Journal of Algebraic Systems
Vol. 9, No 1, (2021), pp 119-135

ALGORITHMIC ASPECTS OF ROMAN GRAPHS
A. POUREIDI*

ABSTRACT. Let G = (V, E) be a graph. A set S C V is called a
dominating set of G if for every v € V'\ S there is at least one vertex
u € N(v) such that v € S. The domination number of G, denoted
by v(G), is equal to the minimum cardinality of a dominating set
in G. A Roman dominating function (RDF) on G is a function
f:V —{0,1,2} such that every vertex v € V with f(v) = 0 is
adjacent to at least one vertex u with f(u) = 2. The weight of f
is the sum f(V) =3 .y f(v). The minimum weight of a RDF on
G is the Roman domination number of G, denoted by vg(G). A
graph G is a Roman Graph if vg(G) = 2v(G).

In this paper, we first study the complexity issue of the problem
posed in [E. J. Cockayane, P. M. Dreyer Jr., S. M. Hedetniemi and
S. T. Hedetniemi, On Roman domination in graphs, Discrete Math.
278 (2004), 11-22], and show that the problem of deciding whether
a given graph is a Roman graph is NP-hard even when restricted
to chordal graphs. Then, we give linear algorithms that compute
the domination number and the Roman domination number of a
given unicyclic graph. Finally, using these algorithms we give a
linear algorithm that decides whether a given unicyclic graph is a
Roman graph.

1. INTRODUCTION

For notation and terminology not given here we refer to [7]. Let
G = (V, E) be a graph with the vertex set V' and the edge set E. The
open neighborhood of a vertex v € V is N(v) = {u € V : uwv € E}. The

DOI: 10.22044 /jas.2020.8188.1400.
MSC(2010): Primary: 05C85; Secondary: 05C69.
Keywords: Dominating set, Roman dominating function, 3-SAT Problem, unicyclic graph.
Received: 11 March 2019, Accepted: 16 October 2020.
*Corresponding author.
119

120 POUREIDI

degree of v is deg(v) = |N(v)|. A vertex of degree one is referred as
a leaf. A path (respectively, cycle) graph of order n is denoted by P,
(respectively, Cy,). A graph is unicyclic if it is connected and contains
precisely one cycle.

For a graph G = (V, E), a set S C V is called a dominating set (DS)
of G if every v € V'\ S is adjacent to at least one vertex u € S. Further-
more, if S induces a connected subgraph of G, then S is a connected
dominating set (CDS) of G. The domination number (respectively,
connected domination number) of G, denoted by v(G) (respectively,
7:(@)), is the minimum cardinality of a dominating set (respectively,
connected dominating set) of G. A DS of G of minimum cardinality is
referred as a y(G)-set. A connected DS of G of minimum cardinality
is referred as a 7.(G)-set.

A function f: V — {0,1,2} is a Roman dominating function (RDF)
of G if every vertex u with f(u) = 0 is adjacent to at least one vertex
v with f(v) = 2. The weight of a RDF f, denoted by w(f), is the
sum f(V) = >, .y f(v). The mathematical concept of Roman domi-
nation, defined and discussed by Stewart [! 1], and ReVelle and Rosing
[10], and subsequently developed by Cockayne et al. [1]. A hundred
papers published on various aspects of Roman domination in graphs,
for example [1, 2, 3, 5, 12, 13]. A ygr(G)-function is a RDF f on G
with w(f) = vz(G). For a RDF f on G, we denote by V; (or V/ to
refer to f) the set of all the vertices of G with label ¢ under f. Thus, a
RDF f can be represented by (Vp, V1, V5), and we can use the notation
f = Vo,V1,Vs). A graph G with vg(G) = 2v(G) is called a Roman
graph. Cockayne et al. [1] posed the following problem.

Problem 1. Characterize the Roman graphs.

Henning [¢] gave a constructive characterization of Roman trees.
Liedloff et. al. [9] gave algorithms for computing the Roman dom-
ination number of interval graphs and cographs. Also, they gave a
linear-time algorithm for recognizing Roman cographs.

In this paper, in Section 3 we prove that the decision problem re-
lated to Problem 1 is NP-hard even when restricted to chordal graphs.
In Section 4, we give linear algorithms that compute the domination
number and Roman domination number of a given unicyclic graph.
Finally, using these algorithms we give a linear algorithm that decides
whether a given unicyclic graph is a Roman graph.

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 121

2. PRELIMINARY

Consider the following family of graphs related to Problem 1:
e Family Fgo: the family of all graphs G with vx(G) = 2v(G).
e Family Froo.: the family of all graphs G with vz(G) = 2v(G) =
27:(G).

Note that Froo. is an infinite family even when restricted to chordal
graphs, since for any positive integer n, if T,, is the tree obtained from
P, by adding three new leaves to any vertex of P,, then it can be seen
that T,, € Froge. Also, there are chordal graphs that do not belong to
Frooe. It is clear that v(P,) # 7.(P,) and so P, ¢ Fras.. The following

is obvious.
Corollary 2.1. .FRQQC - .FRQ.

