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SOME RESULTS ON ¢ -(k,n)-CLOSED SUBMODULES
M. H. MOSLEMI KOOPAEI*

ABSTRACT. Let R be a commutative ring with identity and M be
a unitary R -module. Let S(M) be the set of all submodules of M
and ¢ : S(M) — S(M) U {0} be a function. A proper submodule
N of M is called ¢ -semi-n-absorbing if r"m € N \ ¢(IN) where
r€ Rym € M andn € Z*, thenr™ € (N : M) or r"~'m € N. Let
k and n are positive integers where k > n. A proper submodule NV
of M is called ¢ -(k, n)- closed submodule, if r*m € N\ #(N) where
re€ R, méeMand k € Z", then v € (N : M) or ™ 'm € N.
In this work, firstly, we will study some general results when we
use the definition ¢ -(k,n)- closed submodule. Moreover, we prove
main results of the ¢ -(k, n)- closed submodule for various modules.

1. INTRODUCTION

In this work all rings are commutative with identity and all mod-
ules are unitary. Let M be an R-module and N be a submodule of
M. The ideal {r € R | rM C N} will be denoted by (N : M) and
ideal (0 : M) will be denoted by Ann(M). A proper ideal I of R is a
(m,n)- closed ideal if a™ € I for a € R implies a™ € I (see [1]). Let
Y : Z(R) — Z(R) U{0} be a function where Z(R) is the set of all ideals
of R. A proper ideal I of R is called ¥ -(m,n)- closed ideal of R if
whenever a € R with a™ € I\ ¢(I), then ™ € I( m > n) and a proper
ideal I of R is said to be v-prime if for a,b € R with ab € I\ ¢(I),
then a € I or b € I. Without loss of generality we may assume that
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Y(I) C I. In this work, we write (N : M) instead of {((N : M)).
The generalization of prime ideals play an essential role in the ring
theory. This concept has been used by D. Anderson and M. Bataineh
(see [5]). Some authors extended various generalized prime ideals and
prime submodules (for example see [2], [3], [1], [0], [¥] and [9]). N.
Zamani defined the concept of ¢-prime submodule (see [22]). Let M
be a unitary R-module, S(M) be the set of all submodules of M and
¢:S(M)— S(M)U{d} be a function. A proper submodule N of M is
called ¢-prime if a € R,z € M with ax € N\ ¢(N), then a € (N : M)
or x € N. Some properties of this concept have been investigated in
[22]. Suppose k and n are two positive integers with k > n, S(M) be
the set of all submodules of M and ¢ : S(M) — S(M)U{0} be a func-
tion. A proper submodule N of M is called ¢ -(k, n)-closed submodule,
if whenever r € R,m € M with r*m € N \ ¢(N), then r" € (N : M)
or r""'m € N. Some results of (k,n)-closed submodules have been
studied in [21].

We use some concepts of (k,n)-closed submodules for ¢-(k, n)-closed
submodules. Moreover, we recall the concepts of compactly packed
submodules and finitely compactly packed modules (see [1%], [7], [1])
and we state Corollaries 2.21, 2.22, and Theorems 2.23, 2.24 in connec-
tion with these concepts.

2. MAIN RESULTS OF ¢-(k,n)-CLOSED SUBMODULES

In this section, we have proved some results of ¢-(k,n)-closed sub-
modules.

Proposition 2.1. Let M be an R-module and N be a proper submodule
of M. Let ¢ : S(M) — S(M)U{0}, ¥ : Z(R) — Z(R) U {0} are two
functions where S(M) is the set of all submodules of M and Z(R) is the
set of all ideals of R with (N : M) C (¢(N) : m), for every m € M
such that (N : M) be a 1-(k,n)-closed ideal of R. If N is a ¢-prime
submodule of M, then N is a ¢-(k,n)- closed submodule of M (k > n).

