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LEFT ABSORBING HYPER K-ALGEBRAS

S. MADADI AND M. A. NASR-AZADANI∗

Abstract. In the present manuscript, we introduce a type of hy-
per K-algebra which is called left absorbing hyper K-algebra and
investigate some of the related properties. We also show that set
of all types of positive implicative and commutative hyper K-ideal
form a distributive latttice and study their diagrams when positive
implicative and commutative hyper K-ideal are a hyper K-ideal and
the hyper K-algebra is left absorbing.

1. Introduction

The concept of BCK-algebra that is a generalization of set differ-
ence and propositional calculi was established by Imai and Iséki [4] in
1966. In [5], Jun et al. applied the hyper structures BCK-algebra. In
1934, Marty [7] introduced for the first time the hyper structure the-
ory in the 8th congress of Scandinavian Mathematicians proceedings.
In [3], Borzooei et al. introduced the generalization of BCK-algebra
and hyper BCK-algebra, called hyper K-algebra. They studied prop-
erties of hyper K-algebra. In [9], Roodbari et al. defined 27 different
types of positive implicative and 9 different types of commutative hy-
per K-ideal. In [2], Borzooei et al. studied lattices structures on ideals
of a BCK-algebras. In this article, we introduce left absorbing hyper
K-algebra and investigate some related properties. Moreover, We show
that all types of positive implicative and commutative hyper K-ideals
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that defined in [9], form a distributive latttice and study their diagrams
when the hyper K-agebra is left absorbing. Section 2, concerns defini-
tions and theorems that are needed in the sequel. Section 3, we give
definition of left absorbing hyper K-algebras and then we investigate
some properties of them.

2. Preliminaries

In this section, we give concerns definitions and theorems that are
needed in the sequel.

Definition 2.1. [3] Let H be a nonempty set and “ ◦ ” be a hyper
operation on H, that ◦ is a function from H×H to P ∗(H) = P (H)\{∅}.
Then H is called a hyper K-algebra iff it contains a constant “0” and
satisfies the following axioms:

(HK1): (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(HK2): (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3): x < x
(HK4): x < y, y < x =⇒ x = y,
(HK5): 0 < x

for all x, y, z ∈ H, where x < y means 0 ∈ x ◦ y and for every A,B ⊆
H,A < B is defined by ∃a ∈ A, ∃b ∈ B such that a < b. If A,B ⊆ H,
then A ◦B :=

∪
a∈A,b∈B a ◦ b.

Theorem 2.2. [3] Let (H, ◦, 0) be a hyper K-algebra. Then for all
x, y, z ∈ H and for all nonempty subsets A,B and C of H the following
statements hold:
(i)x ◦ y < z ⇔ x ◦ z < y,
(ii) (x ◦ z) ◦ (x ◦ y) < y ◦ z,
(iii)x ◦ (x ◦ y) < y,
(iv)x ◦ y < x,
(v)A ⊆ B ⇒ A < B,
(vi)x ∈ x ◦ 0,
(vii) (A ◦ C) ◦ (A ◦B) < B ◦ C,
(viii)A ◦ B < C ⇔ A ◦ C < B.

Definition 2.3. [11] Let H1 and H2 be two hyper K-algebras. A
mapping f : H1 → H2 is said to be a homomorphism if

(1) f(0) = 0,
(2) f(x ◦ y) = f(x) ◦ f(y),∀x, y ∈ H1.