Thus, to prove the NP-hardness of problem of whether a given graph
belongs to Fry we only need to prove the NP-hardness of problem of
whether a given graph belongs to Fras.. To this end, we introduce a
reduction from 3-SAT Problem. Recall that 3-SAT is the problem of
deciding whether a given Boolean formula in 3-conjunctive normal form
is satisfiable. It is well-know that 3-SAT Problem is NP-complete [0].
Let ® = {C, X'} be an instance in 3-SAT Problem, that is, ® be Boolean
formula in 3-conjunctive normal form. Let C = {cy,¢a, ..., ¢} be a set
of I > 1 clauses over a set X = {xy,...,x;} of k > 3 variables. For
each 1 < j </, the clause ¢; (consisting of exactly three literals) is of
the form ¢; = {y1;,¥25, y3;}, where each of yy;, y2; and ys; is either a
variable or the negative of a variable in X.

3. NP-HARDNESS RESULTS

Consider the following decision problems.

Roman Graph (RG) Problem:
Instance: A graph G.
Question: Is G € Fry?

Roman 2Connected-Domination (R2CD) Problem:
Instance: A graph G.
Question: Is G € Froo.?

Let ® = {C, X} be an instance in 3-SAT Problem. We construct
graph Gg corresponding to ® as follows. For each variable z;, where

1 < i < k, we construct a graph G; as a variable gadget, where G; is

obtained from a path graph of order 2 with vertices u}, u? such that each

1)

122 POUREIDI

21 22

-
v% U% v v§ w
I
UV
o/l
FicGure 1. Illustrating Gg corresponding to & =
{{c1, 2}, {x1, 29, 23}}, where ¢; = {—x1, 2,23} and

Co = {$1,_'$2,l‘3}-

of vertices u},u? is adjacent to a new vertex v$ for each s € {1,2,3}.
For each clause ¢; = {v1j, 25,3}, where 1 < j < I, we add a new
vertex z; such that z; is adjacent to three new leaves. For s = 1,2, 3, if
Ysj = X;, for some 1 <7 < k, then we add an edge ufzj and if y5; = —ay,
for some 1 < ¢ < k, then we add an edge ullzj We add a new vertex
o such that is adjacent to three new leaves and add edges ou; and ou?
for each 1 < i < k. Finally add all edges ab for each a € {u},u?} and

177

b€ {ul,u?} and for all 1 <i < j < k. Let G be the resulting graph.

VRE
See Figure 1. It is easy to see that G¢ is a chordal graph.

Lemma 3.1. v(Go) =k + 1+ 1.

Proof. Let S be a 7(Gg)-set. Since each of vertices o and z;, where
1 < j </, is adjacent to three leaves, both o, z; € S. Since all vertices

v}, v vl where 1 < i < k, are only adjacent to vertices u}, u?, at least

one of vertices u},u? belongs to S. So, v(Gg) = |S| >k +1+ 1.
Let S = {o0,z;,u]l <i < k,1 <j <I}. Clearly, S is a DS on
Go with |S| =k + 1+ 1. So, v(Ge) < k+ 1+ 1. This completes the

proof. O
Lemma 3.2. 7z(Go) =2(k+1+1).

Proof. Let f be a yr(Gg)-function. Since each of vertices o and z;,

where 1 < j <, is adjacent to three leaves, we have f(o) = f(z;) =

2. Since all vertices v},v?,v3, where 1 < i < k, are only adjacent

17 1) Y0

to vertices ul,u?, we find that S27_, f(u$) + 322, f(vf) > 2. So,

7 1

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 123

Let Vo = {o0,2;,u}|1 <i < k,1 < j <} Clearly, f = (V(Gs) —
Vo, 0,V3) is a RDF on Gg with w(f) = 2(k+ 1+ 1). So, 7r(Gs) <
2(k + 1+ 1). This completes the proof. O

Lemma 3.3. The Boolean formula ® is satisfiable if and only if G €
«FR22c-

Proof. Assume that ® is satisfiable. Let T be an assignment of truth
values for the variables of X for which ® evaluates to true. We construct
a set S on the vertex set of Gg as follows. Initialize S to be {o,z; :
1 < j <I}. If T assigns the value true (respectively, the value false) to
z;, then we add the vertex u? (respectively, the vertex u}) to S. It is
casy to see that S is a connected DS on G¢ with |S| =k + 1+ 1. So,
7.(Go) < k+1+1. By Lemma 3.1 we have v(Gs) = k+ [+ 1. By the
fact v(G) < 7.(G) for any graph G, it obtains that v.(Gg) = k+ 1+ 1.
By Lemma 3.2 we have 7g(Go) = 2(k+{+1). So, 7r(Ge) = 27.(Ge) =
2’7(G¢), that iS, G.:p S .FRQQC.

Let Go € Frose- By Lemma 3.1 we have v(Gg) = k+ 1+ 1. Let S
be a connected DS on Gg. So, |S| = k+ 1+ 1. Clearly, both o and
zj, where 1 < j <[, belong to S. Since S is a connected dominating
set and o belongs to S, at least one of vertices u} and u? belongs to
S for each 1 < ¢ < k. If both ull,uz2 € S for some 1 < ¢ < k, then
|S| > k +1+1, a contradiction. So, either both u} € S and u? ¢ S or
both u} ¢ S and u? € S for each 1 <14 < k.

We fix indices 72 and j, where 1 < ¢ < k and 1 < 5 < [. Recall that
either both u} € S and u? ¢ S or both u} ¢ S and u? € S. Ifu} ¢ S
and u? € S (respectively, u} € S and u? ¢ S), then we assign the value
true (respectively, the value false) to the variable z;. We claim that
® is satisfiable for this assignment.

