisfies
the following conditions:

(i) m(1) = 7(x),
(ii) @(x ~ y) > min{pu(z), @z ~ (z = y)|}, for all z,y,z € X.

Proof. Similar to the proof of Theorem 3.1. O

Theorem 3.3. A fuzzy set 1u is a fuzzy filter if and only if it satisfies
the following conditions:

(i) a(z —y) > aly),
(ii) zl(z = (y ~ 2)) — 2] > min{z(x), @(y)},

Proof. Assume that 7 is a fuzzy filter of X and z,y € X. Applying (p2)
and (FF3) we deduced that

Al — y) > min{aly — (v — y)], #(y)} = min{z(1), 7#(y) } = 7@(y).
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Using Theorem 3.1 and applying (p;), we get

alle = (y~2)) = 2] = min{zf(z = (y~ 2)) = (y ~ 2) 1Y)}
> min{z(z), i(y)}-
Conversely, assume that 7 satisfies (i), (ii), (iii) and z,y € X.

If x := y in (i), then we have fi(x — x) = (1) > a(x).
For (FF5), using (iii), we have
ily) = p(l~y)
= Atz = y) ~» (z = y)) ~yl
> min{zi(z = y), f(z)}-
This means that (FF5) holds. O

Theorem 3.4. A fuzzy set i is a fuzzy filter if and only if it satisfies
the following conditions:

(i) 7z ~ y) > Aly),
(i) il(z = (y ~ 2)) — 2] = min{7A(x), ()}, for all ,y,z € X.
Proof. Similar to the proof of Theorem 3.3. O

Proposition 3.5. A fuzzy filter i of a pseudo BE-algebra X is order
Preserving.

Proof. Assume that x <y. Then z ~» y = 1. Applying Theorem 3.1(ii)
and (psBEy), we get

fly) = Al —»y) > min{al - (@~ y)].7ix))
— min{@(1 - 1),7i()} = filx).
O

Now, we define a new fuzzy filter, as fuzzy medial filter on X.

Definition 3.6. A fuzzy set @ in X is called fuzzy medial filter, if it
satisfies (FF) and the following conditions:

(FMF,) Ri(x — y) > min{a(z — ),z > )},

(FMFy)  fi(z ~» y) > min{fi(z ~ 2),1(z ~ y)}, for all z,y, 2z € X.

Let FMF(X) be the set of all fuzzy medial filters of X.

Example 3.7. Consider the pseudo BE-algebra (X; —, ~~, 1) with the
following table:

Define a fuzzy set @ : X — [0,1] by (1) = 0.8, fi(a) = 0.6 and
7(b) = T(c) = 0.2. Then 71 is a fuzzy medial filter of X.

Theorem 3.8. A fuzzy filter i in X is a fuzzy medial filter of X if
and only if its nonempty level subset U(f,a) = {x € X : fi(x) > a} is
a medial filter of X, for all a € [0, 1].
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TABLE 1. The Cayley table of the operation —.

%

o T

e
I e A R
» = olT
— == 0o

TABLE 2. The Cayley table of the operation ~-.

~ 1 a b ¢
1 1 a b c
a 1 1 ¢ 1
b 1 1 11
c 1 a b 1
Proof. Similar to the proof of [17, Theorem 4.3]. O

Corollary 3.9. A nonempty subset F' is a medial filter of X if and
only if xr s a fuzzy medial filter of X.

Proof. The proof is straightforward. O
Proposition 3.10. Let i € FMF(X). Then
X = {r € X|n(x) = (1)}
is a filter of X.
Proof. Assume that z,y € X and x, x — y € xz. Then
f(x) =z — y) = @(l). Since @ is a fuzzy medial filter, we have
a(l —y) =n(y) = min{a(l = z), 4z = y)}

= min{z(z), i(r — y)}

— win{p(1), 7(1)}

— 7).
Therefore, fi(y) = 71(1), and so y € xz. O

Let @, € FMF(X) for i € I. The meet /\ﬁi of fuzzy filters 7, is
icl
defined as follows:
(/\ﬁz)(x) = /\{ﬁz@) i€ I}
il

Proposition 3.11. Let i, € FMF(X) fori € I. Then [\ [i; € FMF(X).