Proof. Let N be a proper submodule of M and 7*m € N\ ¢(N) where
r € Rand m € M. Since N is a ¢- prime submodule of M, then
rk € (N:M)orme N. If m € N, then r""'m € N. From r* € (N :
M), it follows that 7% € (N : M)\ ¢)(N : M), because r*m ¢ ¢(N)
and (N : M) C (¢(N) : m) for all m € M. Since (N : M) is a
Y-(k,n)-closed ideal of R, then ™ € (N : M), as required. O

Proposition 2.2. Let M be a unitary R -module and ¢1, ¢o : S(M) —
S(M)U{D} be two functions, where S(M) is the set of all submodules of
M with ¢, < @9 (i.e., for every submodule N of M , ¢1(N) C ¢o(N)).
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If N is a ¢1-(k,n)-closed submodule of M, then N is a ¢-(k,n)-closed
submodule of M.

Proof. The proof is evident. O

Proposition 2.3. Let N be a ¢-(k,n)-closed submodule of M. Then
N is a ¢p-(k+ 1,n + 1)-closed submodule of M.

Proof. Let r € R and m € M with r*"1m € N\ ¢(N). Then r*(rm) €
N\ ¢(N). Since N is a ¢-(k, n)-closed submodule of M, then r™ € (N :
M) or r"*(rm) € N. Thus r"*' € (N : M) or r"m € N. O

Example 2.4. Suppose that ¢(N) = (), we know that if N is a (k,n)-
closed submodule of M, then N is a (k + 1,n + 1)-closed submodule
of M. But the converse of Proposition 2.3 is not true in general. For
example, let M = Z & Z be a Z-module and N =< (3,0) > be a
submodule of Z & Z. We have (< (3,0) >: Z & Z) = 0 and (18,0) =
32(2,0) €< (3,0) >, but 3 ¢ (< (3,0) >: Z®Z) = 0 and 3°(2,0) ¢<
(3,0) >. Therefore < (3,0) > is not a (2, 1)-closed submodule. Now,
we show that < (3,0) > is a (3, 2-closed submodule of Z @& Z. Suppose
that r € Z, (m,n) € Z ® Z with r*(m,n) €< (3,0) >. If r = 0,
then 0 =r? € (< (3,0) >: Z&Z) =0 or 7> }(m,n) €< (3,0) >. So
< (3,0) > is a (3,2)-closed submodule. Now, let r # 0,80 0 # r* ¢ (<
(3,0) >: Z&Z) = 0. We have (r®m,r3n) = (3k 0) for some k € Z,
hence n = 0 and 3 | r3m. If 3 | m, then r>~Y(m,0) €< (3,0) >. If
34 m, then 3 | 3. So 3 | r, therefore r*~'(m,0) €< (3,0) >. Thus
< (3,0) > is a (3, 2)-closed submodule of Z & Z.

Remark 2.5. Let ¢ : R — S be a ring homomorphism and M be a
S-module. It is easy to show that if N is a ¢-(k,n)-closed submodule
of S-module M, then N is a ¢- (k,n)-closed submodule of R-module
M.

Proposition 2.6. Let ¢ : S(M) — S(M) U {0} be a function where
S(M) is the set of all submodules of M and N; be a proper submodule
of M fori e A, such that p(UijeaN;) C d(MieaN;). If N; is a ¢-(k,n)-
closed submodule of M for each i € A, then MieaN; is a ¢-(k,n)-closed
submodule of M.

Proof. Let r*m € ﬁieANi \ ¢(NieaN;) where r € R and m € M. Then
r*m € NieaN; and r*m & ¢(NieaN;). By our assumption ¢(Usep N;) C

P(NieaN;), so 78m € N; \ ¢(IV;) for each i € A. Since N; is a ¢-(k, n)-
closed submodule of M, then r"* € (N;,: M) or r"~'m € N; for every
1 € A. Since (mieANi : M) = mieA(Ni : M), then r" € (miEANi :
M) or r"'m € NieaN;. This means that M;cp N; is a ¢-(k, n)-closed
submodule of M. O
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The next theorem is a generalization of Theorem 2.3 in [21].