Assume without loss of generality that ¢; = {z1, @q,26}. Since
z; € S, we have u € S, uy € S or v € S. Assume without loss
of generality that u} € S. So, x; has the value true. It causes to
satisfy the clause c;, that is, the Boolean formula @ is satisfiable. This
completes the proof. O

We can compute Gg in polynomial time. By Lemma 3.3 and the
fact that G is a chordal graph we have the following result.

Theorem 3.4. R2CD Problem is NP-hard even when restricted to
chordal graphs.

By Corollary 2.1 and Theorem 3.4 we have the following.

Corollary 3.5. RG Problem is NP-hard even when restricted to chordal
graphs.

124 POUREIDI

4. COMPUTING ROMAN DOMINATION NUMBER OF UNICYCLIC
GRAPHS

In this section, we give a linear algorithm that computes the Roman
domination number of unicyclic graphs. Recall that a connected uni-
cyclic graph is a connected graph with an unique cycle. Let G = (V, E)
be a graph with u € V and let a € {0,1,2}. We define the following.

e Yr(G,u =a) =min{w(f)|f is a RDF on G with f(u) = a}.

A (G, u = a)-function is a RDF f on G with w(f) = vgr(G,u = a)
and f(u) = a.

Lemma 4.1. Let H, = (Vi, E1) and Hy = (Va, Es) be two graphs with
ViNVy =0 such that u € Vi, v € V3 and a vertex w ¢ Vi U V,. Let
G = ViUV, Ey U EyU{uv}). Then, we have the following.

<Z> 'VR(G,U = O) = HliIl{’}/R(Hl,u = 0) + ’YR(HQ/U = 0)77R<H17 u =
0) +vr(Ha,v = 1), yr(H1 — u) + yr(Ha, v = 2)},

(17) yr(G,u =1) = min{yr(Hy,u = 1)+ yr(H2,v = 0),yr(H1,u =
]') + /YR(H%'U = 1),’}/R(H1,U, =]—) + IYR(HQ,U = 2)};

(112) Yr(G,u = 2) = min{yp(H1,u = 2) + r(Hz — v),yr(H1,u =
2) +yr(Hy,v = 1), yr(Hi,u = 2) +vyr(Hz,v = 2)},

(1) Yyr(G — u) = yr(Hy — u) + min{yg(Hz,v = 0),yr(Ha,v =
1), vr(H2,v = 2)}.

Proof. Let f be a vr(G)-function. Clearly, f(u) = a, where a €
{0,1,2} if and only if both f(u) = a and f(v) = 0, both f(u) = a
and f(v) = 1 or both f(u) = a and f(v) = 2. Let fi, fo, fi* and
/5 be restrictions of f to Hy, Hy, Hy — u and Hy; — v, respectively.
Let ¢¢, g5, gt and ¢ be a yg(Hi,u = a)-function, yr(Hs,v = a)-
function, ygr(H; — u)-function and yr(Hs — v)-function, respectively,
where a € {0, 1,2} and let g,(u) = g,(v) = 0.

Let f(u) = 0 and yg = min{yg(H1,u = 0)+yr(Ha,v = 0),yg(Hi,u =
O) + ’)/R(HQ,U = 1),’}/R(H1 — u) + ’}/R(HQ,U = 2)} SO, f1 is a RDF on
H, with fi(u) = 0 and f5 is a RDF on H, with fy(v) = 0, func-
tion f; is a RDF on H; with fi(u) = 0 and f, is a RDF on H, with
fo(v) = 1, or f{*is a RDF on H; — u and f5 is a RDF on H, with
fo(v) = 2. Hence, vg < vr(G,u = 0). Function g; = ¢{ U gl is a
RDF on G with g;(u) = 0, function g, = ¢9 U g4 is a RDF on G with
g2(u) =0 and g3 = g* U g3 Ug, is a RDF on G with g3(u) = 0. Hence,
Yr(G,u = 0) < yg. This completes the proof of part (7).

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 125

Let f(u) = 1 and vg = min{ygr(Hi,u = 1) + yr(Ha,v = 0),
Yr(Hi,u = 1) +yr(Ha,v = 1), yr(Hy,u = 1) + yr(Hz,v = 2)}. So, fi
is a RDF on H; with fi(u) =1 and f; is a RDF on Hy with fo(v) = 0,
function f; is a RDF on H; with fi(u) = 1 and f5 is a RDF on Hy with
fao(v) = 1 or f; is a RDF on H; with fi(u) = 1 and f5 is a RDF on
H, with fy(v) = 2. Hence, g < yg(G,u = 1). Function g; = g{ U ¢§
is a RDF on G with g;(u) = 1, function g, = g{ U g3 is a RDF on G
with g2(u) =1 and g3 = g{ U g3 is a RDF on G with g3(u) = 1. Hence,
Yr(G,u = 1) < g. This completes the proof of part (7).

Let f(u) = 2 and yg = min{ygr(H1,u = 2) +vr(Hs —v),vr(H1,u =
2)+vr(He,v =1),yr(Hy,u = 2) +vyr(Hs,v = 2)}. So, f1 is a RDF on
H, with fi(u) = 2 and f3 is a RDF on Hy — v, function f; is a RDF
on Hy with fi(u) = 2 and fy is a RDF on Hy with fo(v) =1 or f is
a RDF on H; with fi(u) = 2 and f5 is a RDF on Hy with fo(v) = 2.
Hence, vz < Yr(G,u = 2). Function g; = ¢? U gy U g, is a RDF on G
with g;(u) = 2, function g, = ¢ U g3 a RDF on G with go(u) = 2 and
g3 = g3 Ug3 is a RDF on G with g3(u) = 2. Hence, 7r(G,u = 2) < ~x.
This completes the proof of part (7).