el
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Proof. Let i := /\ﬂi. Then, by (FFy),

i€l
n(l) = N{m() i e 1} > N{m(x) i € I} = lx)
for all z € X. Let x,y € X. Since i, € FMF(X), we have

fi(x = y) 2 min{z(z — 2), 5 (z = y)}-
Hence, by (FMF5),
Nri(x = y) i€ I} > NMmin{z; (¢ = 2),7,(z = y) i€ [}} =
min{ A\{f;(z — 2) :i € I}, AN{Ii(2 = y) i € [},
Consequently, f(z — y) > min{f(z — 2),1(z — y)}.
Similarly, fi(z ~ y) = min{u(z ~ z),7(z ~ y)}.
Therefore, i € FMF(X). O

Let 7 be a fuzzy set in X. A fuzzy medial filter 1z of X is said to be
generated by v if 7 < 1z and for any fuzzy medial filter p of X, 7 < p
implies 1z < p. The fuzzy medial filter generated by 7 will be denoted
by [7). The fuzzy medial filter [7) we can define equivalently as follows:

7) = \{p:p € FMF(X) and 7 < p}.
Let @, 7 be two fuzzy medial filters of X. Denote the join of 1z and 7
by @i V 7, that is, @ V7 = [p), where p is the fuzzy set of X defined by
p(z) = (x) V().

Theorem 3.12. Let X be a pseudo BE-algebra. Then (FMF(X); A, V)
is a complete lattice.

Proof. The proof is straightforward. O

Proposition 3.13. Let 11 be a fuzzy set on X. Let 1n satisfy one of the
following conditions:
() 7z = y) = min{p(z — 2),7(y — 2)},
(i) 7#(z ~ y) = min{p(z ~ 2), 0y ~ 2)},
(iil) min{zi(z — 2),1(z = y)} = [z =y
(iv) min{z(z ~ 2), Bz ~ 1)} > Az ~
Then f(x) = m(1).
Proof. (i) Assume that [ is a fuzzy set satisfying (i). Take z := 1. Then
e — y) > mindf(z — 1),y > 1)} = min{z(1), 7(1)} = 5(1).
If z =y:=1, then
a1l — 1) = min{p(l — 2),m5(1 — 2)} = min{a(z),w(z)} = #(z).
Hence fi(1) > 7i(z) for all z € X, and so f(z — y) = f(1). Now, take
z:=1, we have fi(1 — y) = u(y) = f(1), for all y € X.
By a similar argument (ii) holds.
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(iii) Take x := y and z := 1. For all z € X, we have
min{a(z = 1), 741 - 2)} > Az > 2) = A1),

Now, using (psBE;) and (psBEj3), we get

min{7i(1), ()} > 7i(1), and so fi(z) > 7(1).
On the other hand, if x := z =1, then

min{z(1 — 1), 7(1 = y)} = 1l — y).
Now, using (psBE;) and (psBE3), we get min{z(1),z(y)} > 1(y), and
so (1) > 7(y), for all y € X. Then fu(z) = @(1).

(iv) Similarly to (iii). O
Proposition 3.14. Let i € FF(X). Let i satisfy one of the following
conditions:

(i) 7z — y) > min{f(z - 2), iy - 2)
(i) 72(z ~ y) = min{p(z ~ ), a(y ~ 2)
Then fu(z) = m(1).
Proof. (i) Take x := 1. Using (psBE3), we have

a1l —y)=mny) > min{a(z — 1),72(y — 2)}
= min{z(1), Ay — 2)}
= fly = 2).

Hence 7i(y) > u(y — z), for all y,z € X. Now, take z := 1, we have

(y) > 7(1), and so 7i(y) = (1), for all y € X.
Similarly, (ii) holds. O

Definition 3.15. A fuzzy set @ is called a fuzzy subalgebra of X if it
satisfies the following conditions:

(FS1) Tilw — ) > min{i@), 7(y)},

(FS3) iz ~ ) > min{ji(z), i(y)}, for all 2,y € X.

Let FS(X) be the set of all fuzzy subalgebras of a X.

Proposition 3.16. Let 11 be a fuzzy set on X. Let 1 satisfy the
following conditions:
(1) fi(e = y) > min{p(z = @), 1z = y)},
(i) 7i(z ~ y) =2 min{z(z ~ ), 71z ~ y)}
Then 1 is a fuzzy subalgebra of X.

