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ON GP-FLATNESS PROPERTY
H. MOHAMMADZADEH SAANY AND M. ABBASTI*

ABSTRACT. It is well-known that, using principal weak flatness
property, some important monoids are characterized, such as reg-
ular monoids, left almost regular monoids, and so on. In this ar-
ticle, we recall a generalization of principal weak flatness called
G P-flatness, and characterize monoids by this property of their
right (Rees factor) acts. Also we investigate GP coherent monoids.

1. INTRODUCTION

In [6] Husheng and Chongqing introduced G P-flatness property as
a generalization of principal weak flatness, and characterized monoids
by this property of their right acts in some cases. In this paper first
we give an equivalent definition of G P-flatness and give some basic
results. Then we investigate G P-flatness property for (mono)cyclic
right S-acts. Also we give a characterization of monoids by comparing
this property of their ((mono)cyclic, Rees factor) right acts with other
properties. Finally we characterize GP coherent monoids.

Throughout this paper S stands for a monoid. We refer the reader
to [7] for basic definitions and terminology relating to semigroups and
acts over monoids.

Recall that a monoid S is called right (left) reversible if for every
s,t € S, there exist u,v € S such that us = vt (su = tv). A monoid
S is called left (right) collapsible if for every s,t € S there exists z € S

DOI: 10.22044 /jas.2020.8923.1437.
MSC(2010): 20M30.
Keywords: G-left stabilizing, G P-flatness, GP coherent, right generally regular.
Received: 26 September 2019, Accepted: 1 December 2020.
*Corresponding author.
151



152 MOHAMMADZADEH SAANY AND ABBASI

such that zs = zt(sz = tz). A submonoid P of S is called weakly left
collapsible if for every s,t € P,z € S, sz = tz implies the existence of
u € P such that us = ut. A right ideal Kg of a monoid S is called left
stabilizing if for every k € Kg, there exists | € Kg such that [k = k.

A non-empty set A is called a right (left) S-act, usually denoted Ag
(sA), if S acts on A unitarily from the right (left), that is, there exists
a mapping A x S — A, (S x A = A), (a,8) — as ((s,a) — sa),
satisfying the conditions (as)t = a(st) (s(ta) = (st)a) and al = a
(la = a), for all @ € A, and all s,t € S. A right S-act Ag satisfies
Condition (P) if for all a,a’ € Ag, s,t € S, as = a't implies that there
exist a” € Ag, u,v € S such that a = a"u, @’ = a"v and us = vt. Ag
satisfies Condition (P’) if for all a,a’ € A, s,t,z € S, as = a't and
sz = tz imply that there exist a” € A and u,v € S such that a = a"u,
a' = a"v and us = vt. A right S-act Ag satisfies Condition (E) if for
all a € Ag, s,t € S, as = at implies that there exist «’ € Ag, and u € S
such that a = a'u and us = ut. Ag satisfies Condition (E') if for all
a € Ag, s,t,z € S, as = at and sz = tz imply that there exist a’ € Ag,
and u € S such that a = a’u and us = ut. A right S-act Ag satisfies
Condition (EP) if for all a € Ag,s,t € S, as = at implies that there
exist a’ € Ag,u,v € S such that a = a’'u = a’v and us = vt. A right
S-act Ag satisfies Condition (E'P) if for all a € Ag, s,t,z € S, as = at
and sz = tz imply that there exist ' € Ag, and u,v € S such that
a = da'u = avand us = vt. It is obvious that (F) = (EP) = (E'P)
and (E) = (E') = (F'P), and in [1, 2] it was shown that the converses
are not true in general.

2. MAIN RESULTS

In this section first, we recall a generalization of principal weak flat-
ness property, called G P-flatness, and give some basic results. Recall
from [7] that an act Ag is called principally weakly flat if the func-
tor Ag ® g— preserves all embeddings of principal left ideals into S.
This is equivalent to say that as = a's for a,a’ € Ag,s € S implies
a® s=a ® s in the tensor product Ag ® ¢S5s.

Definition 2.1. [6] A right S-act Ag is called GP-flat if as = a's for
a,a’ € Ag,s € S implies that there exists n € N such that a ® s" =
a ®s"in Ag ® Ss™.

It is clear that every principally weakly flat S-act is GP-flat, but
Example 2.19 shows that the converse is not true in general.
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Theorem 2.2. A right S-act Ag is GP-flat if and only if as = a’'s for
a,a’ € Ag,s € S implies that there exist n,m € N (n > m) such that
a®Rs"=ad s anda®@ s™ =d ®s" in Ag Q@ Ss™.

Proof. One way round is clear. Suppose that as = da's for a,a’ €
Ag,s € S. By assumption there exist n,m € N (n > m) such that
a®s"=d s and a ® s™ = a ® s" in Ag ® Ss™. If n = m then
obviously Ag is G P-flat, otherwise n > m implies that as"~"™ = a/s"~™
thus
in Ag ® Ss™. Now

a®Rs"=0d®Rs"=a®s"=d Qs
in Ag ® Ss™, and so Ag is GG P-flat as required. O
Lemma 2.3. [7] Let Ag be a right S-act and sM be a left S-act. Then
a®@m=da @m' fora,a € Ag and m,m' € ¢M, if and only if there
exist 1, ..oy Sy b1, oty € S,01, .. b1 € Agyny,...,ni € sM such that

)

Siny=m
asy = bltl SS9l = tml
b1y = baty S3ng = taNo

bk_lsk = a’tk m = tknk.

Lemma 2.4. [6] Let S be a monoid and As be a right S-act. The
following statements are equivalent:

(1) As is GP-flat;

(2) a®s =d ®s, a,a € Ag and s € S, implies that there exist
S1yeees Skyt1, .ty € S, b1, .., b1 € Ag,n € N such that

518" =3s"
as, = bltl SQSn = tls"
b182 = b2t2 SgSn = tQSn

bk_lsk = a’tk s" = tkSn.

k is called the length of the above S-tossing and the minimum length
of the existing S-tossing is denoted by dg(a,a’).

Remark 2.5. The following statements are easy consequences of the
definition:

(1) if {A; | @ € I} is a chain of subacts of an act Ag, and every
A; i € I'is GP-flat, then (J,; 4; is GP-flat;
(2) A =11, Aiis GP-flat, if and only if every A;,i € I, is GP-flat;
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(3) the right S-act Sg is GP-flat;
(4) the one element right S-act Og is G P-flat.