Theorem 2.7. Let ¢ : S(M) — S(M)U{0},v¢ : Z(R) — Z(R)U{D} be
two functions where S(M) is the set of all submodules of M and Z(R)
is the set of all ideals of R. Let N be a proper submodule of R-module
M.

(1) If N is a ¢-(k,n)-closed submodule of M with (¢(N):m) C (N :
m) for each m € M\ N, then (N : m) is a -(k,n)-closed ideal of R
(k>n).

(2) If (N :m) is a Y-(k,n)-closed ideal of R with (N :m) C (¢(N) :
m) for each m € M\ N, then N is a ¢-(k,n + 1)-closed submodule of
M (k>n+1).

(3) If N is a ¢-(k,n)-closed submodule of M with (¢(N) :m) C (N :
M) forallm € M, then (N : M) is a ¢-(k,n)-closed ideal of R (k > n).

Proof. (1) Assume that r* € (N : m)\¥(N : m). We have r* € (N : m)
and 78 ¢ (N : m). Since (¢(N) : m) C (N : m) for every m € M\ N,
then r*m € N \ ¢(N). Thus " € (N : M) or ¥"'m € N. Since
(N : M) C (N :m), then r* € (N : m). From r"'m € N, we get
r™m € N. This means that (N : m) is a 1-(k, n)-closed ideal of R.

(2) Let r*m € N\ ¢(N) where r € R and m € M \ N. Then r*m € N
and r*m ¢ ¢(N). Since (N : m) C (¢(N) : m), then 7% € (N :m)\
(N : m). Therefore r™ € (N : m) and hence r"m = r™+)=1m € N.
Thus N is a ¢-(k,n + 1)-closed submodule of M.

(3) Assume that r € R with 7* € (N : M)\ (N : M) but r" ¢
(N : M). Then there is an element m’ € M such that r"m’ ¢ N which
means that 7"~ 1m/ ¢ N. On the other hand, since ¥ ¢ (N : M), then
rk ¢ ¢(N : m), for all m € M. Hence r* ¢ (¢(N) : m'). Therefore
rkm/ € N\ ¢(N) and so ™ € (N : M) or r"“lm’ € N, this is a
contradiction. Thus (N : M) is a ¢-(k, n)-closed ideal of R. O

We recall that an R-module M is called a multiplication module if
for every submdule N of M, we have N = I M, where [ is an ideal of R.
We say that I is a presentation ideal of N or, for short, a presentation
of N and we denote the set of all presentation ideals of N by Pr(N).
Clearly (N : M) is a presentation ideal of N.

Corollary 2.8. Let the situation be as described in Theorem 2.7 and
M be a multiplication R-module such that (p(N):m) C (N : M) for
everym € M. If N is a ¢-(k,n)-closed submodule of M, then (N : M)
is a ¥-(k,n)-closed ideal of R.

Proof. Since (N : M) is a presentation ideal of N and (¢(N) : m) C
(N : M), by Theorem 2.7 (3), then (N : M) is a 1-(k, n)-closed ideal
of R. O
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Now, let F' be a free R-module and {m, }aeca be a basis for F', then
it is clear that submodule IF is of the form IF = {)_ f.s €iMa, |€; €
I,me,; € {ma}aer}, where [ is an ideal of R. Also, if a € F so a has a
unique representation in the form a = Zae A TaMq Where r, € R and
ro = 0 for almost all & € A. Hence we can write a = > .5 TaMa where
ro € R and by the way IF is defined, we have (/F : F') = I. In light
of above explanation, we state the following theorem.