Since G —u = (Hy; —u) U Hy and graphs Hy —u and H, are disjoint,
YR(G — u) = yr(Hy — u) + Yr(H2) = Yr(Hy — u) + min{yp(Hz,v =
0),vr(Hz,v = 2),vr(Hz,v = 3)}. This completes the proof of part
(1v). O

We say that a rooted tree T with the vertex set V = {vy, va,...,0,}
has the Property 1, if j <4, where v; € V is the parent of v; € V.

Lemma 4.2. Let T be a tree with uw € V. Algorithm 4.1 computes
values yr(T —u) and yg(T,u = a) for each a € {0,1,2} in linear time.

Proof. We can compute a rooted tree T;, with the root u and Property 1
for T in linear time. Clearly, yg(T—u) = yg(T,—u) and vg(T,u = a) =
Yr(Ty,u = a) for each a € {0,1,2}. By Lemma 4.1, Algorithm RD(T,)
returns (Yr(Ty, v = 0),vr(Tyu,u = 1), vr(Ty,u = 2),vr(T, — uw)). The
running time of each iteration of for loops of Algorithm RD(T,) is
O(1), that is, the running time of Algorithm 4.1 is linear. O

Let a,b € {0,1,2}, let G = (V, F) be a graph with u,v € V and a
vertex w ¢ V. We define the following.
e Yr(G,u=a,v=">0) = min{w(f)|f isa RDF on G with f(u) = a
and f(v) = b},
e Yr(G,u,w,v = a) = min{w(f)|f is a RDF on G + uw with
f(u) =0, f(w) =2 and f(v) = b}.

126 POUREIDI

Algorithm 4.1: RD(T)

Input: A connected rooted tree T' = (V, E) with

V =A{wv1,...,v,}, Property 1 and a vertex w ¢ V.
Output: (yr(T,v1 = 0),yr(T,v1 = 1),7r(T,v1 = 2),7r(T — v1)).
1 fori=1tondo
2 Yr(v; = 0) = 00;
3 yr(v; =1) =1,
4
5

Yr(vi = 2) = 2;

Yr(vi) = 0;

6 for i =n to 2 do

Let v; be the parent of v;;

8 | r(v; =0) =min{yr(v; = 0) +yr(v; = 0), yr(v; =

0) +vr(vi = 1),7r(v;) + Yr(v:i = 2)};

9 VR(;J' =1) = yr(v; = 1) + min{yr(v; = 0), yr(v; = 1), yr(v; =
2)};

10 r(v; = 2) = yr(v; = 2) + min{yr(v;), Yr(vi = 1), vr(v; = 2)};
11 Yr(v;) = yr(v;) + min{yg(v; = 0) + yr(vi = 1) +yr(v; = 2)};
12 return (yg(v1 = 0),vr(v1 = 1), vr(v1 = 2),vr(v1));

-2

Let U be a connected unicyclic graph with the unique cycle C' =
Vo, - - -, Ug—1, Vo, Where k > 3. Let T'(vg, R) = U—wvgvy. Clearly, T'(vg, R)
is a tree with the vertex set V(U).

Lemma 4.3. Let U be a connected unicyclic graph with the unique
cycle vy, ..., v5_1,v9 (k > 2). Then, yg(U) = min{yg(T (v, R),vo =
a,v1 = b)afyR(T(,U(% R) — Vo, U1 = 2)77R(T(U07R) — V1,V = 2)}7 where
(a,0) €{0,1,2} x {0,1,2} — {(0,2), (2,0)}.

Proof. Let (a,b) € {0,1,2} x{0,1,2}\{(0,2),(2,0)}. Assume that v =
min{vg (7T (vo, R),vo = a,v1 = b),7r(T(vy, R)—vo,v1 = 2),vr(T (vy, R)—
V1,V9 = 2)}

Let f be a RDF on T'(vg, R) with w(f) = yr(T(vo, R),vo = a,v1 =
b) and (f(vo), f(v1)) = (a,b). Function f is a RDF on U and so
Yr(U) < 4r(T(vo, R),v9 = a,v; = b), where (a,b) € {0,1,2} x
10,121 {(0,2), 2,0)}.

Let f be a RDF on T(vg, R) — vy with f(v;) = 2 and w(f) =
Yr(T(vg, R) — vo,v1 = 2) and let g(vy) = 0. Function f U g is a
RDF on U and so vg(U) < vr(T(ve, R) — vo,v1 = 2). Similarly,
Yr(U) < y&r(T(vo, R) — v1,v0 = 2). So, yr(U) < 7.