Proof. Assume that [ is a fuzzy set satisfying (i). Take z := 1. By
(psBE3), we have

Az = y) > min{zi(l — 2), A(1 — y)} = min{7(z), A(y) }.
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So,

iz — y) > min{z(z), a(y)}-
By a similar argument 7i(z ~ y) > min{z(x), (y) }. O
Proposition 3.17. If 1 € FMF(X), then i € FF(X).

Proof. Suppose that z,y € X and x := 1. Using (psBE;) and (psBE3),
we have

(1 = y) = fily) > minff(L - 2),7i(z — y)} = minfa(=), 7z = y)}.
O

The following example shows that the converse of Proposition 3.17,
may not be true in general.

Example 3.18. Consider the pseudo BE-algebra (X;—,~-, 1) with
the following table:

TABLE 3. The Cayley table of the operation —.

%

o T o

e
T~ o
— == OO
— o ~olo

TABLE 4. The Cayley table of the operation ~.

o oo 4
e
0o 0 = o|®
— = =TT
— 0o ~=olo

Define a fuzzy set @ : X — [0,1] by @(l) = 0.78, f(a) = 0.32,
7(b) = 0.7 and f(c) = 0.5. Then i is a fuzzy filter, but it is not a fuzzy
medial filter, since

b= a) = 7
= 0.32
# min{z(b — ¢),i(c — a)}
= min{0.5,0.7}
= 0.5.

Theorem 3.19. Let i € FF(X). Let w satisfy the following conditions:
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(i) (z = y) > min{p(z ~ 2),7(z ~ y)},
(i) il ~ y) > min{7(z - 2). il = )}
Then 1t € FMF(X).

Proof. Assume that [ is a fuzzy filter satisfying (i) and (ii). Using
(psBE;) and (FF;), we get

iz — y) min{zi(z ~ 2), fi(z ~ y)}
min{min{za(z — 2),7(z = z)}, min{a(z — 2),5(z = y)}}
min{min{zi(z — 2), (1)}, min{z(1), 7(z — y)}}
= min{z(z = 2), 71z = y)}-
Also, by a similar argument fi(x ~» y) > min{u(x ~~ 2),1u(z ~ y)}.
Therefore, (FMF,) and (FMF) hold. O
)-

Theorem 3.20. Let i € FF(X). Let [t satisfy the following conditions:
() 7i(=) = minffa(e — 9).7ile ~ (y = 2)]}
(i) 71(2) = min{z(z ~ y), il — (y ~ 2)]}-

Then i € FMF(X).

(AVARAVS

Proof. Assume that [ is a fuzzy filter satisfying (i) and (ii). Using (p1),
we have y — 2z < o ~ (y — z). Hence iy — 2) <z ~ (y — 2)),
and so

min{zi(z = y), filz ~ (y = 2)]}

min{zi(r = y),fw(y — 2)} <
< 7i(2).

On the other hand, since z < x — z, we get fi(2) < iz — 2).
Consequently, f(z — z) > min{u(z — y), u(y — 2)).

By a similar argument 7i(x ~ z) > min{za(z ~ y), iy — 2)}.
Therefore, i € FMF(X). O

Theorem 3.21. Let i € FF(X). Let iw satisfy the following conditions:
il(x = y) ~ (x = 2)] = min{z(z — y), wl(z = y) ~ (y = 2)]},

il(x ~ y) = (x ~ 2)] = min{f(z ~ y), wl(z ~ y) = (y ~ 2)]}-

Then i € FMF(X).

Proof. Assume that 1 is a fuzzy filter satisfying (i) and (ii). Using (p;),
we have

y—z<(xr—y)~ (y—z) and

y~z< (- y) = (Y~ z)

By Propositions 3.17 and 3.5, we get

Ay = 2) <fl(x = y) ~ (y — 2)] and

Ay ~ 2) <pl(z ~y) = (y ~ 2)].
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Since 1 is a fuzzy filter, we have

iz = z)

Similarly, fi(z ~ z) > min{a(z ~ y),

VvV 1V

v

min{z(r — y

min{z(z — y), min{a(x — y), g[(zr = y) ~

(

(
min{za(z — y
min{zi(r — y

fil(z = y) ~

);
);
) il(x = y) ~
) 1t

Y

(y— 2)}

(= 2}
(y = 2)I}

(y — 2)]}

a(y ~ 2)}. Thus, i € FMF(X).