Theorem 2.6. [10] For any family {A;| i € I} of right S-acts, if
[Lic; Ai is GP-flat, then for every i € I, A; is GP-flat.

Theorem 2.7. Any retract of a GP-flat right S-act is GP-flat.

Proof. Let Ag be a retract of Bg, and Bg is a GGP-flat right S-act.
Suppose that as = d's, for a,a’ € Ag,s € S, since Ag is a retract
of Bg, there are homomorphisms ¢ : As — Bg and ¢’ : Bg — Ag
such that ¢'¢ = 14. Then we have p(as) = ¢(a's) or p(a)s = ¢(a')s.
Since ¢(a), p(a’) € Bg, by assumption there exists n € N such that
o(a) ® s" = p(a') ® s" in the tensor product Bs ® gSs™. Suppose now
that this equality is realized by a tossing

518" = s"
p(a)sy = bity So8™ =t
6182 = bgtg SgSn = tQSn

bp_15K = @(a )ty s = 18",
of length k, where sq,...,8k,t1,....,tx € S, by,....,b,_1 € Bg. Then
' (p(a)s1) = ¢'(bit1), and so as; = ¢'(by)t;. Similarly we have ¢'(b;—1)
si =@ (b)t;, 2<i<k—1,and ¢'(by_1)sx = d'ty.. Let ¢'(b;) = a;, for
1 <i <k — 1. Substituting elements ¢'(b;) by a;, we obtain a tossing
realizing the equality a ® s" = a’ ® s" in Ag ® 5Ss™. 0

The following proposition is an easy consequence of the definition.

Proposition 2.8. Let S be an idempotent monoid. Then every G P-flat
right S-act is principally weakly flat.

Lemma 2.9. [7] Let p be a right and X a left congruence on a monoid
S. Then [u], ® [s]x = [v], @ [t]x in S/p @ S/\ foru,v,s,t €S, if and
only if us(p V A)ut.

Lemma 2.10. [7] Let sA be a left S-act and a € sA. Then g :
S/kerp, — Sa with g([t]) = ta for every t € S is an S-isomorphism.

The following result is an immediate corollary of Lemmas 2.9 and
2.10.

Corollary 2.11. Let p be a right congruence on a monoid S and s € S.
Then [u], ® s™ = [v], ® s™ in S/p® Ss", u,v € S and n € N, if and
only if u(p V kerpg)v.
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Theorem 2.12. Let S be a monoid and p be a right congruence on S.
Then the right S-act S/p is GP-flat if and only if for all u,v,s € S
with (us)p(vs), there exists n € N, such that u(p V kerpgn)v.

Proof. Necessity. Suppose that the right S-act S/p is GP-flat and let
(us)p(vs) for u,v,s € S. That is, [u],s = [v],s, and so by hypothesis
there exists n € N, such that [u], ® s" = [v], ® s" in S/p® Ss™. Hence
u(p V kerpg)v, by Lemma 2.11.

Sufficiency. Let [u],s = [v],s, for u,v,s € S and n € N. That is,
(us)p(vs), and so by hypothesis there exists n € N, such that u(p V
kerpgn)v. Now [u], ® s™ = [v], ® s" in S/p® Ss", by Lemma 2.11, and
so the right S-act S/p is G P-flat. O

Corollary 2.13. The right ideal 25,z € S, is GP-flat if and only if
for all x,y,s € S, zxs = zys implies that there exists n € N such that
z(ker, V kerpg)y.

Proof. Since zS = S/ker),, apply Theorem 2.12 for p = ker),,z €
S. O

We recall from [7] that a monoid S is called regular, if for every
s € S, there exists x € S such that s = sxs.

Definition 2.14. [6] Let s € S. s is called right (left) generally regular,
if there exist n € N and z € S such that s" = sxs"(s" = s"xs).
A monoid S is called right generally regular if every s € S is right
generally regular.

It is clear that the class of generally right regular monoids contains
all regular monoids.

Theorem 2.15. Let s € S. If the monocyclic right S-act S/p(s?,s) is
GP-flat, then s is a right generally reqular.

Proof. Let p = p(s*,s). Since S/p is GP-flat and (ss)p(1s), by Theo-
rem 2.12 there exists n € N such that s(pVkerps)l. Let 0 = pokerpgn
and k be the smallest non-negative integer such that so*1. Then there
exist uq, vy, ..., ug, vx € S such that

S = U1 pV1 U PV Uk PUE
V18" = Ups”  vys" = uzs” ... vps" = s".
By [7, 111, 8.5] there exist m;, p; > 0 (1 < i < k) such that s™iu; = sPiv;
and s¥iu, stiv; € 85, for 0 < j; < my,0 < I; < p;. The following cases
may occur:

Case 1. pp > 0. Let [, = 0, then there exists x € S such that
v = st and so s" = sxs".
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Case 2. pp = 0. Then s™wu, = v, and so s" = sk ugs™. If
my > 0 then s” = ss™lu,s™, otherwise my = 0 and so u; = v, which
contradicts to minimality of k. O
Definition 2.16. Let S be a monoid. A (proper) right ideal Kg of S
is called G-left stabilizing if

(Vs € S)(Vze S\ Kg)(zs € Kg=IneN ke Kg:zs" =ks")

It is clear that every left stabilizing right ideal is G-left stabilizing,

but Example 2.19 will show the converse is not true in general.

Proposition 2.17. If the right ideal sS, s € S, is G-left stabilizing,
then s is right generally reqular.

Proof. Suppose that the right ideal sS,s € S is G-left stabilizing. So
there exist k € sS,n € N such that s” = ks". Since k € sS there exists
x € S such that k = sz, and so s is right generally regular. 0

Theorem 2.18. [6] Let S be a monoid and Kg be a right ideal of S.
The right Rees factor S-act S/Kg is GP-flat if and only if Ks is a
G-left stabilizing right ideal.

Example 2.19. Let S = {1,z,0} with 22 = 0, and let Kg = {z,0}.
It is easy to check that Kg is G-left stabilizing and so the right Rees
factor S-act S/Kg is GP-flat, but it is not principally weakly flat.

Let J be a proper right ideal of a monoid S. If z,y and z denote
elements not belonging to S, define

A(J) = ({z, g} x (S\J) U ({2} x J)
and define a right S-action on A(J) by

(z,u)s = (z,us).