Theorem 2.4. [11] Let (H1, ◦1, 0) and (H2, ◦2, 0) be two hyper K-
algebras and H = H1 × H2. Then (H, ◦, 0) where (a1, b1) ◦ (a2, b2) =
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(a1 ◦1 a2, b1 ◦2 b2) for all (a1, b1), (a2, b2) ∈ H is a hyper K-algebra, and
it is called the hyper K-product of H1 and H2.
Definition 2.5. [10] A hyper K-algebra (H, ◦, 0) is called simple if for
all distinct elements a, b ∈ H \{0}, a ̸< b and b ̸< a, otherwise is called
normal.
Theorem 2.6. [10] Let (H, ◦, 0) be a simple hyper K-algebra. Then
for all x ∈ H, x ◦ 0 = {x}.
Definition 2.7. [1] Let (H, ◦, 0) be a hyper K-algebra. Then (H, ◦, 0)
is called:
(i) weak implicative, if for all x, y ∈ H, x < x ◦ (y ◦ x),
(ii) implicative, if for all x, y ∈ H, x ∈ x ◦ (y ◦ x).
Definition 2.8. [3, 11] Let I be nonempty subset of a hyper K-algebra
such that 0 ∈ I. Then I is said to be a hyper K-ideal (weak hyper K-
ideal) of H if x ◦ y < I(x ◦ y ⊆ I) and y ∈ I imply x ∈ I for all
x, y ∈ H.
Theorem 2.9. [9] Let I be a hyper K-ideal of hyper K-algebra (H, ◦, 0)
and A,B be nonempty subsets of H, then A ◦B < I iff A ◦B ∩ I ̸= ∅.
Notation 2.10. Let A and I be two nonempty sets, we set AR1I :=
A ⊆ I, AR2I := A ∩ I ̸= ∅ and AR3I := A < I.

Definition 2.11. [9] Let I be a nonempty subset of a hyper K-algebra
(H, ◦, 0) such that 0 ∈ I. Then I is called a positive implicative hyper
K-ideal of type (i, j, k) of H and we write I − PIHKI(i, j, k), if (x ◦
y) ◦ zRiI and y ◦ zRjI imply that x ◦ zRkI for all x, y, z ∈ H, i, j, k ∈
{1, 2, 3}.
Definition 2.12. [9] Let I be a nonempty subset of a hyper K-algebra
(H, ◦, 0) such that 0 ∈ I. Then I is called a commutative hyper K-ideal
of type (i, j) and we write I − CHKI(i, j), if (x ◦ y) ◦ zRiI and z ∈ I
imply that x ◦ (y ◦ (y ◦ x))RjI for all x, y, z ∈ H, i, j ∈ {1, 2, 3}.
Definition 2.13. [1] Let I be a nonempty subset of a hyper K-algebra
(H, ◦, 0) such that 0 ∈ I. Then I is called an implicative (weak im-
plicative) hyper K-ideal if (x ◦ z) ◦ (y ◦x) < I ((x ◦ z) ◦ (y ◦x) ⊆ I) and
z ∈ I imply x ∈ I, for all x, y, z ∈ H.
Theorem 2.14. [1] Let I be a hyper K-ideal of hyper K-algebra H. Then
I is an (weak) implicative hyper K-ideal if and only if (x ◦ (y ◦ x) ⊆
I)x ◦ (y ◦ x) < I implies that x ∈ I, for any x, y ∈ H.
Definition 2.15. [6] Let ρ be a relation defined on a set X. Then
converse of ρ (denoted by ρ̄) is defined by a ρ̄ b ⇔ b ρ a, a, b ∈ X.
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Definition 2.16. [6] If (X, ρ) be a partially ordered set (poset) then
the poset (X̄, ρ̄), where X̄ = X and ρ̄ is converse of ρ is called dual of
X.

Definition 2.17. [6] Let (L,≤) be a partially ordered set. Then L
is called a chain if every two members are comparable, i.e. x ≤ y
or y ≤ x for all x, y ∈ L, and it is said to be a lattice if for every
a, b ∈ L, Sup{a, b} and Inf {a, b} exist in L, in this case, we write
Sup{a, b} = a ∨ b and Inf{a, b} = a ∧ b.

Definition 2.18. [6] A lattice L is called a distributive lattice if a ∧
(b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L.

Theorem 2.19. [6] A chain is a distributive lattice.

Theorem 2.20. [6] Two lattices L and M are distributive lattices iff
L×M is distributive lattice.