O

Theorem 3.22. Let X be a (—,~)-distributive pseudo BE-algebra
and fi € FF(X). Then w € FMF(X).

Proof. Assume that X is a (—, ~»)-distributive pseudo BE-algebra,
€ FF(X) and z,y, z € X. Applying Theorem 2.5(ii) and (iii), we get
Al(z = z) ~ (z = y)] = 1(z = y) and

Al(z ~ z) = (z ~ y)] > Ji(z ~ y).

Since 1 is a fuzzy filter, we have

iz —y) = min{p(z = 2), 0z = 2) ~ (2 = y)]}
> min{a(z — 2),1(z — y)}
Similarly, f(z ~» y) > min{f(x ~ z),f(z ~» y)}. Thus, 1 € FMF(X)
OJ
Commutative pseudo BE-algebras were introduced by L.C. Ciungu
in [1], and proved that any commutative pseudo BE-algebra is a pseudo
BCK-algebra (see [1, Theorem 3.3]) as follows:
(psBCKy)  (z = y) ~ [(y = 2) » (2 = 2)] = 1,
(psBCKy) (x~y) = [y~ 2) = (x~2)] =1, forall z,y,z € X.

Proposition 3.23. Let X be a commutative pseudo BE-algebra and
e FF(X). Then

() ml(y = 2) ~ (z = 2)] 2 i(z = ),
(i) Bl(y ~ 2) = (z ~ 2)] 2 (z ~ y),
(iil) zl(z = y) = (z = 2)] 2 Ay — 2),
(iv) Fl(z ~ y) ~ (z~ 2)] 2 Ty ~ 2)
Proof. The proofs are straightforward. OJ

The following example shows that any fuzzy medial filter may not
be a fuzzy commutative filter, in general.
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Example 3.24. Consider the fuzzy medial filter i given in Example
3.7. It is not a fuzzy commutative filter, since

al((a —b) ~b) = a] = @l(a~b) —d
= [ilc—a)
= n(a)
0.6
(b — a)
7(1)
0.8.
Theorem 3.25. Let X be a commutative pseudo BE-algebra and
I € FF(X). Then 1w € FMF(X).

Proof. Assume that 7z € FF(X). Using (FF3) and Proposition 3.23(iii),
we get

I ™l

(e —y) > min{p(r = 2),pl(r = 2) = (= = y))}
min{zi(z — 2),7i(z = y)}.

Also, by (FF3) and Proposition 3.23(iv), we deduce that

>
>

iz ~y) = min{p(e ~ 2), ml(z ~ 2) ~ (2~ y)l}
> min{a(z ~ 2),7( ~ )}
Therefore, i € FMF(X). O

Corollary 3.26. If X is a commutative pseudo BE-algebra, then
FF(X) = FCF(X) = FMF(X).

Proof. Tt follows from Proposition 3.17, Theorem 3.25 and [17, Theo-
rem 4.7). O

Proposition 3.27. Let 11 be a fuzzy filter of X which satisfies the
following conditions:
() Al = 2) = (= )] >
(i) Al(z ~ 2) = (z~y)] =
Then 1t € FMF(X).

Proof. Assume that 7@ € FF(X) and z,y,z € X. Applying (p;) we get
z—=y<xz~ (z—>y),and so i(z = y) < flx ~ (2 = y)]. Thus
min{za(z — 2),1(z — y)} < min{a(z — 2),@lz ~ (z = y)]}. Now,
since 1 is fuzzy filter of X and using (i), we get

Al ~ (2 = y)],
I (z ~y)l, forall z,y,z € X.

e —y) > min{fe - 2), 7@ - 2) - (@ - y)]}
> min{fi(z = 2), il ~ (= = y)]}
> iz — 2),7i(z = y)}-
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Thus @ satisfies (FMF;). Similarly, 7z also satisfies (FMF5).
Consequently, 7 € FMF(X). O

The following theorem shows that if X is a commutative pseudo BE-
algebra, then every fuzzy medial filter i satisfies (i) and (ii) of Theorem
3.21.