A(J) is a right S-act, which is usually denoted by Sg ]_[J Sg, and we
have

Theorem 2.20. [6] A(J) is GP-flat if and only if the right ideal J is
G-left stabilizing.
From Theorems 2.18 and 2.20 we have

Corollary 2.21. Let J be a proper right ideal of a monoid S. S/Js is
G P-flat if and only if A(J) is GP-flat.
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3. CHARACTERIZATION OF MONOIDS BY G P-FLATNESS PROPERTY
OF ((MONO)CYCLIC) RIGHT S-ACTS

In this section we give a characterization of monoids by G'P-flatness
property. Qiao and Wei in [6], Theorems 3.4 and 3.7 have provided the
condition for a monoid so that all right S-acts are GP-flat. In the next
theorem we add some more equivalent statements.

Theorem 3.1. For any monoid S the following statements are equiv-
alent:

(1) all right S-acts are GP-flat;

(2) all finitely generated right S-acts are G P-flat;

(3) all cyclic right S-acts are G P-flat;

(4) all monocyclic right S-acts are GP-flat;

(5) all monocyclic right S-acts of the form S/p(s* s), s € S, are
GP-flat;

(6) all right Rees factor S-acts are G P-flat;

(7) all right Rees factor S-acts of the form S/sS, s € S, are GP-
flat;

(8) S is a right generally regular monoid.

Proof. Tmplications (1) = (2) = (3) = (4) = (5) and (3) = (6) = (7)

are obvious.

(5) = (8) Let s € S. Then by assumption the monocyclic right S-act
S/p(s?,s) is GP-flat, and so s is right generally regular by Theorem
2.15.

(7) = (8) Let s € S. Then by assumption the right Rees factor
S-act S/sS is GP-flat, and so the right ideal sS is G-left stabilizing by
Theorem 2.18. Then s is right generally regular by Proposition 2.17.

(8) = (1) It follows from [6, 3.4]. O

Theorem 3.2. For any monoid S the following statements are equiv-
alent:

(1) all GP-flat right S-acts are free;

(2) all finitely generated G P-flat right S-acts are free;

(3) all cyclic GP-flat right S-acts are free;

(4) all monocyclic GP-flat right S-acts are free;

(5) all GP-flat right S-acts are projective generators;

(6) all finitely generated G P-flat right S-acts are projective gener-
ators;

(7) all cyclic GP-flat right S-acts are projective generators;

(8) all monocyclic GP-flat right S-acts are projective generators;
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(9) all GP-flat right S-acts are projective;
(10) all finitely generated G P-flat right S-acts are projective;
(11) all GP-flat right S-acts are strongly flat;
(12) all finitely generated G P-flat right S-acts are strongly flat;
(13)

S = {1}.

Proof. Implications (1) = (2) = (3) = (4) = (8), (1) = (5) = (
(E) = (8), (1) = (9) = (10) = (12) and (1) = (11) = (12

6) =
)

are

(8) = (13) If all monocyclic G P-flat right S-acts are projective gen-
erators, then all monocyclic right S-acts satisfying Condition (P) are
projective generators and so by [7, IV, 12.8], S = {1}.

(12) = (13) Assume all finitely generated G'P-flat right S-acts are
strongly flat. Then S is aperiodic by [7, IV, 10.2]. Let 1 # s € S, then
there exists n € N such that s” = s"*! and so e = s” is an idempotent
different from 1. It is easy to see that eS is a G-left stabilizing right
ideal and so the right S-act Sg HES Ss is GP-flat by Theorem 2.20.
Thus by assumption it is strongly flat (satisfies Condition (P)), which
is a contradiction [see 7, III, 13.14]. So S = {1}.

(13) = (1) It is obvious. O

Lemma 3.3. If all monocyclic GP-flat right S-acts are strongly flat,
then all monocyclic right S-acts are strongly flat.

Proof. Suppose that all GP-flat monocyclic right S-acts are strongly
flat, then all monocyclic right S-acts satisfying Condition (P) are
strongly flat and so S is aperiodic by [7, IV, 10.2]. Thus for every
s € S there exists n € N such that s® = s"*! which gives that S
is generally right regular. Now by Theorem 3.1, all right S-acts are
G P-flat. O

Theorem 3.4. For any monoid S the following statements are equiv-
alent:

(1) all cyclic GP-flat right S-acts are projective;

(2) all monocyclic GP-flat right S-acts are projective;

(3) all cyclic GP-flat right S-acts are strongly flat;

(4) all monocyclic GP-flat right S-acts are strongly flat;

(5) S ={1} or S ={1,0}.

Proof. Implications (1) = (3) = (4) are obvious.

(4) = (5) By assumption all monocyclic GP-flat right S-acts are
strongly flat, and so by Lemma 3.3, all monocyclic right S-acts are
strongly flat. Thus by [7, IV, 10.10], S = {1} or S = {1,0}.
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(2) < (4) It follows from [7, III, 17.13].
(5) = (1) It follows from [7, IV, 11.14]. O

From [4, 1.12] and [4, 1.8] we have the following.

Theorem 3.5. For any monoid S the following statements are equiv-
alent:

(1) all GP-flat right S-acts are regular;
(2) all finitely generated GP-flat right S-acts are reqular;
(3) all cyclic GP-flat right S-acts are reqular;

(4) S ={1} or S ={0,1}.
Theorem 3.6. For any monoid S the following statements are equiv-

alent:
(1) all GP-flat right S-acts satisfy Condition (E);
(2) all finitely generated G P-flat right S-acts satisfy Condition (E);
(3) all cyclic GP-flat right S-acts satisfy Condition (E);
(4) all monocyclic GP-flat right S-acts satisfy Condition (E);
(5) S=A{1} or S =4{0,1}.
Proof. Implications (1) = (2) = (3) = (4) are obvious.
(4) = (5) It follows from Theorem 3.4.
(5) = (1) It is straightforward. O

We recall from [9] that a right S-act Ag is principally weakly ker-
nel flat if and only if it satisfies Condition (PW P) and the following
condition holds:

(Va,a’ € Ag)(Vs,s',t,t',z,x € S : kerp, C kerp,)((asz = d's'x,
sz =tz), (atz = ad't'zr,s'2 =1'2)) = a® (sz,tx) = d @ (s'x,t'z)
in Ag ® ¢P, where P = {(uz,vz)|lu,v € S,uz = vz}. A right S-act
Ag is translation kernel flat if and only if it satisfies Condition (PW P)
and the following condition holds:
(Va,d’ € Ag)(Vs, s t,t',z € S)

((as =d's', sz =tz),(at = d't',s'2=12)) = a® (s,t) =d @ (s, 1)
in Ag ® g(kerps).