Theorem 2.9. Let F be a free R-module, ¢ : S(F) — S(F)U {0}, :
Z(R) — Z(R) U {0} be two functions where S(F) is the set of all
submodules of F' and Z(R) is the set of all ideals of R. If I is a
W-prime ideal of R with Y(I)F C ¢(IF) and I = I, then IF is a
¢-(k,n)-closed submodule of F'

Proof. Let r*m € IF \ ¢(IF) where r € R and m € F. Suppose that
{ma}aer be a basis for F. We have r*m € IF and r*m ¢ ¢(IF).

Since m € F, then m = Zf.s roMe where r, € R and hence r*m =

> ps(TFra)me. But rkm € I'F implies that r*m = > f.s SaMMa Where
Sq € I. Then Zf_s(rkra)ma = Zf.S SaMe and since {mg }aen is a basis

for F, we must have r*r, = s, and hence r*r, € I. On the other hand

rkm ¢ ¢(IF), since Y(I)F C ¢(IF), then r*m ¢ (I)F. Tt follows
that r*r, & ¢(I). Thus r*r, € I\ ¥(I). Because [ is an ideal ¥-prime
of R, sork € Torr, €I forall w e A. Since r* € T and VI = 1I,
then r € [ implies v € [ = (IF : F). If r, € I for all & € A, we
have Zf.s TaMe € IF, so m € IF implies 7" 'm € IF. Thus IF is a
¢-(k,n)-closed submodule of F. O

For a submodule L of M, let ¢r, : S(¥&) — S(A) U {0} be defined
by ¢r(X) = 2 with L C N (and ¢ (YY) = 0 if ¢(N) = 0) where
¢ : S(M) — S(M) U {0} is a function and () is the set of all

submodules of M Now, we state the generalization of Corollary 2.34
in [21].

Theorem 2.10. Let M be an R-module and L C N be a proper sub-
module of M. Suppose that ¢ : S(M) — S(M)U{0} and ¢, : S(5F) —
S(EY U {0} be two functions. Then the following statements hold.

(1) If N is a ¢-(k,n)-closed submodule of M, then % is a ¢r-(k,n)-
closed submodule of T M

(2) If L C ¢(N) and N is a ¢r-(k,n)-closed submodule of 3, then N
is a ¢-(k,n)-closed submodule of M.

Proof. (1) Let r € R and m+ L € & with r*(m + L) € T\ ¢, (). Tt
follows that r*m € N\ ¢(N). Since N is a ¢-(k,n)-closed submodule

I§~h
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of M, then 7" € (N : M) or ¥ 'm € N. Thus r" € (¥ :
r"(m+ L) € &, as required.

~2

) or

(2) Let r € R and m € M with r*m € N \ ¢(N). Since L C ¢(N),
then r*m + L ¢ ¢N)+L Sor*(m+ L) € £\ ¢ (&). Since & isagbL—
(k,n)-closed submodule of 2 then r" € ( :Myor i m+L)e ¥
It follows that r™ € (N : M) or r"tm € N =

We recall that a proper submodule N of M is called weakly-(k, n)-
closed submodule if 0 # 7*m € N where r € R and m € M, then

€ (N : M)orr"'m e M (k> n). Ebrahimpour and Mirzaee
use the following proposition for ¢-semiprime submodules and weakly
semiprime submodules (see [10, Proposition 2.15]).

Proposition 2.11. Let ¢ : S(M) — S(M) U {0} be a function and N
be a proper submodule of M. Then, N is a ¢-(k,n)-closed submodule
of M if and only if ﬁ is a weakly-(k,n)-closed submodule of %

Proof. The proof of this proposition is straightforward. |
The next proposition is a generalization of Lemma 2.4 in [21].