Theorem 3.28. Let X be a commutative pseudo BE-algebra and

1 € FMF(X). Then the following conditions hold: for all x,y,z € X,
(1) pl(z = y) ~ (¢ — 2)] > min{a(z —y), @l(z = y) ~ (y = 2)]},
(ii) pl(z ~ y) = (2~ 2)] > min{z(z ~ y), @l(z ~ y) = (y ~ 2)]}.
Proof. Suppose that X is a commutative pseudo BE-algebra and

1 € FMF(X). Since X is commutative, (psBCK;) and (psBCK3) hold.
Thus, 7i[(y = 2) ~ ((x = y) ~ (x = 2))] =7(1) and

Al(y ~ 2) = ((z ~ y) = (z ~ 2))] = 1(1). Applying (FMFy), we get
Al = y) = ((x = y) ~ (v = 2))] >
min{z[(z — y) ~ (y = 2)|, Ally = 2) ~ ((x = y) ~ (x = 2))]} =
min{z[(z — y) ~ (y — 2)|,p(1)} =

allr = y) ~ (y — 2)].
From this and (FF5), we have

allx = y) ~ (= 2)] =

min{z(r — y), ml(z = y) = (z = y) ~ (x = 2))] >

min{z(z = y), al(z = y) ~ (y = 2)]}.

Thus, (i) holds. Similarly, we can get (ii). O

Proposition 3.29. Let 11 be a fuzzy set of X. If

ilr = y) = f(z ~y) = min{z(z), 7(y) },
forall z,y € X, then o € FMF(X).

Proof. For all x € X using (psBE,), we have
il = ) = (1~ ) = fi(z) = min{z(1), (z) }-
Hence 7i(x) < 7u(1). Also, we have
iz —y) = min{n(z), w(y)}

min{zi(z), i(y), i(z)}

= min{min{z(x), 7(2) }, min{7(2), 7(y)
= min{a(x — 2),0(z — y)}.
) B

,fi(z ~ y)}. Thus, i € FMF(X).
0J

v

Similarly, fi(z ~» y) > min{fi(z ~> 2

Theorem 3.30. Let i be a fuzzy set of X, be order-preserving (i. e.,
if © <y, then fi(x) < T(y)) and let a be a fized element of X. Define
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a fuzzy set i® : X — [0,1] by u*(x) = pla — z) = @(a ~ x), for all
r € X. If @® is a fuzzy filter, for all x € X, then i € FMF(X).

Proof. Assume that 7z is a fuzzy set and z € X. Using (psBEy), we
have

(1) =z ~ 1) = p(1).
Now, from x — y < 1 and assumption, we have
i (y) = p(z ~y) <a(l) = e (1).
Also, let x,y,z € X. Since z —» y < x ~ (z — y) and [ is order-
preserving we obtain
iz = y) <ple~ (2 =)
Now, since 1i* is a fuzzy filter, we get

ar —y) =p"(y) = min{n®(2),7°(z = )}
= min{z(z = 2), plr ~ (2 = y)l}
> minf(z - 2), Bz = )}
Similarly, fi(z ~ y) > min{f(z ~ 2),7(z ~ y)}. Thus, & € FMF(X%

Now, we will investigate several theorems for these fuzzy medial fil-
ters of a pseudo BE-algebra.

Theorem 3.31. Let fi,7 € FMF(X). Then A+ (1 — \)v € FMF(X),
for all X € [0, 1].

Proof. Assume that 7,7 € FMF(X) and A € [0,1]. Then, for all z € X
we have

A+ (1 =NP)(x) = Ap(z) + (1= N)p(z)
< Xa(l) + (1 - Np(1)
= (Ar+ (1 =ADP)(1).

For (FMF,), assume that x,y,z € X. Then

M+ (A=) —y) =

Mi(z = y) + (1= \v(z = y) >

Amin{a(x — 2),4(z = y)} + (1 = A) min{v(z — 2),7(z — y)} =
min{A\g(z — 2), \i(z = y) }Hmin{(1-\)v(x — 2),(1-N)v(z = y)} =
min{\i(x — 2) + (1 = \)v(z = 2),\a(z > y) + (1L = Np(z = y)} =
min{ (A + (1 = A7) (x — 2),(Az+ (1 = N)7)(z — y)}, and so

M+ (1 =N7)(x = y) >

min{( Az + (1 = N)7)(z = 2),An+ (1= N7)(z = y)}.