A monoid S is called a left PSF monoid if every principal left ideal

of S is strongly flat (as a left S-act), equivalently if and only if for
su = tu, s,t,u € S there exists r € S such that ru = u and sr = tr.

Lemma 3.7. [5] Let S be a monoid, and J be a proper right ideal of
S. Then A(J) = Ss ][’ Ss fails to satisfy Condition (PW P).
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Theorem 3.8. For any monoid S the following statements are equiv-
alent:

(1) S is right cancellative;

(2) S isleft PSF and all GP-flat right S-acts are principally weakly
kernel flat;

(3) S isleft PSF and all GP-flat right S-acts are translation kernel
Jlat;

(4) S is left PSF and all GP-flat right S-acts satisfy Condition
(P');

(5) S is left PSF and all GP-flat right S-acts satisfy Condition
(PWP).

Proof. Since principally weakly kernel flat = translation kernel flat =
Condition (PWP), and Condition (P’) = Condition (PW P), impli-
cations (2) = (3) = (5),(4) = (5) are obvious.

(1) = (4) Since S is right cancellative, S is left PSF. Also in this
case by [3, 2.2] all torsion free right S-acts satisfy Condition (P’), and
so all GP-flat right S-acts satisfy Condition (P’).

(5) = (1) If S is right cancellative, then we are done. Otherwise, if
J ={s € S| sis not right cancellable}, then J is a proper right ideal
of S. Let j € J, then there exist s, € S such that s # t and sj = tj.
Since S is left PSF, there exists r € S such that rj = j and sr = tr.
If r ¢ I, then r is right cancellable and so s = t, a contradiction. Thus
r € J, and so the right ideal J is left stabilizing, thus the right S-act
Sg ]_[J Sg is G P-flat by Theorem 2.20. Hence by assumption Sg ]_[J Sg
satisfies Condition (PW P), which contradicts Lemma 3.7.

(1) = (2) Suppose that S is right cancellative and Ag is G P-flat.
By (1) & (5), S is left PSF and Ag satisfies Condition (PWP) .
Now let asr = a's'z,sz = tz and atx = a't'x, s’z = t'z, for a,a’ €
Ag,s,8,t,t',z,x € S. Since S is right cancellative and Ag is torsion
free, we have as = d's’, and so a ® s = ¢’ ® s’ in Ag ® ¢S by [7, 11,
5.13]. It is obvious that a ® s = ¢’ ® s’ in Ag ® ¢S if and only if
a® (s,s) =ad ®(s,5)in As ® ¢A. But S is right cancellative and so
sP = {(uz,vx)lu,v € S,uz = vz} = gA, as required. O

For a monoid S we have the following implications:

right cancellative = left almost regular = left PP = left PSF, so in
Theorem 3.8 we can replace left PSF by left PP or left almost regular.
Also notice that Theorem 3.8 is true for finitely generated right S-acts,
and right S-acts generated by at most (exactly) two elements.
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From [3, Theorem 2.9], [5, Theorem 2.9] and Theorem 3.8 we have
the following.

Corollary 3.9. For any monoid S the following statements are equiv-
alent:

(1) S is right cancellative,

(2) there exists a regular left S-act and all GP-flat right S-acts are
principally weakly kernel flat;

(3) there exists a reqular left S-act and all GP-flat right S-acts are
translation kernel flat;

(4) there exists a regular left S-act and all GP-flat right S-acts
satisfy Condition (P’);

(5) there exists a regular left S-act and all GP-flat right S-acts
satisfy Condition (PW P).

We recall from [7] that an S-act Ag is divisible if Ac = A for any left
cancellable element ¢ € S.

Theorem 3.10. For any monoid S the following statements are equiv-
alent:

(1) all GP-flat right S-acts are divisible;

(2) all finitely generated G P-flat right S-acts are divisible;
(3) all cyclic GP-flat right S-acts are divisible;

(4) all monocyclic GP-flat right S-acts are divisible;

(5) all left cancellable elements of S are left invertible.

Proof. Tmplications (1) = (2) = (3) = (4) are obvious.

(4) = (5) By Theorem 2.5, Ss = S/p(1,1) is GP-flat, as a mono-
cyclic right S-act. Thus by assumption Sy is divisible, and so Sc¢ = 5,
for any left cancellable element ¢ € S. That is, there exists z € S such
that xc = 1.

(5) = (1) It is clear from [7, III, 2.2]. O

We recall from [7] that a right S-act Ag is (strongly) faithful, if for
s,t € S the equality as = at, for all (some) a € Ag, implies that s = ¢.
It is obvious that every strongly faithful act is faithful.

Theorem 3.11. For any monoid S the following statements are equiv-
alent:

(

1) all GP-flat right S-acts are (strongly) faithful;
(2
(3
(4

)
) all finitely generated G P-flat right S-acts are (strongly) faithful;
) all cyclic GP-flat right S-acts are (strongly) faithful;

) all GP-flat right Rees factor S-acts are (strongly) faithful;
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(5) S ={1}.
Proof. Implications (1) = (2) = (3) = (4) are obvious.

(4) = (5) By Theorem 2.5, the one-element right S-act ©g = S/Ss
is GP-flat, and so by assumption it is (strongly) faithful. By [7, I,
5.25], for every 1 # s € S, there exists u € S such that [us],, # [u],s,
a contradiction. Thus S = {1}, as required.

(5) = (1) Tt is obvious. O
Theorem 3.12. For any monoid S the following statements are equiv-
alent:

(1) all GP-flat right S-acts are completely reducible;
(2) all finitely generated GP-flat right S-acts are completely re-
ducible;
(3) all cyclic GP-flat right S-acts are completely reducible;
(4) all monocyclic GP-flat right S-acts are completely reducible;
(5) S is a group.
Proof. Implications (1) = (2) = (3) = (4) are obvious.

(4) = (5) By Theorem 2.5, Sg = S/p(1, 1) is GP-flat as a monocyclic
right S-act, and so by assumption Sg is completely reducible. Thus S
is a group by [7, I, 5.33].