3. Left absorbing hyper K-algebras
In this section we define the concept of left absorbing hyper K-

algebras. Also, some related properties are investigated.

Definition 3.1. Let H be a nonempty set and ”◦” a hyper operation
on H. Then ”◦” is called a left absorbing hyper operation if x ∈ x ◦ y
for all x, y ∈ H.

Theorem 3.2. Let H containig 0 be a set and ”◦” a left absorbing
hyper operation on H. Then (H, ◦, 0) is hyper K-algebra iff satisfies
the following axioms:

(1) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(2) x < x,
(3) x < y, y < x =⇒ x = y.

for all x, y, z ∈ H.

Proof. Let H be a hyper K-algebra, it is clear (1), (2) and (3) hold.
Conversely, since ” ◦ ” is a left absorbing hyper operation on H, we
have x ◦ y ⊆ (x ◦ z) ◦ (y ◦ z) then (x ◦ z) ◦ (y ◦ z) < x ◦ y, also 0 ∈ 0 ◦ x,
for all x, y, z ∈ H, so (HK1) and (HK5) hold and (H, ◦, 0) is a hyper
K-algebra. □

The following examples show that properties (1) and (2) in the above
theorem are independent from each other.

Example 3.3. Let H = {0, 1, 2} and consider the following Cayley
tables:
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◦1 0 1 2
0 {0} {0} {0}
1 {1,2} {1,2} {0,1}
2 {2} {2} {0,2}

◦2 0 1 2
0 {0} {0} {0}
1 {1,2} {0,1} {1,2}
2 {2} {2} {0,2}

Hyper operations ◦1 and ◦2 are left absorbing on H. In (H, ◦1, 0) the
properties 1 and 3 hold, but 1 ≮ 1 and in (H, ◦2, 0) the properties 2
and 3 hold but (1 ◦2 0) ◦2 2 ̸= (1 ◦2 2) ◦2 0.

Definition 3.4. The hyper K-algebra which has been introduced in
theorem 3.2 is called a left absorbing hyper K-algebra.

Example 3.5. Let H = {0, 1, 2} and consider the following Cayley
tables:

◦1 0 1 2
0 {0,1} {0} {0}
1 {1} {0,1} {1}
2 {1,2} {0,2} {0,2}

◦2 0 1 2
0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0,1} {0,1,2}

Then (H, ◦1, 0) is a left absorbing hyper K-algebra, but (H, ◦2, 0) is not
a left absorbing hyper K-algebra, since 2 /∈ 2 ◦2 1.

Theorem 3.6. Let (H1, ◦1, 0) and (H2, ◦2, 0) be a left absorbing hyper
K-algebra and a hyper K-algebra respectively, and f : H1 → H2 be
an onto homomorphism. Then (H2, ◦2, 0) is a left absorbing hyper
K-algebra.

Proof. Let t, s ∈ H2. Since f is an onto homomorphism, there exist
x, y ∈ H1 that f(x) = t and f(y) = s. Since (H1, ◦1, 0) is a left
absorbing hyper K-algebra, we have x ∈ x ◦1 y. So f(x) ∈ f(x ◦1
y) = f(x) ◦2 f(y) = t ◦2 s and (H2, ◦2, 0) is a left absorbing hyper
K-algebra. □

Theorem 3.7. Let H1 and H2 be two left absorbing hyper K-algebras.
Then H = H1 ×H2 is a left absorbing hyper K-algebra.

Proof. By Theorem 2.4, H is a hyper K-algebra. Since x1 ∈ x1 ◦1 x2

and y1 ∈ y1◦2y2 we have (x1, y1) ∈ (x1◦1x2, y1◦2y2) = (x1, y1)◦(x2, y2)
and the proof is complete. □

Theorem 3.8. Let (H, ◦, 0) be a left absorbing hyper K-algebra. Then
the hyper operation ◦ is order preserving, i.e. if y < z then x◦y < x◦z
and y ◦x < z ◦x, for all x, y, z ∈ H. Also if B < C then A◦B < A◦C
and B ◦ A < C ◦ A, for all subsets A,B and C of H.
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Proof. Since x ∈ x ◦ t for all x, t ∈ H we get x ◦ y < x ◦ z. Also y < z
implies y ◦ x < z ◦ x, since y ∈ y ◦ x and z ∈ z ◦ x. The proof of the
other cases are similar. □

Theorem 3.9. Let (H, ◦, 0) be a simple hyper K-algebra. Then H is
a left absorbing hyper K-algebra.