By a similar argument we have

Az + (1= 2p)(z ~y)
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> min{(Az + (1 = N)7)(z ~ 2), A+ (1 = Np)(z ~ y)}.
Therefore, AT + (1 — A7 € FMF(X). O

Proposition 3.32. Let i € FMF(X) and a € [0,u(1)]. Then
nVaeFMF(X), where (V a)(x) = () V a, for all z € X.

Proof. Since 1 is a fuzzy medial filter, we get

(BVva)(r) =p)Va<pl)Vva=(mVa)l).
Now, let z,y,z € X. Then
(7Va)(z—y) Az —y)Va

min{z(z — 2),71(z > y)} Va

vl

min{zi(zr — 2) Va,i(z — y) Va}
min{(zz vV o) (z — 2), (@ V a)(z = y)}.
Thus, 7 satisfies (FMF;). Similarly, 7z also satisfies (FMF5).
Consequently, 7 € FMF(X). O

Theorem 3.33. Let f : X — X be a homomorphism and i € FMF(X).
Then (1)) € FMF(X), where (1) (z) = f(f(x)).
Proof. Assume that 1 € FMF(X) and z,y,z € X. Then

@ (x—y) = Alf(z—y)
a(f(z) = f(y))
min{z(f(z) = f(2)), 5(f(z) = f(y))}
min{(7)! (= = 2), () (= = 1)}
By a similar argument we have
@ (@ = 4) > min{@(x ~ ), @ (= ~ )}. Also, since / is a
homomorphism, we have f(1) =1, and so
(m)f (1) = m(f(1) > u(f(x) = (@’ (z).
Therefore, (1)’ € FMF(X). O

v

Theorem 3.34. Let f : X — Y be a homomorphism from pseudo
BE-algebras X and Y, v € FMF(Y). Then f~'(v) € FMF(X).

Proof. Assume that 7 € FMF(Y') and z,y, 2 € X. Then we have
[ @)@ —y) = 7(f(z—y))

v(f(x) = f(y))

min{v(f(z) = f(2)),v(f(2) = [(y))}

min{z(f(z = 2)),7(f(z = )}

min{f (@) (z = 2), [ (@) (z = y)}.

vl
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Similarly, f~'(7)(z ~ y) = min{f~(7)(x )) ()(Z'w>y)}

Also, since f is a homomorphism, we have f(1 ) 1,
@) =w(f(1) 2 7(f(2)) = f~ (ﬂ)
Therefore, f~(v) € FMF(X). O

Let & be a fuzzy set of X and ¢t € [0, 1]. A fuzzy set defined by
a9 (z) = min{f(x),t} is called t-fuzzy set of X.

Proposition 3.35. If i € FMF(X), then i) € FMF(X),
for all t € [0,1].
Proof. Assume that 1 € FMF(X). Then we have

iz —y) = min{a(z —y) 1}
min{min{z(z — z),f@(z = y)},t}
= min{min{za(x — 2),t}, min{a(z — y),t}}
= min{7¥(z — 2),79(z = y)}.
Thus, @ satisfies (FMF,). Similarly, 7 also, satisfies (FMF5).
Consequently, @ € FMF(X). O

Vv

Let @ and 7 be two fuzzy sets of X and Y respectively. The cartesian
product 7z X 7 is a fuzzy set of X x Y defined by
(& x 7)(z,y) = min{z(z),v(y)}, forallz € X and y € Y.

Theorem 3.36. Let i and U be two fuzzy medial filters of X and Y
respectively. Then [t X U is a fuzzy medial filter of X x Y.

Theorem 3.37. Let t X U be a fuzzy medial filter of X X Y. Then
(i) either m(1) > f(z) orv(1) > v(y), forallz € X and y €Y,
(ii) of m(1) > f(x), for all x € X, then either (1) > Tu(x), for all
xe X oru(l) >v(y), forally €,
(iii) of v(1) > v(y), for ally € Y, then either u(1) > v(y), for all
yeY orv(l) >nu(x), forallz € X,
(iv) either @ is a fuzzy medial filter of X or v is a fuzzy medial filter
of Y.