(5) = (1) It follows from [7, I, 5.34]. O

Definition 3.13. [6] An element s of S is called generally left al-
most regular if there exist elements r,7y,...,7m, S1, ..., Sm € S, right
cancellable elements ¢y, ...c,, € S, and n € N such that

S§1C1 = ST

S§9C2 = 5179

SmCm = Sm—1Tm
" = spyrs".
A monoid S is called generally left almost regular if all its elements
are generally left almost regular.

It is obvious that every left almost regular monoid is generally left
almost regular.

Theorem 3.14. [6] For any monoid S the following statements are
equivalent:

(1) all torsion free right S-acts are G P-flat;
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(2) all cyclic torsion free right S-acts are G P-flat;
(3) all torsion free right Rees factor S-acts are G P-flat;
(4) S is a generally left almost reqular monoid.

We recall from [11] that a right S-act Ag is R-torsion free if ac =
a'c and a¥a’, for a,a’ € Ag,c € S, ¢ right cancellable, imply that
a = a’. We also recall that pgprpr(u,v) is the smallest right congruence
containing (u,v), such that S/pgprr(u,v) is R-torsin free.

Theorem 3.15. For any monoid S, the following statements are equiv-
alent:
(1) all cyclic R-torsion free right S-acts are G P-flat;
(2) for any u,v,s € S there exists n € N such that (u,v) €
(prrr(us,vs) V kerpgn).

Proof. (1) = (2) Suppose that u,v,s € S. Then the cyclic right S-act
S/ pwrr(us,vs) is R-torsin free, and so it is GP-flat. Since (us,vs) €
prrr(us,vs), by Theorem 2.12 there exists n € N such that (u,v) €
(prrr(us,vs) V kerpgn).

(2) = (1) Let 7 be a right congruence on S, such that S/7 is R-
torsion free and let (us,vs) € 7. By assumption there exists n € N
such that (u,v) € (pprr(us,vs) V kerpg), since pprr(us,vs) C 7, we
have (u,v) € 7V kerps. Thus S/7 is GP-flat by Theorem 2.12. O

Theorem 3.16. For any monoid S, the following statements are equiv-
alent:

(1) all R-torsion free right S-acts are GP-flat;

(2) S s right generally regular.

Proof. Tt follows from [11, Lemma 4.1] O

Example 3.17. Let S = (N,-) be the monoid of natural numbers
with multiplication and let Ag = Sy ]_[S\{l} Sg. Since there exist no
z € S\ {1},n € N such that 2" = 22", Ag is not GP-flat by Theorem
2.20. But Ag satisfies Condition (E) by [7, III, 14.3(3)]. Thus it
is natural to ask for monoids over which Condition (F) implies G P-
flatness.

Theorem 3.18. For any monoid S, the following statements are equiv-
alent:

(1) all right S-acts satisfying Condition (E'P) are GP-flat;
(2) all right S-acts satisfying Condition (EP) are GP-flat;
(3) all right S-acts satisfying Condition (E') are GP-flat;
(4) all right S-acts satisfying Condition (E) are G P-flat;
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(5) S s right generally regular.

Proof. Since (E) = (EP) = (E'P) and (E) = (F') = (E'P), impli-
cations (1) = (2) = (4) and (1) = (3) = (4) are obvious.

(4) = (5) Let s € S. If s§ = S then s is obviously regular. Suppose
that sS # S. Then by [7, III, 14.3(3)] the right S-act Ag = Sg][** Sg
satisfies Condition (F), and so by assumption it is GP-flat. Now by

Theorem 2.20 the right ideal 55 is G-left stabilizing and so s is right
generally regular by Proposition 2.17.

(5) = (1) Tt follows from Theorem 3.1. O

Note that above theorem is also true for finitely generated (at most
(exactly) by two elements) right S-acts.

Theorem 3.19. [10] Let S be a left PSF monoid. Then the right S-
act Ag is GP-flat if and only if for a,a’ € Ag and s € S with as = d’s,
there exist n € N and r € S such that rs" = s" and ar = a'r.

Theorem 3.20. Let S be a left PSF monoid. Then the following
statements are equivalent:

(1) all divisible right S-acts are GP-flat;
(2) all principally weakly injective right S-acts are GP-flat;
(3) all fg-weakly injective right S-acts are G P-flat;

(4) all weakly injective right S-acts are GP-flat;

(5) all injective right S-acts are GP-flat;

(6) all cofree right S-acts are GP-flat;

7) S is right generally regular.

(
Proof. Tmplications (1) = (2) = (3) = (4) = (5) = (6) are obvious.

(6) = (7) Let s € S. If S = S then s is obviously regular, otherwise
I = sS is a proper right ideal of S. By assumption and [7, II, 4.3] the
right S-act S/I can be embedded into a G P-flat right S- act, and so
the equality [1];s = [s];s implies that there exist n € N and r € S such
that rs™ = s" and [1];7 = [s];r by Theorem 3.19. The last equality
implies that r = sr or r € I, and so s is right generally reqular.

(7) = (1) It follows from Theorem 3.1. O

Lemma 3.21. [7] Let Ag be a right S-act. Then Ag is a generator if
and only if there exists an epimorphism w : As — Sg.

Theorem 3.22. For any monoid S the following statements are equiv-
alent:

(1) all generators right S-acts are GP-flat;
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(2) all finitely generated generators right S-acts are G P-flat;
(3) all generators right S-acts that generated at most by three ele-
ments are GP-flat;

4) S x Ag is GP-flat, for each right S-act Ag;

) S x Ag is GP-flat, for each finitely generated right S-act Ag;

) S x Ag is GP-flat, for each cyclic right S-act Ag;

) S X Ag is GP-flat, for each monocyclic right S-act Ag;

) S x Ag is GP-flat, for each monocyclic right S-act As of the

form S/p(s*, s5);
(9) S x Ag is GP-flat, for each right Rees factor S-act Ag;

(10) S x Ag is GP-flat, for each right Rees factor S-act Ag of the
form S/sS,s € S;

(11) S x Ag is GP-flat, for each generator right S-act Ag;

(12) S x Ag is GP-flat, for each finitely generated generator right
S-act Ag;

(13) S x Ag is GP-flat, for each generator right S-act Ag, that
generated at most by three elements;

(14) a right S-act Ag is GP-flat, if Hom(Ags, Ss) # ¢;

(15) a finitely generated right S-act Ag is GP-flat, if Hom(Ag, Sg) #
¢;

(16) a right S-act Ag that generated at most by two elements is
GP-flat, if Hom(Ag, Ss) # ¢;

(17) S is right generally regular.

