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SOME RESULTS ON ϕ -(k,n)-CLOSED SUBMODULES

M. H. MOSLEMI KOOPAEI∗

Abstract. Let R be a commutative ring with identity and M be
a unitary R -module. Let S(M) be the set of all submodules of M
and ϕ : S(M) → S(M) ∪ {∅} be a function. A proper submodule
N of M is called ϕ -semi-n-absorbing if rnm ∈ N \ ϕ(N) where
r ∈ R,m ∈ M and n ∈ Z+, then rn ∈ (N : M) or rn−1m ∈ N . Let
k and n are positive integers where k > n. A proper submodule N
of M is called ϕ -(k, n)- closed submodule, if rkm ∈ N \ϕ(N) where
r ∈ R, m ∈ M and k ∈ Z+, then rn ∈ (N : M) or rn−1m ∈ N .
In this work, firstly, we will study some general results when we
use the definition ϕ -(k, n)- closed submodule. Moreover, we prove
main results of the ϕ -(k, n)- closed submodule for various modules.

1. Introduction

In this work all rings are commutative with identity and all mod-
ules are unitary. Let M be an R-module and N be a submodule of
M . The ideal {r ∈ R | rM ⊆ N} will be denoted by (N : M) and
ideal (0 : M) will be denoted by Ann(M). A proper ideal I of R is a
(m,n)- closed ideal if am ∈ I for a ∈ R implies an ∈ I (see [4]). Let
ψ : I(R) → I(R)∪{∅} be a function where I(R) is the set of all ideals
of R. A proper ideal I of R is called ψ -(m,n)- closed ideal of R if
whenever a ∈ R with am ∈ I \ψ(I), then an ∈ I( m > n) and a proper
ideal I of R is said to be ψ-prime if for a, b ∈ R with ab ∈ I \ ψ(I),
then a ∈ I or b ∈ I. Without loss of generality we may assume that
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ψ(I) ⊆ I. In this work, we write ψ(N :M) instead of ψ((N :M)).
The generalization of prime ideals play an essential role in the ring
theory. This concept has been used by D. Anderson and M. Bataineh
(see [5]). Some authors extended various generalized prime ideals and
prime submodules (for example see [2], [3], [4], [6], [8] and [9]). N.
Zamani defined the concept of ϕ-prime submodule (see [22]). Let M
be a unitary R-module, S(M) be the set of all submodules of M and
ϕ : S(M) → S(M)∪{∅} be a function. A proper submodule N of M is
called ϕ-prime if a ∈ R, x ∈M with ax ∈ N \ ϕ(N), then a ∈ (N :M)
or x ∈ N . Some properties of this concept have been investigated in
[22]. Suppose k and n are two positive integers with k > n, S(M) be
the set of all submodules of M and ϕ : S(M) → S(M)∪{∅} be a func-
tion. A proper submodule N of M is called ϕ -(k, n)-closed submodule,
if whenever r ∈ R,m ∈ M with rkm ∈ N \ ϕ(N), then rn ∈ (N : M)
or rn−1m ∈ N . Some results of (k, n)-closed submodules have been
studied in [21].
We use some concepts of (k, n)-closed submodules for ϕ-(k, n)-closed
submodules. Moreover, we recall the concepts of compactly packed
submodules and finitely compactly packed modules (see [18], [7], [1])
and we state Corollaries 2.21, 2.22, and Theorems 2.23, 2.24 in connec-
tion with these concepts.

2. Main results of ϕ-(k, n)-Closed submodules

In this section, we have proved some results of ϕ-(k, n)-closed sub-
modules.

Proposition 2.1. Let M be an R-module and N be a proper submodule
of M . Let ϕ : S(M) → S(M) ∪ {∅}, ψ : I(R) → I(R) ∪ {∅} are two
functions where S(M) is the set of all submodules of M and I(R) is the
set of all ideals of R with ψ(N : M) ⊆ (ϕ(N) : m), for every m ∈ M
such that (N : M) be a ψ-(k, n)-closed ideal of R. If N is a ϕ-prime
submodule of M , then N is a ϕ-(k, n)- closed submodule of M(k > n).