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 127

Let f be a vg(U)-function. We have (f(vo), f(v1)) € {0,1,2} x
{0,1,2} \ {(0,2),(2,0)} or (f(vo), f(v1)) € {(0,2),(2,0)}. In the fol-
lowing we consider these cases.

e Let (f(vo), f(v1)) = (a,b), where (a,b) € {0,1,2} x {0,1,2} \
{(0,2),(2,0)}. Function f is a RDF on T'(vy, R) with f(vg) = a
and f(v1) = b and so Yg(T (v, R),v9 = a,v; = b) < vx(U).

o Let (f(vo), f(v1)) = (2,0). The restriction of f to V(U) \ {v1}
is a RDF on U — vy = T'(vg, R) — vy with f(vg) = 2 and so
Yr(T (vo, R) — v1,v0 = 2) < yr(U).

e Similar to the previous case, if (f(vo), f(v1)) = (0,2), then
Yr(T (vg, R) — vo,v1 = 2) < ygr(U). So, v < vr(U).

This completes the proof. O

By Lemma 4.3 for computing the Roman domination number of a
given unicyclic graph we need to compute the value yg(7,u = a,v = b),
where T is a tree with w,v € V(T') and (a,b) € {0,1,2} x {0,1,2} \
{(0,2),(2,0)}. We claim that Algorithms 4.2, 4.3 and 4.4 compute
these values.

Lemma 4.4. Let T' be a rooted tree with the root u, v € V(T') and a
vertex w & V(T') and let (Yoo, o0, Vo1, Y02) be the output of Algorithm
RDO(T,u,v). Then,

® Y00 = Yr(T,u=0,v=0),

e Yo =Vr(T,u,w,v =0),

e 01 =Vr(T,u=1,0v=0),

e 02 =Yr(T,u=2,v=0).

Proof. Let P(T,v,u) = wo(= v),...,wx(= u) (k > 0) be the short-
est path between v and u in T. The proof is by induction on k£ =
|P(T,v,u)|. Let k = 1. So, u is the parent of v. Let 7" =T, — T,. So,

e r(T,u=0,v=0)=7r(Ty,v=0)+ (T, u=0),

o Yr(T,u,w,v=0) =~vg(T,,v =0) +vr(T" —u) + 2,

e r(T,u=1,v=0)=vr(Ty,v=0) + (T u=1),

o r(T\u=2v=0)=7(T, —v) +vr(T",u=2).
Since k = 1, the for loop of Algorithm RDO(T, u,v) does not exe-
cute. This proves the base case of the induction. Assume that the
result is true for any rooted tree 7" with the root u, v € V(17), a
vertex w ¢ V(T) and |P(T',v,u)] < m, where m > 1. Let T be
a rooted tree with the root u, v € V(T), a vertex w ¢ V(T') and
P(T,v,u) = wo(=0),. .., Wy, Wns1(=u). Let (75,74, 75, 74) be values
of variables (Y00, Y00s Vo1, Yo2) of Algorithm RDO(T, u, v), respectively,
after the iteration of the for loop for each 2 <7 < m + 1. Let T,,,

128 POUREIDI

Algorithm 4.2: RDO(T, u,v)
Input: A connected rooted tree T with the root u, v € V(T') and
a vertex w ¢ V(T).
Output: (Vz(T,u=0,v=0),vz(T,u,w,v =0),yg(T,u=1,v =
0),vr(T,u=2,v=0)).
Let P(T,v,u) = wo(=v),...,wp(=u) (k> 0) be the shortest
path between u and v in T.

[uny

for:=2to k do

T =Ty, — Tw, 1;

ao = min{yr(T", w; = 0) + Y00, Vr(T", w; =
0) + 7501, YR(T" — w;i) + Y02}

10 ar = Yr(T" — w;) + min{y0, Yo1, Yoz } + 2;

11 ag = Yr(T', w; = 1) + min{~o0, 01, Y02 };

12 Yoz = Yr(T", w; = 2) + min{~yy, — 2,701, Y02};

2 T =Ty, — Tu;

3 Yoo = ’VR(Twoa wy = 0) +yr(T", w1 = 0);
4 Yo = Yr(Twy, wo = 0) + Yr(T" — wy) + 2;
5 Yo1 = Yr(Twe, wo = 0) + (1", w1 = 1);
6 Y02 = Yr(Tw, — wo) +Yr(T", w1 = 2);

7

8

9

13 Yoo = Qo

! .
14 "}/00 = (,
15 Yo1 = Q25

16 return (700, 7607 7o1, 702);

be the rooted subtree of T' with the root w,,. Let (agg, gy, o1, o2) and
(Boos Bogs Bo1s Bo2) be outputs of Algorithms RDO(T,u,v) and
RDO(T,,,, wn,v), respectively. Clearly, (ago, gy, o1, 02) =
(76n+1a7f1+177§1+177§n+1) and (B0, o0, Bor, Boz) = (v, 1% 75"). By
the induction hypothesis, we have (Boo, B9, Boos Lo2s Bo3) = (Vr(Tw,,
Wy, = 0,0 = 0),Yr(Tw,,, Wi, w,v = 0), Yr(Tw,,, Wm = 1,0 = 0),vr(Ty,,,
W, = 2,0 =0)).

Let 7" =T —T,,,. Since u is the parent of w,,(# v) (i.e., u is adjacent
to wy,) in T, we have

e r(T)u = 0,v = 0) = min{yg(T",u = 0) + Boo, Vr(T",u
0) + Bor, YrR(T" — u) + Boz}

e Yr(T,u,w,v=0)=min{yr(T" —u)+ Poo+ 2, Yyr(T" —u)+ o1 +
2,Yr(T" — u) + Boz + 2}

e r(T)u = 1,v = 0) = min{yg(T",u = 1) + Boo, Vr(T',u =
1) + Bor, ye(T",u = 1) + Boa}

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 129

Algorithm 4.3: RD1(T', u,v)
Input: A connected rooted tree T with the root u, v € V(T') and
a vertex w ¢ V(T).
Output: (Vz(T,u=0,v=1),yz(T,u,w,v =1),yr(T,u=1,v =
1),vg(T,u=2,v=1)).
Let P(T,v,u) = wo(=v),...,wp(=u) (k> 0) be the shortest
path between u and v in T.