Proposition 2.12. Let M be a finitely generated R-module such that
M = Rmy+ ...+ Rmy, N be a proper submodule of M and v : Z(R) —
Z(R)U{0} be a function where Z(R) is the set of all ideals of R. Then
(1) If (N : m;) is a -(k,n)-closed ideal of R with (N :m;) C (N
M) for each i =1,...,t, then (N : M) is a 1-(k,n)-closed ideal of R.
(2) If (N : M) is a - (k,n)-closed ideal of R, then (N : m;) is a
-(k,n)-closed ideal of R for eachi=1,...;t

Proof. (1) Let r € R with ¥ € (N : M)\ (N : M) and r™ ¢ (N : M).
So r" ¢ (N : m;) for some j € {1,...,t}, because (N : >°0_, Rm;) =
Ni_ (N : Rm;) = NL_ (N : m;). Since 78 ¢ ¢)(N : M), then r* ¢ (N :
m;) for all i € {1,...,t}. Tt follows that 7* € (N : m;) \ (N : m;) for
some j € {1,...,t}. Since (N : m;) is a ¢-(k, n)-closed ideal of R, then
r™ € (N : m;) which contradicts with our assumption. Thus (N : M)
is a 1-(k,n)-closed ideal of R.

(2) Assume that (N : M) is a 1~ (k,n)-closed ideal of R. Let r €
R with 7 € (N : m;) \ ¥(N : m;) for all i € {1,...,t}. We have
P e N (N = my) = (N : Y\_, Rm;) = (N : M) and because of
(N (N 2 my)) €N p(N my) C (N 2my), for all i € {1,...,t},
rk ¢ (N : m;) implies that 78 ¢ (N, (N : m;)) = (N : M). Tt
follows that r* € (N : M)\ ¢(N : M). Thus " € (N : M) and so
r* € Ni_ (N : m;), therefore r* € (N : m;) for all i € {1,...,t}. O
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Now, let M; be an R;-module for ¢ = 1, 2, where R; is a commutative
ring. We know that M; x My be an R; X Ro-module. Assume that
N1 x Ny be a proper submodule of M; x M,, where N; is a proper
submodule of M; fori = 1,2. Let ¢ : S(M; x My) — S(M; x My)U{0},
qbi : S(MZ) — S(Mz) U {Q)} be functions with §Z§(N1 X NQ) = ¢1(N1) X
¢2(No) for i = 1,2. Now, we state two following theorems.

Theorem 2.13. Let My X My be an Ry X Ry-module and N; be a proper
submodule of M; fori = 1,2. If Ny x Ny is a ¢-(k,n)-closed submodule
of My x My, then N; is a ¢;-(k,n)-closed submodule of M; fori=1,2
(k>n)

Proof. Let i = 1, Ny # My, ri € Ry with rfm; € Ny \ é1(Ny).
So (r*my,0) € Ny x Ny. Since r¥m; ¢ ¢1(Ny), then (rfm;,0) ¢
¢1(N1) X ¢2<N2) Thus (r’fml,(]) S N1 X N2 \ ¢1(N1) X ¢2(N2).Since
(r1,1)*(mq,0) = (rfmy,0) and Ny x Ns is a ¢-(k, n)-closed submodule
of My X My, then (r1,1)" € (Ny X Ny : My x M) or (r1,1)" "1 (my,0) €
N1 x Ny. It follows that 7' € (N; : M) or r?’lml € Ny, as re-
quired. (]

Theorem 2.14. Let My x My be an Ry X Re-module and ¢ : S(M; X
M) — S(My x My) U {0} be a function with ¢(Ny x No) = ¢1(Ny) X
$a(N2) where ¢; = S(M;) — S(M;)U{D} is a function such that (¢;(M;) :
M;) = R; fori=1,2. If N; is a ¢;-(k,n)-closed submodule of M; for
i =1,2, then Ny X My and My x Ny are ¢-(k,n)-closed submodules of
M, x M, (k’ > 7’L)

Proof. Let (r1,79)¥(m1,ma) € Ny x My \ ¢(Ny x My) where (r1,75) €
R; x Ry and (ml,mg) € My, x My. We have r’fml € N; , Tlng € M,
and (r’fml,rgmg) ¢ ¢1(N1) X ¢2(M2) Since R2 = (¢2<M2) . M2)7
then rfmy € ¢2(My) and hence rfm; ¢ ¢1(Ny). Therefore rim, €
N\ ¢1(Ny). So 7} € (Ny, My) or r"'my € Ny. Thus (r7,r}) €
(N1 x My : My x My) or (r¥~'my, i~ tmy) € Ny x Ms, as required. [

The following theorem is the generalization of Theorem 2.33 in [21].