Proof. Let N be a proper submodule of M and rkm ∈ N \ϕ(N) where
r ∈ R and m ∈ M . Since N is a ϕ- prime submodule of M , then
rk ∈ (N : M) or m ∈ N . If m ∈ N , then rn−1m ∈ N . From rk ∈ (N :
M), it follows that rk ∈ (N : M) \ ψ(N : M), because rkm /∈ ϕ(N)
and ψ(N : M) ⊆ (ϕ(N) : m) for all m ∈ M . Since (N : M) is a
ψ-(k, n)-closed ideal of R, then rn ∈ (N :M), as required. □
Proposition 2.2. Let M be a unitary R -module and ϕ1, ϕ2 : S(M) →
S(M)∪{∅} be two functions, where S(M) is the set of all submodules of
M with ϕ1 ≤ ϕ2 (i.e., for every submodule N of M , ϕ1(N) ⊆ ϕ2(N)).
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If N is a ϕ1-(k, n)-closed submodule of M , then N is a ϕ2-(k, n)-closed
submodule of M .
Proof. The proof is evident. □
Proposition 2.3. Let N be a ϕ-(k, n)-closed submodule of M . Then
N is a ϕ-(k + 1, n+ 1)-closed submodule of M .
Proof. Let r ∈ R and m ∈M with rk+1m ∈ N \ ϕ(N). Then rk(rm) ∈
N \ϕ(N). Since N is a ϕ-(k, n)-closed submodule of M , then rn ∈ (N :
M) or rn−1(rm) ∈ N . Thus rn+1 ∈ (N :M) or rnm ∈ N . □
Example 2.4. Suppose that ϕ(N) = ∅, we know that if N is a (k, n)-
closed submodule of M , then N is a (k + 1, n + 1)-closed submodule
of M . But the converse of Proposition 2.3 is not true in general. For
example, let M = Z ⊕ Z be a Z-module and N =< (3, 0) > be a
submodule of Z ⊕ Z. We have (< (3, 0) >: Z ⊕ Z) = 0 and (18, 0) =
32(2, 0) ∈< (3, 0) >, but 3 /∈ (< (3, 0) >: Z ⊕ Z) = 0 and 30(2, 0) /∈<
(3, 0) >. Therefore < (3, 0) > is not a (2, 1)-closed submodule. Now,
we show that < (3, 0) > is a (3, 2-closed submodule of Z⊕Z. Suppose
that r ∈ Z, (m,n) ∈ Z ⊕ Z with r3(m,n) ∈< (3, 0) >. If r = 0,
then 0 = r2 ∈ (< (3, 0) >: Z ⊕ Z) = 0 or r2−1(m,n) ∈< (3, 0) >. So
< (3, 0) > is a (3, 2)-closed submodule. Now, let r ̸= 0,so 0 ̸= r2 /∈ (<
(3, 0) >: Z ⊕ Z) = 0. We have (r3m, r3n) = (3k, 0) for some k ∈ Z,
hence n = 0 and 3 | r3m. If 3 | m, then r2−1(m, 0) ∈< (3, 0) >. If
3 ∤ m, then 3 | r3. So 3 | r, therefore r2−1(m, 0) ∈< (3, 0) >. Thus
< (3, 0) > is a (3, 2)-closed submodule of Z⊕ Z.
Remark 2.5. Let φ : R → S be a ring homomorphism and M be a
S-module. It is easy to show that if N is a ϕ-(k, n)-closed submodule
of S-module M , then N is a ϕ- (k, n)-closed submodule of R-module
M .
Proposition 2.6. Let ϕ : S(M) → S(M) ∪ {∅} be a function where
S(M) is the set of all submodules of M and Ni be a proper submodule
of M for i ∈ Λ, such that ϕ(∪i∈ΛNi) ⊆ ϕ(∩i∈ΛNi). If Ni is a ϕ-(k, n)-
closed submodule of M for each i ∈ Λ, then ∩i∈ΛNi is a ϕ-(k, n)-closed
submodule of M .
Proof. Let rkm ∈ ∩i∈ΛNi \ ϕ(∩i∈ΛNi) where r ∈ R and m ∈ M . Then
rkm ∈ ∩i∈ΛNi and rkm /∈ ϕ(∩i∈ΛNi). By our assumption ϕ(∪i∈ΛNi) ⊆
ϕ(∩i∈ΛNi), so rkm ∈ Ni \ ϕ(Ni) for each i ∈ Λ. Since Ni is a ϕ-(k, n)-
closed submodule of M , then rn ∈ (Ni, : M) or rn−1m ∈ Ni for every
i ∈ Λ. Since (∩i∈ΛNi : M) = ∩i∈Λ(Ni : M), then rn ∈ (∩i∈ΛNi :
M) or rn−1m ∈ ∩i∈ΛNi. This means that ∩i∈ΛNi is a ϕ-(k, n)-closed
submodule of M . □
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The next theorem is a generalization of Theorem 2.3 in [21].
Theorem 2.7. Let ϕ : S(M) → S(M)∪{∅}, ψ : I(R) → I(R)∪{∅} be
two functions where S(M) is the set of all submodules of M and I(R)
is the set of all ideals of R. Let N be a proper submodule of R-module
M .
(1) If N is a ϕ-(k, n)-closed submodule of M with (ϕ(N) : m) ⊆ ψ(N :
m) for each m ∈ M \ N , then (N : m) is a ψ-(k, n)-closed ideal of R
(k > n).
(2) If (N : m) is a ψ-(k, n)-closed ideal of R with ψ(N : m) ⊆ (ϕ(N) :
m) for each m ∈ M \N , then N is a ϕ-(k, n+ 1)-closed submodule of
M (k > n+ 1).
(3) If N is a ϕ-(k, n)-closed submodule of M with (ϕ(N) : m) ⊆ ψ(N :
M) for all m ∈M , then (N :M) is a ψ-(k, n)-closed ideal of R (k > n).
Proof. (1) Assume that rk ∈ (N : m)\ψ(N : m). We have rk ∈ (N : m)
and rk /∈ ψ(N : m). Since (ϕ(N) : m) ⊆ ψ(N : m) for everym ∈M\N ,
then rkm ∈ N \ ϕ(N). Thus rn ∈ (N : M) or rn−1m ∈ N . Since
(N : M) ⊆ (N : m), then rn ∈ (N : m). From rn−1m ∈ N , we get
rnm ∈ N . This means that (N : m) is a ψ-(k, n)-closed ideal of R.
(2) Let rkm ∈ N \ ϕ(N) where r ∈ R and m ∈M \N . Then rkm ∈ N
and rkm /∈ ϕ(N). Since ψ(N : m) ⊆ (ϕ(N) : m), then rk ∈ (N : m) \
ψ(N : m). Therefore rn ∈ (N : m) and hence rnm = r(n+1)−1m ∈ N .
Thus N is a ϕ-(k, n+ 1)-closed submodule of M .
(3) Assume that r ∈ R with rk ∈ (N : M) \ ψ(N : M) but rn /∈
(N :M). Then there is an element m′ ∈M such that rnm′ /∈ N which
means that rn−1m′ /∈ N . On the other hand, since rk /∈ ψ(N :M), then
rk /∈ ϕ(N : m), for all m ∈ M . Hence rk /∈ (ϕ(N) : m′). Therefore
rkm′ ∈ N \ ϕ(N) and so rn ∈ (N : M) or rn−1m′ ∈ N , this is a
contradiction. Thus (N :M) is a ψ-(k, n)-closed ideal of R. □