Proof. Let x, y ∈ H. By Theorem 2.2 (iv), we have x ◦ y < x, so there
exist a ∈ x ◦ y where a < x. Since H is simple we get a = 0 or a = x.
If a = 0 then 0 ∈ x ◦ y which is a contradiction to the simplicity of H.
Thus a = x and x ∈ x ◦ y. □

Theorem 3.10. Let (H, ◦, 0) be a simple left absorbing hyper K-algebra.
Then for all x ∈ H, 0 ◦ 0 ⊆ x ◦ x.

Proof. By (HK2), (HK3) and Theorem 2.6, we have 0◦0 ⊆ (x◦x)◦0 =
(x ◦ 0) ◦ x = x ◦ x. □

In Example 3.5, (H, ◦1, 0) is a left absorbing hyper K-algebra but it
is not simple and 0 ◦1 0 ̸⊆ 2 ◦1 2.
It is clear that any implicative hyper K-algebra is weak implicative hy-
per K-algebra but the converse is not true. For example, (H, ◦2, 0) in
Example 3.5, is weak implicative hyper K-algebra but it is not implica-
tive hyper K-algebra. The following theorem shows that these concepts
are equivalent when the hyper K-algebra is left absorbing.

Theorem 3.11. Let (H, ◦, 0) be a left absorbing hyper K-algebra. Then
H is implicative hyper K-algebra.

Proof. Since x ∈ x ◦ (y ◦ x), by definition 2.7(iii), H is implicative. □

Theorem 3.12. Let (H, ◦, 0) be a left absorbing hyper K-algebra and
0 ∈ I ⊆ H. Then I is a weak hyper K-ideal.

Proof. Let x ◦ y ⊆ I and y ∈ I. Since H is a left absorbing hyper
K-algebra we have x ∈ I. □

The left absorbing condition in Theorem 3.12 is necessary, since I =
{0, 1} is not weak hyper K-ideal of (H, ◦2, 0) in Example 3.5, because
2 ◦2 1 ⊆ I and 2 /∈ I. Even, under condition of Theorem 3.12, I may
not be hyper K-ideal of H. Because I = {0, 1} is not a hyper K-ideal
of (H, ◦1, 0) in Example 3.5, since 2 ◦1 1 < I and 2 /∈ I. Now, we
want to study the relationship between all types of positive implicative
and commutative hyper K-ideals. We show that all types of these two
hyper K-ideals form a distributive lattice. Also, we investigate these
relationships in a left absorbing hyper K-algebra.
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3.1. Lattice of I − PIHKI(i, j, k) and left absorbing hyper K-
algebras.
Theorem 3.13. Let A and I be two nonempty subsets of a hyper
K-algebra H. Then ARiI imply ARjI iff i ≤ j where i, j, k ∈ {1, 2, 3}.
Proof. Since A ⊆ I ⇒ A ∩ I ̸= ∅ ⇒ A < I, by notation 2.10, we have
ARiI ⇒ ARjI iff i ≤ j. □
Theorem 3.14. Let H be a hyper K-algebra and L be a set of I −
PIHKI(i, j, k) on H, such that I is fixed and i, j, k ∈ {1, 2, 3}. Then
(L, ⊑) is a distributive lattice where (i, j, k) ⊑ (i′, j′, k′) iff i ≥ i′, j ≥ j′

and k ≤ k′.
Proof. Let L = ({(i, j, k)|i, j, k ∈ {1, 2, 3}},⊆) and L1 = ({1, 2, 3}, ≤)
where ≤ is usual order and L2 is dual of L1. Then it is clear that L1

and L2 are chains, so (L, ⊑) is isomorphic to L2 × L2 × L1 and by
Theorems 2.19 and 2.20, (L, ⊑) is a distributive lattice. □