(
(5
(6
(7
8

Proof. Implications (1) = (2) = (3),(
(8),(6) = (9) = (10),(4) = (11) = (12
(16) are obvious.

(3) = (1) Suppose that Ag is a generator and that as = a's for
a,a’ € Ag,s € S. By Lemma 3.21, there exists an epimorphism 7 :
Ag — Ss, and so there exists a” € Ag such that m(a”) = 1. Assume
that Bg = aS U a’S U d"S, then by Lemma 3.21, Bg is a generator
and so by assumption it is GP-flat. Thus there exists n € N such that
a®s"=a ®s"in Bg® Ss" C Ag ® Ss™.

(1) = (4) Suppose that all generators are G P-flat, and Ag is a right
S-act. By Lemma 3.21, the coproduct Sg [[(S % Ag) is a generator, and
so by assumption it is GP-flat. Thus S x Ag is GP-flat by Theorem
2.5.

(8) = (17) let s € S. By assumption S x S/p(s?,s) is GP-flat and
so by Theorem 2.6, S/p(s?, s) is GP-flat. Thus by Theorem 2.15, s is
right generally regular.

(10) = (17) It is similar to the proof of (8) = (17).
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(13) = (1) Suppose that Ag is a generator, a similar argument as
in the proof of (3) = (1) shows that S x Bg is GP-flat. Thus Bg is
G P-flat by Theorem 2.6, which implies G P-flatness of Ag.

(4) = (14) Let Ag be a right S-act such that Hom(Ag, Ss) # ¢. In
view of Lemma 3.21, Ag is a retract of S x Ag, which by our assumption
is GP-flat. Thus Ag is GP-flat by Theorem 2.7.

(16) = (1) Suppose that Ag is a generator and that as = a’s for
a,a’ € Ag,s € S. By Lemma 3.21, there exists an epimorphism 7 :
Ag — Ss. Let 7 = 7|pg—asuas, then by assumption Bg is GP-flat,
and so there exists n € N such that a ® s" = ¢’ ® s" in Bg ® Ss" C
Ag ® Ss™.

(17) = (1) It follows from Theorem 3.1. O

Theorem 3.23. For any monoid S, the following statements are equiv-
alent:

(1) all faithful right S-acts are G P-flat;

(2) all finitely generated faithful right S-acts are GP-flat;

(3) all faithful right S-acts generated by two elements are G P-flat;
(4) S s right generally regular.

Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4) If sS = S then obviously s is regular. So suppose that
sS # S, for s € S, and let Ag = SSHSSSS. As we know Ag is a
faithful right S-act generated by two elements, and so by assumption
it is GP-flat. Thus sS is G-left stabilizing by Theorem 2.20, and so s
is right generally regular by Proposition 2.17.

(4) = (1) It follows from Theorem 3.1. O

Theorem 3.24. For any monoid S, the following statements are equiv-
alent:
(1) all strongly faithful right S-acts are G P-flat;
(2) all finitely generated strongly faithful right S-acts are G P-flat;
(3) all strongly faithful right S-acts generated by two elements are
G P-flat,
(4) either S is not left cancellative or S is right generally regular.

Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4) If S is not left cancellative, then the statement is obvious.
So, let S be left cancellative, and there exists s € S such that sS # S.
Suppose that Ag = Ss[[*° Ss, and let (w,u)s = (w,u)t, for w €
{z,y,2z},u,s,t € S. So us = ut and since S is left cancellative s = ¢,
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which implies Ag is strongly faithful and so by assumption it is G P-flat.
Thus by Theorem 2.20, sS is G-left stabilizing, and so by Proposition
2.17, s is right generally regular.

(4) = (1) Suppose that Ag is a strongly faithful right S-act, and
ls =1t, for [, s,t € S. Then for an arbitrary a € Ag, we have als = alt.
Since Ag ia a strongly faithful right S-act, and al € Ag,s = t, and
so S is left cancellative. So if S is not left cancellative, then there
exist no strongly faithful right S-act. Now suppose that S is right
generally regular, then by Theorem 3.1 all right S-act are GP-flat as
required. O

Theorem 3.25. For any monoid S the following statements are equiv-
alent:

(1) all indecomposable right S-acts are G P-flat;

(2) all finitely generated indecomposable right S-acts are G P-flat;

(3) all indecomposable right S-acts generated at most by two ele-
ments are G P-flat;

(4) all cyclic indecomposable right S-acts are G P-flat;

(5) S is right generally regular.

Proof. Implications (1) = (2) = (3) = (4) are obvious.
(4) = (5) By [7, I, 5.8] all cyclic right S-acts are indecomposable,

and so by assumption all cyclic right S-act are G P-flat. Thus S is right
generally regular by Theorem 3.1.

(5) = (1) It follows from Theorem 3.1. O

4. CHARACTERIZATION OF MONOIDS BY G P-FLATNESS PROPERTY
OF RIGHT REES FACTOR ACTS

In this section we give a characterization of monoids by G P-flatness
property of right Rees factor acts. Note that by Theorem 3.14, all
torsion free right Rees factor S-acts are GP-flat if and only if S is a
generally left almost regular monoid. Now for the Rees factors of the
form S/sS,s € S see the following:

Theorem 4.1. If all torsion free right Rees factor S-acts of the form
S/sS are GP-flat, then either s is a right generally reqular element or
it satisfies Condition (tcu).

(tcu) : there exist u,t,c € S, which ¢ is a right cancellable element,
such that t ¢ sS, and tc = su.

Proof. Suppose that for s € S Condition (tcu) is not satisfied. If 5 =
S, then obviously s is a regular element. Otherwise Kg = sS is a
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proper right ideal of S. Let ¢ be a right cancellable element, and ¢t € S
such that tc € Kg. That is there exists u € S such that tc = su, since
Condition (tcu) is not satisfied, t € Kg, and so S/Kg is torsion free by
[7, 111, 8.10]. Thus by assumption S/Kg is GP-flat, and so Kg = sS
is G-left stabilizing by Theorem 2.18. Then s is right generally regular
by Proposition 2.17. 0

Note that by Example 2.19, G P-flatness of right Rees factor S-acts
does not imply principally weakly flat property in general. See the
following theorem:

Theorem 4.2. Let S be a monoid. Then all G P-flat right Rees factor
S-acts are principally weakly flat if and only if every G-left stabilizing
proper right ideal of S is left stabilizing.