We recall that an R-module M is called a multiplication module if
for every submdule N of M , we have N = IM , where I is an ideal of R.
We say that I is a presentation ideal of N or, for short, a presentation
of N and we denote the set of all presentation ideals of N by Pr(N).
Clearly (N :M) is a presentation ideal of N .
Corollary 2.8. Let the situation be as described in Theorem 2.7 and
M be a multiplication R-module such that (ϕ(N) : m) ⊆ ψ(N :M) for
every m ∈M . If N is a ϕ-(k, n)-closed submodule of M , then (N :M)
is a ψ-(k, n)-closed ideal of R.
Proof. Since (N : M) is a presentation ideal of N and (ϕ(N) : m) ⊆
ψ(N :M), by Theorem 2.7 (3), then (N :M) is a ψ-(k, n)-closed ideal
of R. □
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Now, let F be a free R-module and {mα}α∈Λ be a basis for F , then
it is clear that submodule IF is of the form IF = {

∑
f.s eimαi

|ei ∈
I,mαi

∈ {mα}α∈Λ}, where I is an ideal of R. Also, if a ∈ F so a has a
unique representation in the form a =

∑
α∈Λ rαmα where rα ∈ R and

rα = 0 for almost all α ∈ Λ. Hence we can write a =
∑

f.s rαmα where
rα ∈ R and by the way IF is defined, we have (IF : F ) = I. In light
of above explanation, we state the following theorem.
Theorem 2.9. Let F be a free R-module, ϕ : S(F ) → S(F ) ∪ {∅}, ψ :
I(R) → I(R) ∪ {∅} be two functions where S(F ) is the set of all
submodules of F and I(R) is the set of all ideals of R. If I is a
ψ-prime ideal of R with ψ(I)F ⊆ ϕ(IF ) and

√
I = I, then IF is a

ϕ-(k, n)-closed submodule of F
Proof. Let rkm ∈ IF \ ϕ(IF ) where r ∈ R and m ∈ F . Suppose that
{mα}α∈Λ be a basis for F . We have rkm ∈ IF and rkm /∈ ϕ(IF ).
Since m ∈ F , then m =

∑
f.s rαmα where rα ∈ R and hence rkm =∑

f.s(r
krα)mα. But rkm ∈ IF implies that rkm =

∑
f.s sαmα where

sα ∈ I. Then
∑

f.s(r
krα)mα =

∑
f.s sαmα and since {mα}α∈Λ is a basis

for F , we must have rkrα = sα and hence rkrα ∈ I. On the other hand
rkm /∈ ϕ(IF ), since ψ(I)F ⊆ ϕ(IF ), then rkm /∈ ψ(I)F . It follows
that rkrα /∈ ψ(I). Thus rkrα ∈ I \ψ(I). Because I is an ideal ψ-prime
of R, so rk ∈ I or rα ∈ I for all α ∈ Λ. Since rk ∈ I and