[uny

2 T =Ty, — Tu;

3 Y10 = ’VR(Twoa wy = 1) +vr(T", w1 = 0);
4 Vo = VrR(Twy, wo = 1) + yr(T" — wy) + 2;
5 Y11 = R(Two’ Wo = 1) + IVR(Tlv wy = 1>;
6 M2 = VR(Twy, wo = 1) +yr(T", w1 = 2);

7 forz—2tokdo

8 T =Ty, — Tw, 1;

9 oo = min{yr(T",w; = 0) 4+ v10, Vr(T", w; =
0) + 711, YrR(T" — w;i) + Y12}

10 ar = Yr(T" — w;) + min{y10, 711, Y12} + 2;

1 | ay = p(T",w; =1) + min{yi0, 711, V12};

12 Y12 = YrR(T", w; = 2) + min{~vjy — 2,711, 112}

13 Y10 = Qo;

! .
14 10 = Q15
15 Y11 = O2;

16 return (710, %g, 11, 712);

e r(T,u=2v=0)=min{yvg(T,u =2)+ By — 2,7r(T",u =
2) + Bor, Yr(T',u = 2) + Boa}-
This completes the proof. O

Similar to Lemma 4.4 we have the following results.

Lemma 4.5. Let T' be a rooted tree with the root u, v € V(T') and a
vertez w ¢ V(T') and let (710, V10, Y11, Y12) be the output of Algorithm
RD1(T,u,v). Then,

° ’710 = 7R(T u=0,v=1),

o '710 - R(T u, W,V = 1);

o1 =7(T,u=1v=1),

e 2 =r(T,u=2,v=1).

Lemma 4.6. Let T be a rooted tree with the root u, v € V(T) and a
verter w ¢ V(T) and let (20, Voo, Yo1,Y22) be the output of Algorithm
RD2(T,u,v). Then,

130 POUREIDI

Algorithm 4.4: RD2(T', u,v)
Input: A connected rooted tree T with the root u, v € V(T') and
a vertex w ¢ V(T).
Output: (Vz(T,u=0,v=2),yz(T,u,w,v =2),yg(T,u=1,v =
2),vr(T,u =2v=2)).
1 Let P(T,v,u) = wo(=v),...,wp(=u) (k> 0) be the shortest
path between u and v in T.

2 T =Ty — Ty

38 Y20 = ’VR(Two; wo = 2) +vr(T" — w);

4 Yho = VrR(Twy, wo = 2) + Yr(T" — wy) + 2;

5 Y21 = YR(Twy, wo = 2) + yr(T", w1 = 1);

6 Yoz = YR(Twy, wo = 2) + Yr(T", w1 = 2);

7 forz—2tokdo

8 T =Ty, — Tw, 1;

9 ap = min{yr(T", w; = 0) + Yoo, Yr(T", w; =

0) + 21, Yr(T" — wi) 4+ Y22}

10 ay = Yr(T" — w;) + min{ vz, Y21, Y22} + 2;

11 | ay =r(T",w; = 1) +min{ys0, Y21, Y22 };

12 Yoo = Yr(T", w; = 2) + min{yéo — 2,721, Y22 };

13 Y20 = Qo

! .
14 T20 = Q15
15 Y21 = Oi2;

16 return (720, Wég, V21, 722);

® Y90 = Yr(T,u=0,v=2),
oyéozyR(Tuwv—Z)

e 91 =Vr(T,u=1v=2),
® v = YR(T,u=2,v=2).

Theorem 4.7. There is a linear algorithm that computes the Roman
domination number of a given unicyclic graph.

Proof. Let U be a connected unicyclic graph with the unique cycle
Vo, -+ -, Ug—1, V0. By Lemma 4.3, ygr(U) = min{yg(T(vo, R),vo = a,v; =
b), Yr(T(vo, R) — vo,v1 = 2),vr(T(vo, R) — v1,v9 = 2)}, where (a,b) €
{0,1,2} x{0,1,2}\{(0,2),(2,0)}. It follows from Lemmas 4.2, 4.4, 4.5
and 4.6 that we can compute yg(U) using the outputs of Algorithms
4.1,4.2,4.3 and 4.4.

By Lemma 4.2 the running of Algorithm 4.1 is linear. It remains to
compute running times of Algorithms 4.2, 4.3 and 4.4. Let T be a tree
with u,v € V(T) and let P(T,v,u) = wo(=v),..., wp(=u) (k> 0) be

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 131

Algorithm 5.1: D(T))

Input: A connected rooted tree T' = (V, E) with
V =A{wv,...,v,} and Property 1.
Output: (y(T,v1 = 0),7(T,v1 = 1),%(T = v1)).