Proof. Suppose that all G P-flat right Rees factor S-acts are principally
weakly flat and let Kg be a G-left stabilizing proper right ideal of S.
Then by Theorem 2.18, S/ Kg is GP-flat, and so by assumption S/Kg
is principally weakly flat. Hence by [7, I1I, 10.11], K is left stabilizing.

Conversely, suppose that for the right ideal Kg of S, S/Kg is GP-
flat. Then there are two cases as follow:

Case 1. K5 =S. Then S/Kg = Og is principally weakly flat by [7,
11, 10.2(2)].

Case 2. Kg # S. Then by Theorem 2.18, Kg is G-left stabilizing.
Thus by assumption Ky is left stabilizing, and so S/Kg is principally
weakly flat by [7, III, 10.11]. O

The proof of the following theorem is similar to that of Theorem 4.2.

Theorem 4.3. Let S be a monoid. Then all GP-flat right Rees factor
S-acts are (weakly) flat if and only if S is right reversible and every
G-left stabilizing proper right ideal Kg of S is left stabilizing ideal.

Theorem 4.4. Let S be a monoid. Then all GP-flat right Rees factor
S-acts satisfy Condition (P) if and only if S is right reversible and there
exist no G-left stabilizing proper right ideal Kg of S with |Kg| > 2.

Proof. Suppose first that all GP-flat right Rees factor S-acts satisfy
Condition (P) and let Kg be a G-left stabilizing proper right ideal of
S. Then by Theorem 2.18, S/Kg is GP-flat, and so by assumption
S/Kg satisfies Condition (P). Hence by [7, III, 13.9], |Kg| = 1. The
one element right S-act Og is GP-flat by Theorem 2.5, and so it satisfies
Condition (P), then S is right reversible by [7, III, 13.7].
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Conversely, suppose that for the right ideal Kg of S, S/Kg is GP-
flat. Then there are two cases:

Case 1. Kg = S. Since S is right reversible, S/Kg = Og satisfies
Condition (P) by [7, III, 13.7].

Case 2. Kg # S. Then by Theorem 2.18, Kg is G-left stabilizing,
and so by assumption |Kg| = 1. Thus by [7, III, 13.9], S/Kg satisfies
Condition (P) as required. O

Note that by Example 3.17 Condition (E) of right S-acts does not
imply G P-flatness in general. But for (cyclic) Rees factor right S-acts
Condition (F) coincides to strong flatness and so it implies G P-flatness.

The proof of following theorems are essentially the same as to that of
Theorem 4.4.

Theorem 4.5. Let S be a monoid. Then all GP-flat right Rees factor
S-acts satisfy Condition (E)(are strongly flat) if and only if, S is left

collapsible and there exist no G-left stabilizing proper right ideal Kg of

We recall from [8] that a right S-act Ag is weakly pullback flat if and
only if it satisfies Conditions (P) and (E£').

Theorem 4.6. Let S be a monoid. Then all GP-flat right Rees factor
S-acts are weakly pullback flat if and only if S is right reversible and

weakly left collapsible, and there exist no G-left stabilizing proper right
ideal Kg of S with |Kg| > 2.

Theorem 4.7. Let S be a monoid. Then all GP-flat right Rees factor
S-acts are projective if and only if S contains a left zero, and there
exist no G-left stabilizing proper right ideal Kg of S with |Kg| > 2.

Theorem 4.8. Let S be a monoid. Then all GP-flat right Rees factor
S-acts are free if and only if S = {1}.

Note that by [7, I, 5.22] and [7, III, 18.7], the above theorem is also
valid for Rees factor projective generators.

5. GP COHERENT MONOIDS

In this section we introduce GP coherent monoids and will give a
characterization of these monoids.

The right S-act (S x S)g equipped with the right S-action (s, t)u =
(su,tu), s,t,u € S is called the diagonal act of S and is denoted by

D(S). Also, if S is a monoid and I a non-empty set, then the set of all
maps from I to S, equipped with the right S-action (as)x = (a(z))s,



170 MOHAMMADZADEH SAANY AND ABBASI

for the mapping a: I — S, s € S and = € [, is a right S-act, which is
denoted by (S%)s.

Theorem 5.1. Let S be a left PP monoid. Then the right S-act (S?)s
is principally weakly flat.

Proof. Suppose that («;);s = ()rs for a;,al,s € S. Since S is left
PP, there exists an idempotent e € S such that es = s and a;5 = s
implies e = ofe for every ¢ € I. That is, (;)re = (c)re, and so the
right S-act (S7)g is principally weakly flat by [7, 111, 10.16]. O

From Theorem 5.1 we can easily deduce that:

Corollary 5.2. Let S be a left PP monoid. Then the right S-act (ST)s
is GP-flat.

Corollary 5.3. Let S be a left PP monoid. Then the diagonal act
D(S) is GP-flat.

It follows from Lemma 2.4 that:

Corollary 5.4. Let I and J be non-empty sets and | J | < | I]. If S!
is GP-flat then so is S”.

Lemma 5.5. Let Ag = [[,c; Ai for a family {A;| i € I} of right S-acts.
Take a; € A;, s,us,v; € S with u;s = vis for each i € 1. If (ST)g is
G P-flat, then there exists n € N such that (a;u;); @ s" = (a;v;); ® s"
m Ag ® Ss™.

Proof. Suppose that (u;);s = (v;)rs for s, u;,v; € S. Since (S7)g is GP-
flat, by Lemma 2.4 there exist s1, ..., Sk, t1, ..., tx € S, (T4 )15 ooy (Tip_ )1 €
(S7)s and n € N such that

518" = s"
(ui)rs1 = (z,) 1t S98™ = t18"
(iy)1s2 = (Tiy) 1ta 538" = tos™

(i, )rsk = (vi)rtk s = tis".