√
I = I,

then r ∈ I implies rn ∈ I = (IF : F ). If rα ∈ I for all α ∈ Λ, we
have

∑
f.s rαmα ∈ IF , so m ∈ IF implies rn−1m ∈ IF . Thus IF is a

ϕ-(k, n)-closed submodule of F . □
For a submodule L of M , let ϕL : S(M

L
) → S(M

L
) ∪ {∅} be defined

by ϕL(
N
L
) = ϕ(N)+L

L
with L ⊆ N (and ϕL(

N
L
) = ∅ if ϕ(N) = ∅) where

ϕ : S(M) → S(M) ∪ {∅} is a function and S(M
L
) is the set of all

submodules of M
L

. Now, we state the generalization of Corollary 2.34
in [21].
Theorem 2.10. Let M be an R-module and L ⊆ N be a proper sub-
module of M . Suppose that ϕ : S(M) → S(M)∪{∅} and ϕL : S(M

L
) →

S(M
L
) ∪ {∅} be two functions. Then the following statements hold.

(1) If N is a ϕ-(k, n)-closed submodule of M , then N
L

is a ϕL-(k, n)-
closed submodule of M

L
.

(2) If L ⊆ ϕ(N) and N
L

is a ϕL-(k, n)-closed submodule of M
L

, then N
is a ϕ-(k, n)-closed submodule of M .
Proof. (1) Let r ∈ R and m+ L ∈ M

L
with rk(m+ L) ∈ N

L
\ ϕL(

N
L
). It

follows that rkm ∈ N \ ϕ(N). Since N is a ϕ-(k, n)-closed submodule
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of M , then rn ∈ (N : M) or rn−1m ∈ N . Thus rn ∈ (N
L

: M
L
) or

rn−1(m+ L) ∈ N
L

, as required.

(2) Let r ∈ R and m ∈ M with rkm ∈ N \ ϕ(N). Since L ⊆ ϕ(N),
then rkm + L /∈ ϕ(N)+L

L
. So rk(m + L) ∈ N

L
\ ϕL(

N
L
). Since N

L
is a ϕL-

(k, n)-closed submodule of M
L

, then rn ∈ (N
L
: M

L
) or rn−1(m+ L) ∈ N

L
.

It follows that rn ∈ (N :M) or rn−1m ∈ N . □
We recall that a proper submodule N of M is called weakly-(k, n)-

closed submodule if 0 ̸= rkm ∈ N where r ∈ R and m ∈ M , then
rn ∈ (N : M) or rn−1m ∈ M (k > n). Ebrahimpour and Mirzaee
use the following proposition for ϕ-semiprime submodules and weakly
semiprime submodules (see [10, Proposition 2.15]).

Proposition 2.11. Let ϕ : S(M) → S(M) ∪ {∅} be a function and N
be a proper submodule of M . Then, N is a ϕ-(k, n)-closed submodule
of M if and only if N

ϕ(N)
is a weakly-(k, n)-closed submodule of M

ϕ(N)
.

Proof. The proof of this proposition is straightforward. □
The next proposition is a generalization of Lemma 2.4 in [21].

Proposition 2.12. Let M be a finitely generated R-module such that
M = Rm1+ ...+Rmt, N be a proper submodule of M and ψ : I(R) →
I(R)∪{∅} be a function where I(R) is the set of all ideals of R. Then
(1) If (N : mi) is a ψ-(k, n)-closed ideal of R with ψ(N : mi) ⊆ ψ(N :
M) for each i = 1, ..., t, then (N :M) is a ψ-(k, n)-closed ideal of R.
(2) If (N : M) is a ψ- (k, n)-closed ideal of R, then (N : mi) is a
ψ-(k, n)-closed ideal of R for each i = 1, ..., t

Proof. (1) Let r ∈ R with rk ∈ (N :M) \ψ(N :M) and rn /∈ (N :M).
So rn /∈ (N : mj) for some j ∈ {1, ..., t}, because (N :

∑t
i=1Rmi) =

∩t
i=1(N : Rmi) = ∩t

i=1(N : mi). Since rk /∈ ψ(N :M), then rk /∈ ψ(N :
mi) for all i ∈ {1, ..., t}. It follows that rk ∈ (N : mj) \ ψ(N : mj) for
some j ∈ {1, ..., t}. Since (N : mj) is a ψ-(k, n)-closed ideal of R, then
rn ∈ (N : mj) which contradicts with our assumption. Thus (N : M)
is a ψ-(k, n)-closed ideal of R.
(2) Assume that (N : M) is a ψ- (k, n)-closed ideal of R. Let r ∈
R with rk ∈ (N : mi) \ ψ(N : mi) for all i ∈ {1, ..., t}. We have
rk ∈ ∩t