Theorem 2.15. Let f : M — M’ be an epimorphism R-module,
¢ : S(M) — S(M)U {0} and ¢' : S(M') — S(M") U {0} be two
functions. Then the following conditions hold:

(1) If N is a ¢-(k,n)-closed submodule of M with kerf C N and
f(O(N)) CP'(f(N)), then f(N) is a ¢'-(k,n)-closed submodule of M’
(k>n).

(2) If L is a ¢'-(k,n)-closed submodule of M and f~*(¢/(L)) C ¢(f~1(L)),
then f~Y(L) is a ¢-(k,n)-closed submodule of M (k > n).
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Proof. (1) Let r € R and m/ € M’ with r*m’ € f(N)\ ¢'(f(N)).
There exists m € M such that f(m) = m’. Hence r*f(m) € f(N)
and 78 f(m) ¢ ¢'(f(N)). It follows that 7*m € N and r*m ¢ ¢(N),

)

because ¥ f(m) ¢ f(¢(N)). Thus r*m € N\ ¢(N),sor" € (N : M
or r"“'m € N. Therefore r™ € (f(N): M') or r"~ ' f(m) € f(N)

(2) Let v*m € f~Y(L)\ ¢(f~Y(L)) where m € M and r € R. So r*m €
f~YL) and 7*m ¢ ¢(f~1(L)), thus r*f(m) € L\ ¢'(L). Therefore
r" e (L:M')orr"1f(m) € L, since L is a ¢'-(k,n)-closed submodule
of M'. Thus r" € (f~Y(L): M) or r"'m € f~1(L), as required. ~ [

Let S be a multiplicatively closed subset of R. We know that every
submodule of S™'M is of the form S™'N for some submodule N of M.
Let ¢ : S(M) — S(M)U{0} be a function and define ¢g : S(S™'M) —
S(STM)ULD} by ¢s(S~IN) = S~ 6(N) and gs(SN) = B if 6(N) =
@ where N is a submodule of M.

The following theorem has been proved for (k,n)-closed submodules
and semi n-absorbing submodules (see [21, Theorem 2.30]).

Theorem 2.16. Let M be an R-module and S be a multiplicatively
closed subset of R such that ST'N # S™*M and S~ (#(N)) C ¢s(S7IN).
If N is a ¢-(k,n)-closed submodule of M with (N : M)NS =0, then
SN is a ¢ps-(k,n)-closed submodule of S~ M.

ProafLetTeisandeS1MW1th()km65’1N\gz5( N).
We have = e\ and = o * ¢ ¢s(ST'N). Hence, there exists u € S
such that ur*m € N and ur*m ¢ ¢(N). Therefore = € S™H(N : M) C
(STIN : S7'M) or Ty ™ € STIN. 0

Now, we consider S 'M as an R-module. Let 7 : M — S™'M be
given by m — . Then 7 is R-homomorphism. We show that if Tisa
ps-(k,n)-closed submodule of S~'M, then 7—1(T) is a ¢-(k,n)-closed
submodule of M.

Proposition 2.17. Let M be an R-module and S be a multiplicatively
closed subset in R. Let ¢ : S(M) — S(M) U {0} be a function and
define ¢s @ S(ST'M) — S(ST'M) U {0} by ¢s(T) = S~ o(r (T))
(and ¢5(T) = O when ¢(x=(T)) = 0) for every submodule T of S™'M.
If T is a ¢g-(k,n)- closed submodule of S™'M such that 2t ¢ T for
some m € M, then 7 '(T) is a ¢-(k,n)-closed submodule of M.