Thus
s18" =3s"
(CL,L'U,L'>151 = (ai$il>1t1 SQSn = tlsn
(@;;, ) 152 = (a;x5,)1ta 538" = tas™

(a;xi,_ sk = (avi) ity ™ = tgs™,

and so (a;u;); ® s" = (a;v;); ® s™ in Ag ® Ss™ as required. O
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Theorem 5.6. The following statements are equivalent on a monoid
S:
(1) (ST)s is GP-flat for each non-empty set I;
(2) for any z € S, any non-empty set I and (s;)1, (t;)r € (S7)s, if
(si)rz = (t;)1z then there exists n € N such that (s;); ® 2" =
(t)r @ 2" in (ST)s @ S2";
(3) forany z € S, there existn,m € N, (u1,v1), ..., (U, V) € SXS
such that
(1) up 2" = 2" = vy 2™, w2 = 02" (1 <i<m-—1),
(ii) if sz = tz, (s,t € S), then there exist sy, ..., S, Tiyy - Ti,,
€ S such that
SU1 = 11
T1Ug = T2V2

Tin—1Um = U,
(4) (85%9)g is GP-flat.

Proof. Implications (1) = (2) and (1) = (4) are clear.

(2) = (3) Suppose that I is an index for the non-empty set K =
{(s,t) € S x S|sz = tz}, so K = {(s;,t;)|i € I}. Since (s;);2 =
(tl)lz € (S1)g, by assumption there exists n € N such that (s;); ®
2" = (t;)r ® 2" in (S7)s ® Sz, and so by Lemma 2.4, there exist
m € N, up, v1, .o, U, Uy € S and (x3))1, ., (2, )1 € (ST)5 such that

w2t = 2"
(8i)rur = (z3,) 101 ug2™ = 012"
(3711)1“2 = (3712)1112 Uz’ = 92"

(i, ) 1tm = ()0 2" = vp2™.
And clearly (3) holds.

(3) = (2) Suppose that z € S, I is a non-empty set, and (s;) 1, (t;)1 €
(S)s such that (s;);z = (t;);2. Then (s;2); = (t;2); € ((Sz2)!)s, by
assumption there exist n,m € N, (ul,vl) o (U, U) € S xS such
that uy2" = 2" = v,,2", u;p12" = v;2", (1 <@ < m —1), and for each
i € I there exist (z,)r1, ..., (zs,_,)1 € (SI)S such that

(Sz‘)lul = (xil)vl
(@i, Juz = (24,)v2

(Tipy 1 )Um = (i) 1Vm-
Thus

($:)r @ 2" = (8;)1 @u12" = (83)u1 ® 2" = (x;,) 01 ® 2" =
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(xil)f ® Ulzn — (xil)l X UQZ” e
(@i, Nt @ 2" = (£) 10 @ 2" = (1)1 @ 2" = (t;)1 @ 2"
in (SI)[ X SS”.

(4) = (1). Let z € S, I be a non-empty set and (s;)r, (t;); € (ST);
such that (s;);z = (¢;);2z. Suppose that J = {(s;,t;) | i € I}, and index
J by aset K as J = {(s, 1) | k € K}. By assumption (S°*%)g is GP-
flat, and so S¥ is GP-flat by Corollary 5.4. Since (sp)xz = (t1)k2, it
follows from Lemma 2.4 that there exist n,m € N, uy, v, ..., Up,, Uy, € S
and (zg,)rc, -, (g, )i € (S)g such that

w2 = 2"
(sk) kU1 = (2, ) KU1 Us2™ = v12"
(Thy ) U2 = (Tpy) kU2 U2™ = V2"

(Ikmfl)KUm = (tk)KUm 2" =v,2".

Now for each i € I there exists k € K such that (s;,t;) = (sg, tx).
Let y;; = x4, 1 < j < m, then we have the following S-tossing

u 2" = 2"
(si)rur = (Yi, ) 101 Ug2" = V12"
(Yir ) rua = (Yip) 102 ugz" = v92"

Vi) 1tm = () 1vm 2" = vp2",
and so (S7); is GP-flat as required. O

Definition 5.7. A monoid S is called right finite GP-flat if for every
s € S, there exist m,n € N such that for every GG P-flat right S-act Ag,
dsn(a,a’) < m, where as = a's,a,a’ € Ag.

Definition 5.8. A monoid S is called GP left (right) coherent if all
direct products of non-empty families of G P-flat right (left) S-acts are
G P-flat, and it is called GP coherent if it is both G P left coherent and
G P right coherent.

Theorem 5.9. A monoid S is left GP coherent if and only if:
(1) (1) (S1)s is GP-flat for any non-empty set I, and
(2) (2) S is right finite GP-flat.

Proof. Suppose that S is left GP coherent. It is obvious that (i) holds.
If S is not right finite G P-flat, then there exists s € S such that for
any m,n € N there exists a GP-flat right S-act A,, and a,,,a,, € A,
where a,,s = al,s and dgn(am,al,) > m,. By assumption [[*_, A, is
G P-flat, thus (a,,)ns = (a),)ns , implies that there exists n’ € N such
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that (a,)y ® 8" = (al,)ny ® s" in ([[2°_, A,)s ® 55s™. Suppose the
length of the corresponding tossing is equal k. That is, there exists
an S-tossing of length k connecting (a,,, s™ ) to (a’,,s" ) in A, x Ss™.
But this contradicts d. (ax, a,) > k.

Conversely, suppose that {A4;|i € I} is a family of G P-flat right S-
acts and let Ag = [[.c; Ai. Let (a;)rs = (a;)rs, then a;s = ajs for
every ¢ € . Since S is right finite G P-flat, there exists m,n € N such
that (a;,s™) and (a}, s") are connected by an S-tossing of length m in
A; x Ss™, for every i € I. Thus for each 7 € I, there exists an S-tossing
of the form

8;, 8" = s"
— n __ n
a;S;; = biltil Sin S = tils
— n _ n
bils@ = i2ti2 SigS = ti28
4 n__ 4+ on
bim7187;m - aitlnL s = t%ns
where s;,,t;,, ..., 8i,,,ti,, € Sand b;,, ..., b, € A;. Let t;, = s;,.,, =1,

bi, = a; and b;,, = a; for i € I. Then s;s = t;,_,s, for i € I and
1<j<m+1,and so (b _,ti, ) ®s" = (bi;_,54;); ® s" in Ag ® Ss"
by Lemma 5.5. Thus

(ai); ® 8" = (bigtiy)1 @ 8" = (biyiy )1 @ 8" = (biyty, )1 ® 8"

=.=( imsim+1)1 ® s" = (a;)l ® s"
in Ag ® Ss". -

By Theorem 3.19, every left PP monoid is right finite GP-flat. So
in this case we have the following theorem as a result of Theorem 5.9,
and Corollary 5.2.

Theorem 5.10. Fvery left PP monoid is GP left coherent.
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