i=1(N : mi) = (N :
∑t

i=1Rmi) = (N : M) and because of
ψ(∩t

i=1(N : mi)) ⊆ ∩t
i=1ψ(N : mi) ⊆ ψ(N : mi), for all i ∈ {1, ..., t},

rk /∈ ψ(N : mi) implies that rk /∈ ψ(∩t
i=1(N : mi)) = ψ(N : M). It

follows that rk ∈ (N : M) \ ψ(N : M). Thus rn ∈ (N : M) and so
rn ∈ ∩t

i=1(N : mi), therefore rn ∈ (N : mi) for all i ∈ {1, ..., t}. □
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Now, let Mi be an Ri-module for i = 1, 2, where Ri is a commutative
ring. We know that M1 ×M2 be an R1 × R2-module. Assume that
N1 × N2 be a proper submodule of M1 × M2, where Ni is a proper
submodule of Mi for i = 1, 2. Let ϕ : S(M1×M2) → S(M1×M2)∪{∅},
ϕi : S(Mi) → S(Mi) ∪ {∅} be functions with ϕ(N1 × N2) = ϕ1(N1) ×
ϕ2(N2) for i = 1, 2. Now, we state two following theorems.

Theorem 2.13. Let M1×M2 be an R1×R2-module and Ni be a proper
submodule of Mi for i = 1, 2. If N1×N2 is a ϕ-(k, n)-closed submodule
of M1 ×M2, then Ni is a ϕi-(k, n)-closed submodule of Mi for i = 1, 2
(k > n)

Proof. Let i = 1, N1 ̸= M1, r1 ∈ R1 with rk1m1 ∈ N1 \ ϕ1(N1).
So (rk1m1, 0) ∈ N1 × N2. Since rk1m1 /∈ ϕ1(N1), then (rk1m1, 0) /∈
ϕ1(N1) × ϕ2(N2). Thus (rk1m1, 0) ∈ N1 × N2 \ ϕ1(N1) × ϕ2(N2).Since
(r1, 1)

k(m1, 0) = (rk1m1, 0) and N1 ×N2 is a ϕ-(k, n)-closed submodule
of M1×M2, then (r1, 1)

n ∈ (N1×N2 :M1×M2) or (r1, 1)n−1(m1, 0) ∈
N1 × N2. It follows that rn1 ∈ (N1 : M1) or rn−1

1 m1 ∈ N1, as re-
quired. □

Theorem 2.14. Let M1 ×M2 be an R1 × R2-module and ϕ : S(M1 ×
M2) → S(M1 ×M2) ∪ {∅} be a function with ϕ(N1 ×N2) = ϕ1(N1)×
ϕ2(N2) where ϕi : S(Mi) → S(Mi)∪{∅} is a function such that (ϕi(Mi) :
Mi) = Ri for i = 1, 2. If Ni is a ϕi-(k, n)-closed submodule of Mi for
i = 1, 2, then N1 ×M2 and M1 ×N2 are ϕ-(k, n)-closed submodules of
M1 ×M2 (k > n).

Proof. Let (r1, r2)
k(m1,m2) ∈ N1 ×M2 \ ϕ(N1 ×M2) where (r1, r2) ∈

R1 × R2 and (m1,m2) ∈ M1 ×M2. We have rk1m1 ∈ N1 , rk2m2 ∈ M2

and (rk1m1, r
k
2m2) /∈ ϕ1(N1) × ϕ2(M2). Since R2 = (ϕ2(M2) : M2),

then rk2m2 ∈ ϕ2(M2) and hence rk1m1 /∈ ϕ1(N1). Therefore rk1m1 ∈
N1 \ ϕ1(N1). So rn1 ∈ (N1,M1) or rn−1

1 m1 ∈ N1. Thus (rn1 , r
n
2 ) ∈

(N1×M2 :M1×M2) or (rn−1
1 m1, r

n−1
2 m2) ∈ N1×M2, as required. □

The following theorem is the generalization of Theorem 2.33 in [21].

Theorem 2.15. Let f : M → M ′ be an epimorphism R-module,
ϕ : S(M) → S(M) ∪ {∅} and ϕ′ : S(M ′) → S(M ′) ∪ {∅} be two
functions. Then the following conditions hold:
(1) If N is a ϕ-(k, n)-closed submodule of M with kerf ⊆ N and
f(ϕ(N)) ⊆ ϕ′(f(N)) , then f(N) is a ϕ′-(k, n)-closed submodule of M ′