Proof. Since 2 ¢ T for some m € M, then 7= '(T) # M. Let r €

R, m € M with 7*m € 7=YT)\ ¢(x=Y(T)). Then r*m € == YT)
rkm rkm — —

and r*m ¢ ¢(7~1(T)). Thus == € T and == ¢ S~'¢(x1(T)). So

Tklm € T\ ¢s(T). Since T is a ¢g-(k,n)-closed submodule of S™'M,
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n—1

then o= € (T : S7'M) or == € T. Thus " € (7 }(T) : M) or

T
7(r"'m) € T, hence 7~ }(T') is a ¢-(k, n)-closed submodule of M. O

Definition 2.18. Let M be an R-module and N be a submodule of
M. Then N is called relatively divisible submodule denoted by RD-
submodule, if rN = NNrM for each r € R. M as an R-module is said
to be prime if rm = 0 where r € R and m € M, then r € Ann(M) or
m = 0. Now, we give the following proposition.

Proposition 2.19. Let M be a prime R-module and N be a proper
submodule of M. If N is a RD-submodule of M with Ann(M) C
(p(N) : M), then N is a ¢-(k,n)-closed submodule of M.

Proof. Let r € R and m € M with r*m € N\ ¢(N). Since N is a
RD-submodule, then 7™M NN = r*N. So v*m € r*M NN = r*N,
hence r*m = r*s, for some s € N. Thus r*(m — s) = 0. Since M
is prime, then r* € Ann(M) or m — s = 0. But if r* € Ann(M),
then r* € (¢(N) : M). So r*m € ¢(N) which contradicts with our
assumption. Thus m — s = 0, hence m € N and so r""!m € N, as
required. O

Definition 2.20. A proper submodule N of M is called finitely com-
pactly packed if for each family {N,}aea of prime submodules of M
with N C U,ea Ny, there exist aq,...,a,, € A such that N C U | N,,..
If N C Ng for some 8 € A, then N is called compactly packed . A
module M is said to be finitely compactly packed (compactly packed),
if every proper submodule N of M is finitely compactly packed ( com-
pactly packed) submodule (see [1]).

We will call a proper submodule N of M as ¢-(k,n)-closed finitely com-
pactly packed if for each family { P, } 4ea of ¢-(k, n)-closed submodules of
M with N C Uyep Py, there exist ay, ..., a,, € A such that N C U, P,..
If N C Nj for some § € A, then N is called ¢-(k,n)-closed compactly
packed. A module M is said to be ¢-(k,n)-closed finitely compactly
packed (compactly packed ) if every proper submodule is a ¢-(k,n)-
closed finitely compactly packed (compactly packed).

For more details concerning finitely compactly packed ( compactly
packed) submodule of a module refer to [1], [7] and [15].

Corollary 2.21. Let M be an R-module and ¢1, ¢po : S(M) — S(M)U
{0} be two functions where S(M) is the set of all submodules of M with
&1 < ¢o. If M is a ¢po-(k,n)-closed finitely compactly packed ( compactly
packed) module, then M is a ¢1-(k,n)-closed finitely compactly packed
( compactly packed) module.

Proof. Clear by Proposition 2.2. 0
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Corollary 2.22. Fvery ¢-(k+1,n+1)-closed finitely compactly packed
(compactly packed) module is a ¢-(k,n)-closed finitely compactly packed
(compactly packed) module.

Proof. Apply Proposition 2.3. O

Theorem 2.23. Let f : M — M’ be an epimorphism R-module,
¢ : S(M) = S(M)uU {0} and ¢ : S(M') — S(M'") U {D} be two
functions. Then the following conditions hold:

(1) If M is a ¢p-(k,n)-closed finitely compactly packed module such that
for every ¢'-(k,n)-closed submodule L of M' we have f~(¢'(L)) C
d(f71(L)), then M" is a ¢'-(k,n)-closed finitely compactly packed mod-
ule.