Proof. (i) Assume that 7z x 7 is a fuzzy medial filter of X x Y. Hence
(FFy) holds, and so (@ x 7)(1,1) > (@ x 7)(z,y), for all x € X and
yey.

By the contrary, let there exist a € X and b € Y, such that 7i(a) > 7i(1)
and 7(b) > v(1).

Thus, (7x7)(a, b) = min{f(a), 7(b)} > min{7(1),5(1)} = (Ex7)(1, 1),

which is a contradiction.
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(ii) By the contrary, let there exist a € X and b € Y such that
7(1) < (a) and 7(1) < 7(b).
Then (zx7)(1,1) = min{z(1),7(1)} = v(1), since v(1) < f(a) < 7(1).
Thus, (@ x 7)(a,b) = min{g(a),7(b)} > v(1) = (& x 7)(1, 1), which is
a contradiction.

Similarly, (iii) holds.

(iv) Applying (i) and (ii), if @(1) > @(x) and 7(1) > @(z), for all
xr € X, then we have

(ExD)|(z,1) = (y,1)] = (@Exv)(r—=y1-=1)
= min{a(x — y),7(1 = 1)}
= min{z(z —y),v(1)}
= nlz —y).

Similarly, (77 x 7)[(x,1) — (2,1)] = f(z — 2) and

(7 xD)[(z,1) = (v, )] =1(z = y).

Now, since 11 X 7 is a fuzzy medial filter, for all z; € X, 20 € Y, we get
(1% )l(2,1) = (4.1)] =

min{ (7 x V)[(x, 1) = (21, 22)], (70 x V)[(21, 22) = (y, 1)]}.

Take z; := z and 25 := 1. Thus,

Az —y) = @xD) 1) = 1)
> min{( x 7)[(x. 1) = (2 D], (7 x 7)[(z 1) = (v, D]}
= minfa(e = 2). 7z - y)}.

Similarly, fi(z ~ y) > min{(z ~ z),7(z ~ y)}.
Therefore, 1 is a fuzzy medial filter of X.

If (1) > fi(z), for all x € X and m(1) > v(y), for all y € Y, then,
for all y,t € Y we have

(ExP)(1Ly) = (1,0 = (@Exv)(1—=1y—=1)
= min{z(l = 1),7(y > t)}
— win{a(), oy > 1)}
= Uy —1).

Similarly, (7 x 7)[(1,y) — (1, 2)] = U(y — 2) and
(mx?)[(1,2) = (1,t)] =7(2 = ).
Now, since 1 X 7 is a fuzzy medial filter, for all z; € X, 2z, € Y, we have
(7 % 7)[(L,y) > (1,8)] >
min{(ﬁ X D)[(la y) — (217 ZQ)]’ (ﬁ X 5)[(21, Z2) — (17t)]}'
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Take z; := 1 and 25 := 2. Thus,
vy —=t) = (Exv)[1,y) = (1,1)]
> min{(z xV)[(1,y) = (1, 2)], (@ xP)[(1,2) = (L]}
= min{v(y — 2),7(z > t)}.
Similarly, 7(y ~ t) > min{v(y ~ 2),7(z ~ t)}.
Therefore, 7 is a fuzzy medial filter of Y.
Finally, if (1) > v(y), for all y € Y, then applying (iii) and by a
similar argument, we get either 7 is a fuzzy medial filter of Y or iz is a
fuzzy medial filter of X. O

4. Fuzzy IMPLICATIVE FILTERS OF PSEUDO BE-ALGEBRAS

In this section, we introduce the notion of the fuzzy implicative filter
of a pseudo BE-algebra and show that every fuzzy implicative filter is
a fuzzy medial filter, but the converse may not be valid in general.

Here we recall the definition of the implicative pseudo-filter of pseudo
BCK-algebra X was defined by Zhang and Jun (see [19]).

We redefine it for a pseudo BE-algebra X as follows:

Definition 4.1. A nonempty subset F' of X is called an implicative
filter of X if it satisfies (F) and the following conditions:

(IFy) x~(z—>y)€ Fandx — z€ Fimplyx —y e F,

(IFy) = — (z~y) € Fand z ~ z € F imply z ~» y € F, for all
x,y,z € X.

If x := 1, then every implicative filter is a filter of X.
Let IF(X) be the set of all implicative filters of X.