(k > n).
(2) If L is a ϕ′-(k, n)-closed submodule of M ′ and f−1(ϕ′(L)) ⊆ ϕ(f−1(L)),
then f−1(L) is a ϕ-(k, n)-closed submodule of M (k > n).
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Proof. (1) Let r ∈ R and m′ ∈ M ′ with rkm′ ∈ f(N) \ ϕ′(f(N)).
There exists m ∈ M such that f(m) = m′. Hence rkf(m) ∈ f(N)
and rkf(m) /∈ ϕ′(f(N)). It follows that rkm ∈ N and rkm /∈ ϕ(N),
because rkf(m) /∈ f(ϕ(N)). Thus rkm ∈ N \ ϕ(N), so rn ∈ (N : M)
or rn−1m ∈ N . Therefore rn ∈ (f(N) :M ′) or rn−1f(m) ∈ f(N).
(2) Let rkm ∈ f−1(L) \ ϕ(f−1(L)) where m ∈M and r ∈ R. So rkm ∈
f−1(L) and rkm /∈ ϕ(f−1(L)), thus rkf(m) ∈ L \ ϕ′(L). Therefore
rn ∈ (L :M ′) or rn−1f(m) ∈ L, since L is a ϕ′-(k, n)-closed submodule
of M ′. Thus rn ∈ (f−1(L) :M) or rn−1m ∈ f−1(L), as required. □

Let S be a multiplicatively closed subset of R. We know that every
submodule of S−1M is of the form S−1N for some submodule N of M .
Let ϕ : S(M) → S(M)∪{∅} be a function and define ϕS : S(S−1M) →
S(S−1M)∪{∅} by ϕS(S

−1N) = S−1ϕ(N) and ϕS(S
−1N) = ∅ if ϕ(N) =

∅ where N is a submodule of M .
The following theorem has been proved for (k, n)-closed submodules
and semi n-absorbing submodules (see [21, Theorem 2.30]).

Theorem 2.16. Let M be an R-module and S be a multiplicatively
closed subset of R such that S−1N ̸= S−1M and S−1(ϕ(N)) ⊆ ϕS(S

−1N).
If N is a ϕ-(k, n)-closed submodule of M with (N : M) ∩ S = ∅, then
S−1N is a ϕS-(k, n)-closed submodule of S−1M .
Proof. Let r

s
∈ S−1R and m

t
∈ S−1M with ( r

s
)k m

t
∈ S−1N \ ϕS(S

−1N).
We have rkm

skt
∈ S−1N and rkm

skt
/∈ ϕS(S

−1N). Hence, there exists u ∈ S

such that urkm ∈ N and urkm /∈ ϕ(N). Therefore rn

sn
∈ S−1(N :M) ⊆

(S−1N : S−1M) or rn−1

sn−1
m
t
∈ S−1N . □

Now, we consider S−1M as an R-module. Let π : M → S−1M be
given by m 7→ m

1
. Then π is R-homomorphism. We show that if T is a

ϕS-(k, n)-closed submodule of S−1M , then π−1(T ) is a ϕ-(k, n)-closed
submodule of M .

Proposition 2.17. Let M be an R-module and S be a multiplicatively
closed subset in R. Let ϕ : S(M) → S(M) ∪ {∅} be a function and
define ϕS : S(S−1M) → S(S−1M) ∪ {∅} by ϕS(T ) = S−1ϕ(π−1(T ))
(and ϕS(T ) = ∅ when ϕ(π−1(T )) = ∅) for every submodule T of S−1M .
If T is a ϕS-(k, n)- closed submodule of S−1M such that m

1
/∈ T for

some m ∈M , then π−1(T ) is a ϕ-(k, n)-closed submodule of M .
Proof. Since m

1
/∈ T for some m ∈ M , then π−1(T ) ̸= M . Let r ∈

R, m ∈ M with rkm ∈ π−1(T ) \ ϕ(π−1(T )). Then rkm ∈ π−1(T )

and rkm /∈ ϕ(π−1(T )). Thus rkm
1

∈ T and rkm
1

/∈ S−1ϕ(π−1(T )). So
rkm
1

∈ T \ ϕS(T ). Since T is a ϕS-(k, n)-closed submodule of S−1M ,
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then rn