(2) If M" is a ¢'-(k,n)-closed finitely compactly packed module such
that for every ¢-(k,n)-closed submodule P of M we have kerf C P
and f(op(P)) C ¢'(f(P)), then M is a ¢-(k,n)-closed finitely compactly
packed module.

Proof. (1) Let N’ be a proper submodule of M’. Suppose that N’ C
Uaen P, where P/ is a ¢'-(k, n)-closed submodule of M’ for each av € A.
We have f~H(N') C fHUaeaPL), so f7HN') C Ugeaf 1 (P). Since
P! isa ¢/~ (k,n)-closed submodule of M’ and f~(¢'(P)) C &(f~1(P))
for each o € A, by Theorem 2.15, we get f~'(P’) is a ¢-(k,n)-closed
submodule of M for each @ € A. But M is a ¢-(k,n)-closed finitely
compactly packed module, thus there exist ay,...,qa, € A such that
FUNY) © UL f (P, hence f-H(NY) € fH(ULL ). Since f is
an epimorphism R-module, then N C Uj_, P! . Thus N’ is a ¢'-(k,n)-
closed finitely compactly packed submodule of M’ and hence M’ is a
@'-(k,n)-closed finitely compactly packed module.

(2) Suppose that N is a proper submodule of M with N C Uyep P,
where P, is a ¢-(k,n)-closed submodule of M for every o € A. We
have f(N) C f(UaeaPn). Since P, is a ¢-(k,n)- closed submodule of
M, f(¢(P,)) € ¢'(f(P,)) and kerf C P, for each o € A, by Theorem
2.15, we get f(P,) is a ¢'-(k,n)-closed submodule of M’. Since M’ is
a ¢'-(k,n)-closed finitely compactly packed module, then there exist
aq, ..., o, € Asuch that f(N) C UM, f(P.,). Now, assume that n € N,
therefore f(n) € f(Ul,P,,), so f(n) = f(m) for some m € U, P,..
Thus n —m € kerf C P,, and m € F,, for some a; € {ay,...,an}.
Thus n € P,, and hence n € UL, P,,. It follows that N C U, P,,. So
N is a ¢-(k,n)-closed finitely compactly packed submodule of M and
hence M is a ¢-(k,n)-closed finitely compactly packed module. O

Theorem 2.24. Let M be an R-module, S be a multiplicatively closed
setin R and ¢ : S(M) — S(M)U{D}, ¢s: S(S™*M) — S(S~*M)u{0}
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be two functions such that ¢s(T) = S™Hp(x1(T)) for every submodule
T of ST'M where m : M — S™'M by w(m) = 2 for each m € M and
£ ¢ T for somex € M. If M is a ¢-(k,n)-closed compactly packed
module, then S™*M is a ¢g-(k,n)-closed compactly packed module.

Proof. Let T be a proper submodule of S™'M. Suppose that T' C
Uaea P where P, is a ¢g-(k,n)-closed submodule of S™M for each
a € A. We have 77 HT) C 7 Y (UnerP) = Uaenm H(P,). Since 7~ 1(T))
is a proper submodule of M and 7~ (P,) is a ¢-(k, n)-closed submodule
of M for each a € A , by Proposition 2.16., we get 7= 1(T) C 7 (P;)
for some § € A, because M is a ¢-(k,n)-closed compactly packed
module. On the other hand, we write S™'(77!(T")) = T because
S T) ={2|men'(T),secS}={2|2ecT,secS}="T

1s 1
(so that we can consider submodule T as S™' R-module S~'M). There-

fore SH(m~(T)) C S~ (7~ (Pg)) implies that T C Pj for some 3 € A
. So S7IM is a ¢g-(k,n)- closed compactly packed module. O
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