1 for =1 ton do
2 ~v(v; = 0) = oo;
3 y(v;=1)=1;

4 ~¥(v;) = 0;

for i =n to 2 do
Let v; be the parent of v;;
¥(v; = 0) = min{y(v; = 0) +y(v; = 0),v(v;) + v(v; = 1) };
V(v =1) =7(v; = 1) + min{y(v;),7(v; = 1) };

L v(vy) = y(v;) + min{y(v; = 0) + y(v; = 1) };

10 return (y(v1 = 0),v(v1 = 1),7(v1));

© W N &«

the shortest path between u and v in T'. Clearly, we can compute the
rooted tree T, with the root u for 7" and P(T,v,u) in linear time. Let
T, be the value of the variable T" of Algorithm RDO(T, u, v) after the
iteration of the for loop for each 2 < m < k. Since the running time
of Algorithm 4.1 is linear, the running time of lines 2-6 of Algorithm
RDO(T,u,v) is O(V(T1)) and the running time of the iteration of
the for loop of Algorithm RDO(T,u,v) for 2 < m < k is O(V(T,,)).
Clearly, V(T;)NV(T};) = 0 for each 2 < i < j < k. So, the running time
of Algorithm RDO(T,u,v) is equal to S¢ , O(V(T,,)) = O(V(T)).
Similarly, running times of Algorithms RD1(T, u,v) and RD2(T, u, v)
are linear. This completes the proof. O

5. COMPUTING DOMINATION NUMBER OF UNICYCLIC GRAPHS

In this section, we give a linear algorithm that computes the dom-
ination number of unicyclic graphs. Let G = (V, E) be a graph such
that uw € V and let a € {0,1}. We define the following.

e Y(G,u=0)=min{|S|: S is a DS on G such that u ¢ S},
e v(G,u=1)=min{|S]: S is a DS on G such that u € S}.

Similar to Lemma 4.1 we have the following.

Lemma 5.1. Let H; = (V4, E1) and Hy = (Va, E3) be two graphs with
ViNVy =0 such that w € Vi andv € V,. Let G = (V1 UV, By U Ey U
{uv}). Then, we have the following.

132 POUREIDI

Algorithm 5.2: DO(T, u,v)
Input: A connected rooted tree T with the root u, v € V(T') and
a vertex w ¢ V(T).
Output: (v(T,u=0,v=0),7(T,u,v =0,w),y(T,u =1,v =0)).
1 Let P(T,v,u) = wo(=v),...,wr(=u) (k> 0) be the shortest
path between u and v in T.

2 T =Ty, — Tup;

3 Y00 = Y (Twy, wo = 0) + (1", wy = 0);

4 ’Y(/)O = V(Twm Wo = 0> + V(T/ o wl) +1

5 Yo1 = V(Lw, — wo) +y(T", w1 = 1);

6 for 1 =2 to k do

7 | T =Ty, —Tw_,;

8 ap = min{y (7", w; = 0) + y00, Y(T" — w;) + Yo1 };
9 ar = y(T" — w;) + min{yo0, Y01} + 1;

10 | Y1 =T, w; = 1) +min{y}y — 1,701 };
11 Yoo = Qp;

12 | Yoo = u;

13 return (Y00, Yo, Yo01);

(1) Y(G,u = 0) = min{y(Hy,u = 0) + y(Hz,v = 0),y(H1 — u) +

V(HQ’U = 1)}?
(17) v(G,u = 1) = min{y(Hy,u = 1) + v(Hy — v),y(Hy,u = 1) +
7(H27U = 1)}7

(1id) V(G —u) =v(Hy — u) + min{y(Hz,v = 0), y(Hz,v = 1)}.
Similar to Lemma 4.2, we have the following.

Lemma 5.2. Let T be a tree with w € V. Algorithm 5.1 computes
values (T, u = 0), y(T,u = 1) and v(T — u) in linear time.

Let G = (V, F) be a graph with u,v € V and a vertex w ¢ V. We
define the following.

e v(G,u=0,v=0) =min{|S|: Sis a DS on G such that u ¢ S
and v ¢ S},

e v(G,u=0,v=1)=min{|S|: S is a DS on G such that u ¢ S
and v € S},

e Y(G,u=1,v=0)=min{|S|: S is a DS on G such that u € S
and v ¢ S},

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 133

Algorithm 5.3: D1(T, u,v)
Input: A connected rooted tree T with the root u, v € V(T') and
a vertex w ¢ V(T).
Output: (v(T,u=0,v=1),7(T,u,v =1, w),y(T,u=1,v =1)).
1 Let P(T,v,u) = wo(=v),...,wr(=u) (k> 0) be the shortest
path between u and v in T.

2 T =Ty, — Tup;

38 710 = V(Twy, wo = 1) +7(T" — wy);

4 710 = W(Twoa Wo = 1) + rY(T/ - wl) + 1

5 Y11 = V(Lwg, wo = 1) + (T, wy = 1);

6 for 1 =2 to k do

7 | T =Ty, —Tw_,;

8 ap = min{y (7", w; = 0) + y10, V(T" — w;) + 711 };
9 a; = Y(T" — w;) + min{y19, 711} + 1;

10 Y11 = (1", w; = 1) + min{vjy — 1,711 };
11 Y10 = Qo;

12 | Yo = ou;

13 return (y10, 710, V11);

e Y(G,u=1,v=1)=min{|S|: S is a DS on G such that u € S
and v € S},

e (G, u,w,v = 0) = min{|S| : S is a DS on G + uw such that
w € S and u,v ¢ S},

e V(G ,u,w,v = 1) = min{|S| : S is a DS on G + ww such that
v,we Sand u ¢ S}

Let U be a connected unicyclic graph with the unique cycle C' =
Vo, - - -, Vk_1, Vo, where k > 3. Recall that T'(vg, R) = U — vgvy. Similar
to Lemma 4.3 we have the following.