1
∈ (T : S−1M) or rn−1m

1
∈ T . Thus rn ∈ (π−1(T ) : M) or

π(rn−1m) ∈ T , hence π−1(T ) is a ϕ-(k, n)-closed submodule of M . □
Definition 2.18. Let M be an R-module and N be a submodule of
M . Then N is called relatively divisible submodule denoted by RD-
submodule, if rN = N ∩ rM for each r ∈ R. M as an R-module is said
to be prime if rm = 0 where r ∈ R and m ∈ M , then r ∈ Ann(M) or
m = 0. Now, we give the following proposition.
Proposition 2.19. Let M be a prime R-module and N be a proper
submodule of M . If N is a RD-submodule of M with Ann(M) ⊆
(ϕ(N) :M), then N is a ϕ-(k, n)-closed submodule of M .
Proof. Let r ∈ R and m ∈ M with rkm ∈ N \ ϕ(N). Since N is a
RD-submodule, then rkM ∩ N = rkN . So rkm ∈ rkM ∩ N = rkN ,
hence rkm = rks, for some s ∈ N . Thus rk(m − s) = 0. Since M
is prime, then rk ∈ Ann(M) or m − s = 0. But if rk ∈ Ann(M),
then rk ∈ (ϕ(N) : M). So rkm ∈ ϕ(N) which contradicts with our
assumption. Thus m − s = 0, hence m ∈ N and so rn−1m ∈ N , as
required. □
Definition 2.20. A proper submodule N of M is called finitely com-
pactly packed if for each family {Nα}α∈Λ of prime submodules of M
with N ⊆ ∪α∈ΛNα, there exist α1, ..., αn ∈ Λ such that N ⊆ ∪n

i=1Nαi
.

If N ⊆ Nβ for some β ∈ Λ, then N is called compactly packed . A
module M is said to be finitely compactly packed (compactly packed),
if every proper submodule N of M is finitely compactly packed ( com-
pactly packed) submodule (see [1]).
We will call a proper submodule N of M as ϕ-(k, n)-closed finitely com-
pactly packed if for each family {Pα}α∈Λ of ϕ-(k, n)-closed submodules of
M with N ⊆ ∪α∈ΛPα, there exist α1, ..., αn ∈ Λ such that N ⊆ ∪n

i=1Pαi
.

If N ⊆ Nβ for some β ∈ Λ, then N is called ϕ-(k, n)-closed compactly
packed. A module M is said to be ϕ-(k, n)-closed finitely compactly
packed (compactly packed ) if every proper submodule is a ϕ-(k, n)-
closed finitely compactly packed (compactly packed).
For more details concerning finitely compactly packed ( compactly
packed) submodule of a module refer to [1], [7] and [18].
Corollary 2.21. Let M be an R-module and ϕ1, ϕ2 : S(M) → S(M)∪
{∅} be two functions where S(M) is the set of all submodules of M with
ϕ1 ⩽ ϕ2. If M is a ϕ2-(k, n)-closed finitely compactly packed ( compactly
packed) module, then M is a ϕ1-(k, n)-closed finitely compactly packed
( compactly packed) module.
Proof. Clear by Proposition 2.2. □
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Corollary 2.22. Every ϕ-(k+1, n+1)-closed finitely compactly packed
(compactly packed) module is a ϕ-(k, n)-closed finitely compactly packed
(compactly packed) module.
Proof. Apply Proposition 2.3. □
Theorem 2.23. Let f : M → M ′ be an epimorphism R-module,
ϕ : S(M) → S(M) ∪ {∅} and ϕ′ : S(M ′) → S(M ′) ∪ {∅} be two
functions. Then the following conditions hold:
(1) If M is a ϕ-(k, n)-closed finitely compactly packed module such that
for every ϕ′-(k, n)-closed submodule L of M ′ we have f−1(ϕ′(L)) ⊆
ϕ(f−1(L)), then M ′ is a ϕ′-(k, n)-closed finitely compactly packed mod-
ule.
(2) If M ′ is a ϕ′-(k, n)-closed finitely compactly packed module such
that for every ϕ-(k, n)-closed submodule P of M we have kerf ⊆ P
and f(ϕ(P )) ⊆ ϕ′(f(P )), then M is a ϕ-(k, n)-closed finitely compactly
packed module.
Proof. (1) Let N ′ be a proper submodule of M ′. Suppose that N ′ ⊆
∪α∈ΛP

′
α, where P ′

α is a ϕ′-(k, n)-closed submodule of M ′ for each α ∈ Λ.
We have f−1(N ′) ⊆ f−1(∪α∈ΛP

′
α), so f−1(N ′) ⊆ ∪α∈Λf

−1(P ′
α). Since

P ′
α is a ϕ′- (k, n)-closed submodule ofM ′ and f−1(ϕ′(P ′

α)) ⊆ ϕ(f−1(P ′
α))

for each α ∈ Λ, by Theorem 2.15, we get f−1(P ′
α) is a ϕ-(k, n)-closed

submodule of M for each α ∈ Λ. But M is a ϕ-(k, n)-closed finitely
compactly packed module, thus there exist α1, ..., αn ∈ Λ such that
f−1(N ′) ⊆ ∪n

i=1f
−1(P ′

αi
), hence f−1(N ′) ⊆ f−1(∪n

i=1P
′
αi
). Since f is

an epimorphism R-module, then N ′ ⊆ ∪n
i=1P

′
αi

. Thus N ′ is a ϕ′-(k, n)-
closed finitely compactly packed submodule of M ′ and hence M ′ is a
ϕ′-(k, n)-closed finitely compactly packed module.
(2) Suppose that N is a proper submodule of M with N ⊆ ∪α∈ΛPα