The diagram of the lattice introduced in Theorem 3.14 is as Figure
1 (for simplicity, we use ijk instead of I − PIHKI(i, j, k)), if I be
a hyper K-ideal of H, then by Theorems 3.15, 3.17, 3.18 and 3.19 in
Ref. [9], AR2I is equivalent to AR3I and in this case, its diagram is as
Figure 2. In the following diagrams, any two comparable elements are
joined by lines and non-comparable elements are not joined. Moreover,
in such a way that if ijk ≤ i′j′k′ then ijk lies left i′j′k′ in the Figure
1.

Theorem 3.15. Let (H, ◦, 0) be a left absorbing hyper K-algebra and
0 ∈ I ⊆ H. Then I is a I − PIHKI(1, j, k) where j, k ∈ {1, 2, 3}.
Proof. Let (x ◦ y) ◦ z ⊆ I. Since H is left absorbing hyper K-algebra
we have, x ◦ z ⊆ (x ◦ y) ◦ z ⊆ I and by Theorem 3.13 the proof is
complete. □

The following example shows that in Theorem 3.15, the left absorb-
ing condition of H is necessary.

Example 3.16. Consider a hyper K-algebra H = {0, 1, 2} with Cayley
table as follows. Then (H, ◦, 0) is not left absorbing and I = {0, 1} is
not a I − PIHKI(1, 1, 3). Since (2 ◦ 1) ◦ 0 = {1} ⊆ I and 1 ◦ 0 ⊆ I
but 2 ◦ 0 ̸< I.

If H be a left absorbing hyper K-algebera then all I−PIHKI(1, j, k)
where j, k ∈ {1, 2, 3} are equivalent to each other and the diagram of
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Figure 1. Diagram of I − PIHKI(i, j, k)
Figure 2. Diagram of
I −PIHKI(i, j, k), when I is
a hyper K-ideal

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {0,1}
2 {2} {1} {0,1,2}

I − PIHKI(i, j, k), is as Figure 3. when I is a hyper K-ideal, its
diagram is as Figure 4.

3.2. Lattice of I−CHKI(i, j) and left absorbing hyper K-algebras.

Theorem 3.17. Let H be a hyper K-algebra and L′ be a set of I −
CHKI(i, j) on H, such that I is fixed and i, j ∈ {1, 2, 3}. Then (L′, ⪯)
is a distributive lattice where (i, j) ⪯ (i′, j′) iff i ≥ i′ and j ≤ j′.

Proof. The proof is similar to the proof of Theorem 3.14. □

The diagram of the lattice introduced in Theorem 3.17 is as Figure
5 and if I is a hyper K-ideal of H, then its diagram is as Figure 6.

Theorem 3.18. Let (H, ◦, 0) be a left absorbing hyper K-algebra. Then
every nonempty subset of H containing 0 is a I − CHKI(1, j); j ∈
{2, 3}.

Proof. By according to Figure 5, it is sufficient to prove the theorem
for type (1, 2). Let 0 ∈ I ⊆ H and (x ◦ y) ◦ z ⊆ I, z ∈ I. Since H is left
absorbing hyper K-algebra, we have x ∈ I. So x◦(y◦(y◦x))∩I ̸= ∅. □
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Figure 3. Diagram of
I − PIHKI(i, j, k), when H
is left absorbing

Figure 4. Diagram of
I − PIHKI(i, j, k), when H
is left absorbing and I a hy-
per K-ideal

Figure 5. Diagram of
I − CHKI(i, j)

Figure 6. Diagram of
I − CHKI(i, j), when I is a
hyper K-ideal

The following example shows that in Theorem 3.18, the left absorb-
ing condition of H is necessary.