Proposition 4.2. Let F € IF(X). Then
(i) x ~ (x — y) € F implies v — y € I,
(ii) © = (z ~ y) € F implies x ~> y € F.
Proof. By (psBEy), (F1) and take z := x the proofs are obvious. [

Definition 4.3. A fuzzy set 71 is called fuzzy implicative filter, if it
satisfies (FFy) and the following conditions:

(FIFy) (e — y) > min{f(z - 2), iz~ (= = y)]}.
(FIF,) iz ~ y) > min{z(z ~ =), iz — (= ~ y)]}
for all x,y, z € X.

Let FIF(X) be the set of all fuzzy implicative filters of X.
As an immediate consequence, we obtain the following theorem.
Theorem 4.4. Let i € FIF(X). Then
(i) 7 € FF(X),

Y
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(ii) 7@ € FMF(X).

Proof. (i) Let y,z € X and take x := 1. Applying (psBE3) and (FIF),
we get

il —y)
min{7i(1 = 2), a[l ~ (z = y)]}

= min{z(2), n(z = y)}-
(ii) Assume that 7z € FIF(X) and z,y, z € X. Using (p;), we get
z =y <z~ (z—y), and so by Propositions 3.17 and 3.5, we have

iz = y) < ple~ (2 = y)].
Thus, min{z(z — 2),0(z = y)} < min{a(z — z), gz ~ (z = y)|}.
Since 1 is a fuzzy implicative filter, we have

Az —y) > min{a(s - 2), Bz~ (= - )]}
> min{z(z = 2), 1z = y)}.

Thus, @ satisfies (FMF,). Similarly, 7 also satisfies (FMF5).
Consequently, 77 € FMF(X). O

The following example shows that the converse of Theorem 4.4(ii),
is not valid, in general.

a(y)

v

Example 4.5. Consider the fuzzy medial filter 1 given in Example
3.7. Tt is not a fuzzy implicative filter, since

(e~ b) =) =02 2 min{p(c ~ ¢),plc = (¢~ b)]}
— wmin{(1), 7(a)}
fi(a)
0.6.
Theorem 4.6. Let i € FIF(X). Then
ale = y) = e ~y) =plr -~ (r = y)]l = ple = (2~ y)).

Proof. Let w € FIF(X). Applying (FF;), (FIF,) and take z := x, we
deduced that

wz—y) = min{a(z — ), 0z ~ (2 = y)]}
min{zi(1), alz ~ (z = y)]}
= plz~ (z = y)].
On the other hand, by (ps) since z — y < z ~ (x — y), we get
iz —y) < ple -~ (2= y)).
Thus, a(z — y) = nlz ~ (z = y)].
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Also, by (FF,), (FIFy) and take z := x, we have

Ax ~y) > min{p(z ~ x),mlr — (z~ y)]}
min{7(1), fifz — (z ~ y)]}
= flr — (z ~y)].

Also, since x ~ y < x — (z ~ y), we get

A(r ~ y) < flr — (z~ y)].

Thus, f(z ~ y) = Az — (z ~ y)].
Using (psBEy), since z — (x ~~ y) = x ~ (x — y), we get

il = (¢~ )] = fila ~ (= y)).
Thus, i(e — y) = il ~ (¢ = y)] = Az = (&~ y)] = ile ~y). O

5. CONCLUSIONS

BE-algebras were studied by researchers, and some classification is
given. It is well known that the fuzzy structure with special prop-
erties plays an essential role in the algebraic structures. In this pa-
per, the notion of the fuzzy medial filter in a pseudo BE-algebra is
discussed. Several conditions to every fuzzy filter could be a fuzzy
medial filter are given. Also, the notion of the fuzzy implicative fil-
ter is defined and showed that every fuzzy implicative filter is a fuzzy
medial filter. By Theorem 3.23(ii), and Proposition 3.17 we obtain
FIF(X) C FMF(X) C FF(X). Moreover, if X is a commutative pseudo
BE-algebra, then FCF(X) = FMF(X) = FF(X) follows from Corollary
3.26.

Problem 5.1. Is it true that every fuzzy commutative filter is a
fuzzy implicative filter?

Problem 5.2. Is it true that every fuzzy implicative filter is a fuzzy

commutative filter?
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