Lemma 5.3. Let U be a connected unicyclic graph with the unique cycle
Vo, -5 V-1, (k> 2). Then, v(U) = min{y(T(vy, R),vo = 0,v; =
0),v(T (v, R),vo = 1,01 = 1),v(T(vo, R) — v1,v9 = 1), (T (vo, R) —
Vo, V1 = 1)}

By Lemma 5.3 for computing the domination number of a given
unicyclic graph we need to compute values v(T,u = 0,v = 0) and
Y(T,u=1,v=1), where T is a tree with u,v € V(T'). We claim that
Algorithms 5.2 and 5.3 compute these values. Similar to Lemma 4.4
we have the following results.

134 POUREIDI

Lemma 5.4. Let T' be a rooted tree with the root u, v € V(T') and
w ¢ V(T) and let (o0, Voo, Yo1) be the output of Algorithm DO(T, u,v).
Then,

e Yoo =7(T,u=0,v=0),

g 7(,)0 = ’7(T7u>w7v = 0)7

e o1 =(T,u=1,0v=0).

Lemma 5.5. Let T be a rooted tree with the root u, let v € V(T') and
w & V(T) and let (v10, 710, 711) be the output of Algorithm D1(T, u,v).
Then,

e v =7(T,u=0,v=1),

d 710 = ')/(T,U,U),’U = 1);

e vy =7(T,u=1v=1).

Similar to Theorem 4.7 we have the following.

Theorem 5.6. There is a linear algorithm that computes the domina-
tion number of a given unicyclic graph.

By Theorems 4.7 and 5.6 we obtain the following.

Theorem 5.7. There is a linear algorithm that decides whether a given
unicyclic graph is a Roman graph.

REFERENCES

1. H. Abdollahzadeh Ahangar, M. Chellali, S. M. Sheikholeslami, On the Roman
domination in graphs, Discrete Appl. Math., 232 (2017), 1-7.

2. R. A. Beeler, T. W. Haynesa and S. T. Hedetniemi, Double Roman domination,
Discrete Appl. Math., 211 (2016), 23-29.

3. M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. MacRae, Roman {2}-
domination, Discrete Appl. Math., 204 (2016), 22-28.

4. E. J. Cockayane, P. M. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, On
Roman domination in graphs, Discrete Math., 278 (2004), 11-22.

5. N. Jafari Rad and H. Rahbani, Some progress on the Roman domination in
graphs, Discuss. Math. Graph Theory, 39 (2019), 41-53.

6. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, New York, 1979.

7. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination
in Graphs, Marcel Dekker, In c., New York, 1998.

8. M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph The-
ory, 22 (2002), 325-334.

9. M. Liedloff, T. Kloks, J. Liu and S.-L. Pen, Efficient algorithms for Roman
domination on some classes of graphs, Discrete Appl. Math., 156 (2008), 3400
3415.

10. C. S. Revelle and K. E. Rosing, Defendens imperium romanum: a classical
problem in military strategy, Amer. Math. Monthly 107 (2000), 585-594.

ALGORITHMIC ASPECTS OF ROMAN GRAPHS 135

11. I. Stewart, Defend the roman empire!, Sci. Amer., 281 (1999), 136-139.

12. J. Yue, M. Wei, M. Li and G. Liu, On the Roman domination of graphs, Appl.
Math. Comput., 338 (2018), 669—675.

13. X. Zhang, Z. Li, H. Jiang and Z. Shao, Double Roman domination in trees,
Inform. Process. Lett., 134 (2018), 31-34.

Abolfazl Poureidi
Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood,
Iran.
Email: a.poureidi@shahroodut.ac.ir

Journal of Algebraic Systems

ALGORITHMIC ASPECTS OF ROMAN GRAPHS
A. POUREIDI
33 §LBIS iy S o 50
S5 il
Olxl g mld wg,els gas Bl (o2l psle susisls

b G BB s poma K [S C V(545 g0 <ol SIS G = (V)) S 3 3
1w S Ul G Sl sse ol S s aly S0 J3lam 0 55l V\ S 55 uly o 51
(RDF) gy Sl wb o oamsimn olss 1(G) b Ll S ol G Sl 4o S
S eosbw f(v)=cbveV b pSgsbocal [V = {0V, Y} 26 G ¢ly
RDF S 0135 S -2l f(V) = Zoev F(0) b 2l f 03 ool f(u) = Y Ll
SIS L G OIS w0 (2l YR(G) L Lol 5 sl G ooy s Skl sas 1, Gl
AR(G) = YY(G) SV asbioo a5

g.§u“ Sl 9 d‘;gﬁi 4&‘..3\ Sy90 4d 6J:‘§r':'°*43 i 45‘.:.@:@ QL?.S \.3.3..3\ Jlis C):" 3
SIS o 5Sm oass S S €l b s 2 S s ol NP-hard des
~C~‘d‘CJA5J d\;&f)y&?

	1. Introduction
	2. Preliminary
	3. NP-hardness results
	4. Computing Roman domination number of unicyclic graphs
	5. Computing domination number of unicyclic graphs
	References