where Pα is a ϕ-(k, n)-closed submodule of M for every α ∈ Λ. We
have f(N) ⊆ f(∪α∈ΛPα). Since Pα is a ϕ-(k, n)- closed submodule of
M , f(ϕ(Pα)) ⊆ ϕ′(f(Pα)) and kerf ⊆ Pα for each α ∈ Λ, by Theorem
2.15, we get f(Pα) is a ϕ′-(k, n)-closed submodule of M ′. Since M ′ is
a ϕ′-(k, n)-closed finitely compactly packed module, then there exist
α1, ..., αn ∈ Λ such that f(N) ⊆ ∪n

i=1f(Pαi
). Now, assume that n ∈ N ,

therefore f(n) ∈ f(∪n
i=1Pαi

), so f(n) = f(m) for some m ∈ ∪n
i=1Pαi

.
Thus n − m ∈ kerf ⊆ Pαj

and m ∈ Pαj
for some αj ∈ {α1, ..., αn}.

Thus n ∈ Pαj
and hence n ∈ ∪n

i=1Pαi
. It follows that N ⊆ ∪n

i=1Pαi
. So

N is a ϕ-(k, n)-closed finitely compactly packed submodule of M and
hence M is a ϕ-(k, n)-closed finitely compactly packed module. □
Theorem 2.24. Let M be an R-module, S be a multiplicatively closed
set in R and ϕ : S(M) → S(M)∪{∅}, ϕS : S(S−1M) → S(S−1M)∪{∅}
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be two functions such that ϕS(T ) = S−1(ϕ(π−1(T )) for every submodule
T of S−1M where π : M → S−1M by π(m) = m

1
for each m ∈ M and

x
1
/∈ T for some x ∈ M . If M is a ϕ-(k, n)-closed compactly packed

module, then S−1M is a ϕS-(k, n)-closed compactly packed module.

Proof. Let T be a proper submodule of S−1M . Suppose that T ⊆
∪α∈ΛPα where Pα is a ϕS-(k, n)-closed submodule of S−1M for each
α ∈ Λ. We have π−1(T ) ⊆ π−1(∪α∈ΛPα) = ∪α∈Λπ

−1(Pα). Since π−1(T )
is a proper submodule of M and π−1(Pα) is a ϕ-(k, n)-closed submodule
of M for each α ∈ Λ , by Proposition 2.16., we get π−1(T ) ⊆ π−1(Pβ)
for some β ∈ Λ, because M is a ϕ-(k, n)-closed compactly packed
module. On the other hand, we write S−1(π−1(T )) = T because
S−1(π−1(T )) = {m

s
| m ∈ π−1(T ), s ∈ S} = {m

1
1
s
| m

1
∈ T, s ∈ S} = T

(so that we can consider submodule T as S−1R-module S−1M). There-
fore S−1(π−1(T )) ⊆ S−1(π−1(Pβ)) implies that T ⊆ Pβ for some β ∈ Λ
. So S−1M is a ϕS-(k, n)- closed compactly packed module. □
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-(k, n)-ϕ- بسته های مدول زیر مورد در نتایج برخی

کوپایی مسلمی حسین محمد

ایران رودهن، واحد اسلامی آزاد دانشگاه پایه، علوم دانشکده وآمار، ریاضی گروه

ϕ : S(M) −→ یکانی، مدول - R یک M یکدار، و جابجایی حلقه یک R کنیم فرض
Mرا از N سره زیرمدول Mباشد، های مدول زیر تمام مجموعه S(M) و تابع یک S(M) ∪ {∅}
و m ∈ M ، r ∈ R آن در که rnm ∈ N \ ϕ(N) از اگر نامیم می جاذب نیم - ϕ-زیرمدول یک
فرض اکنون . rn−١m ∈ N یا rn ∈ (N : M) بگیریم نتیجه باشد، می مثبت صحیح عدد یک n
ϕ - زیرمدول یک را M از N سره زیرمدول باشد، k > n باشرط مثبت صحیح عدد دو n و k کنیم
باشد، می m ∈ M ، r ∈ R آن در که rkm ∈ N \ ϕ(N) از هرگاه نامیم می -بسته (k, n) -
مورد در اولیه و عمومی نتایج برخی ابتدا مقاله این در .rn−١m ∈ N یا rn ∈ (N : M) شود نتیجه
زیرمدول این مورد در مهم نتیجۀ چند آن، بر علاوه شود. می اثبات بسته، -(k, n) - ϕ- های زیرمدول

شوند. می اثبات و بیان ها مدول انواع از ها

- (m,n) - آل ایده جاذب، نیم - ϕ - زیرمدول بسته، - (k, n) - ϕ - زیرمدول کلیدی: کلمات
اول. - ϕ - زیرمدول بسته، - (m,n) -ψ - آل ایده بسته،
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