Example 3.19. In Example 3.16, (H, ◦, 0) is not a left absorbing hyper
K-algebra and I = {0, 1} is not a I − CHKI(1, 3). Since (2 ◦ 0) ◦ 1 =
{1} ⊆ I but 2 ◦ (0 ◦ (0 ◦ 2)) = {2} ̸< I.
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By considering Theorem 3.18 and Figure 5, we see that I−CHKI(1, j)
where j ∈ {2, 3} are equivalent to each other, so Figure 5 changes to
Figure 7 and when I is a hyper K-ideal its diagram is as Figure 8.

Figure 7. Diagram of
I − CHKI(i, j), when H
is left absorbing

Figure 8. Diagram of
I − CHKI(i, j), when H is
left absorbing and I a hyper
K-ideal

Theorem 3.20. Let (H, ◦, 0) be a left absorbing hyper K-algebra. Then
I = {0} is a I − CHKI(i, j); i, j ∈ {2, 3}.

Proof. Considering Figure 5, it is sufficient to prove the theorem for
type (3, 2). Let (x ◦ y) ◦ 0 < I = {0}, by Definition 2.1, there exists
a ∈ x ◦ y such that a ◦ 0 < {0}. So a ∈ a ◦ 0 = {0} and 0 ∈ x ◦ y.
Since H is left absorbing, we have x ◦ y ⊆ x ◦ (y ◦ (y ◦ x)) and 0 ∈
(x ◦ (y ◦ (y ◦ x))) ∩ I ̸= ∅. Thus x ◦ (y ◦ (y ◦ x)) ∩ I ̸= ∅ and I = {0} is
a I − CHKI(3, 2). □

The following example shows that in Theorem 3.20, the left absorb-
ing condition of H is necessary.

Example 3.21. In the following hyper K-algebra, we see that H =
{0, 1, 2, 3} is not left absorbing and I = {0} is not a I − CHKI(2, 3).
Since (3 ◦ 2) ◦ 0 = {0, 1} ∩ I ̸= ∅ but 3 ◦ (2 ◦ (2 ◦ 3)) = {3} ̸< I.

◦ 0 1 2 3
0 {0,1} {0,1} {0,1} {0,1}
1 {1} {0,1} {1} {1}
2 {2} {1,2} {0,1} {2}
3 {3} {3} {0,1} {0,1}
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Theorem 3.22. Let (H, ◦, 0) be a left absorbing hyper K-algebra and
I ⊆ H be a I−CHKI(i, 1); i ∈ {2, 3}. Then I is a weak hyper K-ideal
of H.
Proof. Let x ◦ y ⊆ I and y ∈ I. Since H is left absorbing, we have
x ◦ y ⊆ (x ◦ y) ◦ 0, by Theorem 3.13, (x ◦ y) ◦ 0RiI where i ∈ {2, 3}, by
assumption we have x ◦ (y ◦ (y ◦ x)) ⊆ I. Since H is left absorbing, we
get x ∈ I and I is a weak hyper K-ideal. □
Theorem 3.23. Let (H, ◦, 0) be a left absorbing hyper K-algebra and
I ⊆ H be a I − CHKI(3, 1). Then I is a hyper K-ideal of H.
Proof. Let x ◦ y < I and y ∈ I. Since H is left absorbing, we have
x ◦ y ⊆ (x ◦ y) ◦ 0, so (x ◦ y) ◦ 0 < I. By assumption of theorem, we
have x ∈ x ◦ (y ◦ (y ◦ x)) ⊆ I and the proof is complete. □

The following example shows that the converse of the above theorem
is not true in general.
Example 3.24. Consider H = {0, 1, 2}. Then (H, ◦, 0) is a left absorb-
ing hyper K-algebra. It could be easly seen that I = {0, 1} is a hyper
K-ideal of H, but is not I−CHKI(3, 1). Because, (1◦0)◦0 = {1, 2} < I
and 1 ◦ (0 ◦ (0 ◦ 1)) = {1, 2} ⊈ I

◦ 0 1 2
0 {0} {0} {0}
1 {1,2} {0,1} {0,1}
2 {2} {2} {0,1,2}

Theorem 3.25. Let (H, ◦, 0) be a left absorbing hyper K-algebra. Then
the only implicative hyper K-ideal of H is H.
Proof. Let I ⊆ H be an implicative hyper K-ideal of H and x ∈ H.
Since H is left absorbing, we have x ∈ x◦x and so 0 ∈ x◦x ⊆ x◦(x◦x)
and consequently x ◦ (x ◦ x) < I. By assumption x ∈ I and H ⊆ I, so
I = H. □

The following table shows that the converse of the above theorem is
not true in general.
Example 3.26. The following table shows a hyper K-algebra structure
on H = {0, 1, 2}, but not left absorbing hyper K-algebra. I = {0},
{0, 1} and {0, 2} are not Since 2 ◦ (2 ◦ 2) < {0, 1} but 2 /∈ {0, 1}. So
I = {0, 1} is not an implicative hyper K-ideal of H. Similarly, I = {0}
and I = {0, 2} are not an implicative hyper K-ideal of H. Consequently,
I = H is the only implicative hyper K-ideal of H.
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◦ 0 1 2
0 {0} {0} {0}
1 {1} {0,2} {2}
2 {2} {0,1} {0,1}

Theorem 3.27. Let (H, ◦, 0) be a left absorbing hyper K-algebra. Then
every nonempty subset of H containing 0 is a weak implicative hyper
K-ideal of H.
Proof. Let 0 ∈ I ⊆ H and x ◦ (y ◦ x) ⊆ I. Since H is left absorbing
hyper K-algebra we have x ∈ x ◦ (y ◦ x) ⊆ I. So x ∈ I and the proof
is complete. □
Example 3.28. Let H = {0, 1, 2} and consider the following table. We
see that H is not left absorbing hyper K-algebra and I = {0, 2} is not
a weak implicative hyper K-ideal of H. Since (1 ◦ 2) ◦ (2 ◦ 1) = {0} ⊆ I
but 1 /∈ I.

◦ 0 1 2
0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {1} {0,1}

OPEN PROBLEM: Under what suitable condition a left absorbing
hyper operation satisfies axiom (HK2)?

Conclusion. In this study, authors reduced the conditions neces-
sary to be hyper K-algebra of a hyper operation by introducing left
absorbing hyper K-algebras and proved the theorems related to them.
Also it was showed that the types of positive implicative and commu-
tative hyper K-ideals form a distributive lattice. Theorems 3.18 and
3.20 is proved by using the figures of these lattices.
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S. MADADI AND M. A. NASR-AZADANI

جاذب چپ K-جبرهای ابر

آزادانی نصر علی ٢محمد و مددی ١سودابه

ایران تهران، شاهد، ١,٢دانشگاه

جاذب چپ K-جبرهای ابر آن به که K-جبرها ابر از نوع یک معرفی به مقاله، این در چکیده:
که دهیم می نشان چنین هم کنیم. می بررسی را دسته این خواص از برخی سپس پردازیم. می گوییم،
و دهند می تشکیل را پذیر توزیع مشبکه یک جایی جابه و مثبت استلزامی های ال K-ایده ابر انواع
جابه و مثبت استلزامی های ال K-ایده ابر و جاذب چپ K-جبر ابر که حالتی در را ها آن نمودارهای

کنیم. می مطالعه باشند، ال K-ایده ابر یک جایی،

جابه ال K-ایده ابر مثبت، استلزامی ال K-ایده ابر ال، K-ایده ابر K-جبر، ابر کلیدی: کلمات
جایی.


	1. Introduction
	2. Preliminaries
	3. Left absorbing hyper K-algebras
	3.1. Lattice of I-PIHKI(i, j, k) and left absorbing hyper K-algebras
	3.2. Lattice of I-CHKI(i, j) and left absorbing hyper K-algebras

	References

