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 A structural health monitoring system contains two components: a 

data collection approach comprising a network of sensors for 

recording the structural responses and an extraction methodology in 

order to achieve the beneficial information on the structural health 

condition. In this regard, data mining, which is one of the emerging 

computer-based technologies, can be employed for extraction of 

valuable information from the sensor databases obtained. On the other 

hand, the data inverse analysis scheme, as a problem-based 

procedure, is developing rapidly. Therefore, the aforesaid scheme and 

data mining should be combined in order to satisfy the increasing 

demand of data analysis, especially in complex systems such as 

bridges. In this work, we develop a damage detection methodology 

based on these strategies. To this end, an inverse analysis approach 

using data mining is applied for a composite bridge. In order to aid 

the aim, the support vector machine algorithm is utilized to generate 

the patterns by means of the vibration characteristic dataset. In order 

to compare the robustness and accuracy of the predicted outputs, four 

kernel functions including the linear, polynomial, sigmoid, and radial 

basis functions are applied to build the patterns. The results obtained 

point out the feasibility of the proposed method for detecting damage 

in the composite slab-on-girder bridges. 
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1. Introduction 

Damage can occur in any in-service structural 

components such as beams, pipes, and plates or 

complex systems, e.g. the civil infrastructures, 

aeronautics industry, oil and gas sector, 

transportation assets, and mechanical productions 

during the service life of the system. This is due to 

the fact that the structural systems are damage-

prone under a number of vibrational motions 

involving static and dynamic forces caused by 

earthquakes, wind excitations, etc. [1]–[3] 

Consequently, these unwanted seismic impacts are 

one of the most significant sources in changing 

the structural properties such as damping, stiffness 

or mass and lading to shift the dynamic properties 

(i.e. natural frequency, mode shape, and damping 

ratio) [4], [5]. Besides, they can cause out-of-

service conditions and catastrophic structural 

failure with high potential security risks for the 

residents. In order to overcome such difficulties, 

the structural health monitoring (SHM) systems 

have been proposed and developed in order to 

ensure structural safety, serviceability, and 

integrity as well as minimal maintenance [6], [7]. 

Various damage assessment methods have been 

applied to the structural systems. For example, 

visual inspection is a typical as well as popular 

non-destructive SHM evaluation system. 

However, it has many limitations including being 

time-consuming, costly, and with limited 

efficiency due to the inaccessibility of some 

structural damage locations. Therefore, an 

exceptional strategy with beneficial features is 
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required to track the health condition and safety of 

the monitored structures [8]. 

The data mining technology is a promising 

innovative computational tool that is qualified for 

the data extraction process. It is because data 

mining is able to accurately find out the 

informative features, i.e. knowledge from the 

generated databases [9]. In the same line, this 

technology can also extract the significant 

relationship amongst raw sensor datasets in SHM. 

For the purpose of the aforementioned 

implementation, there is a vital requirement to 

have an appropriate data mining algorithm along 

with a well-organized model. In this regard, a 

number of tools exist, e.g. Knowledge Discovery 

in Databases (KDDs) and DMAIC that represents 

the Define-Measure-Analyze-Improve-Control, 

Cross-Industry Standard Process for Data Mining 

(CRISP-DM), and SEMMA that stands for 

Sample-Explore-Modify-Model-Assess [10]. It 

has been reported that CRISP-DM is the most 

applicable methodology [11], [12].  

Over the last decade, the kernel-based machine 

learning algorithms, e.g. support vector machines 

(SVMs) have been widely used in various 

applications including hand-written digit 

recognition, image processing, object recognition, 

text classification, cancer diagnosis, 

bioinformatics, structural control systems, 

structural damage detection, etc. This is due to the 

fact that SVMs have an acceptable performance 

and a reliable distribution fitness. Hence, they can 

successfully cover a wide range of applications in 

terms of predictability [13]. 

In this work, the capability of data mining in SHM 

is investigated in order to develop the robustness 

of damage identification approaches. To do so, a 

composite bridge structure is considered as the 

test specimen of this work in order to generate a 

dataset. Besides, the CRISP-DM methodology 

and SVM are employed for implementation of the 

data mining procedure as a systematic 

methodology and applicable algorithm, 

respectively. In this direction, the experimental 

modal analysis of test structure is performed to 

generate the modal parameters as the input 

database for the data mining process. A number of 

damage cases are conducted in order to predict the 

damage severity. Then SVM is implemented in 

four patterns using different kernel functions, i.e. 

Linear SVM, Sigmoid SVM, Polynomial SVM, 

and RBF SVM. Furthermore, numerical 

simulation is implemented in order to verify the 

experimental findings. Then a comparison is 

carried out to evaluate the patterns. It is shown 

that among all the models, the SVM-Polynomial 

algorithm is able to identify the severity of 

damage precisely. 

2. Development of Data Mining-based Models  

Data mining is an exploration process with the 

aim of achieving an understandable and valuable 

information from raw data [14]. In this direction, a 

comparison between data mining and gold mining 

in rivers was made. It is because finding a pattern 

in datasets is quite similar to look for gold in 

sands. Therefore, data mining has gained 

increasing attention in different fields of research 

due to its high computation abilities. It is worth 

noting that according to the history of data 

mining, its origin starts from  advances in 

artificial intelligence in 1950s [15].  

Data mining is a hybrid process that combines the 

technologies of machine learning, signal 

processing, and statistical computing. It is driven 

by the demand of modern methods to analyze, 

identify, and visualize the datasets [16]. Overall, 

the data mining-based models can be divided into 

several categories, i.e. the descriptive, predictive, 

prescriptive, and hybrid paradigms. Every single 

category has its particular functions such as 

prediction, clustering, classification, association, 

and exploration [17]. Besides, each function has a 

number of algorithms to run. For example, 

prediction, which is one of the most applicable 

functions in data mining, has been frequently 

applied by machine learning, artificial 

intelligence, and statistical algorithms, i.e. 

artificial neural network, support vector machine, 

imperialist competitive algorithm, fuzzy logic, 

Bayesian, principal component analysis, ant 

colony optimization, genetic algorithm, decision 

tree, particle swarm optimization, and regression 

analysis for the structural damage identification 

purpose. In this direction, a comprehensive review 

of the latest advancements in structural damage 

identification through data mining has been 

presented by Gordan M. et al. [18]. 

3. Methodology 

Data inverse analysis is eventually developing 

quickly [19]. By taking advantage of this fact, the 

SHM systems are required to be combined with 

the data mining technology in order to fulfil the 

increasing demand of data analysis, especially in 

complex systems, e.g. bridges. Based on this 

strategy, this work develops a damage detection 

methodology inspired by the structure of the 

CRISP-DM methodology. According to this 

model, the first step starts with introducing the 

laboratory work and collecting an initial data. In 

this manner, the modal parameters, i.e. natural 
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frequencies acquired by a series of experimental 

tests are used in the function of inputs intended 

for data mining modeling. The next level is pre-

processing the collected data through several 

processes such as selecting, constructing, 

formatting, and transforming the data in order to 

prepare the final dataset as the input for the 

modelling step. It should be noted that the dataset 

is divided into two partitions, i.e. 70% for the 

training and 30% for the testing sets. Linear SVM, 

Sigmoid SVM, Polynomial SVM, and RBF SVM 

are used in the modelling step in order to build the 

patterns. Then the accuracy of the patterns is 

evaluated to find the most precise model. 

3.1. Support Vector Machine (SVM) 

SVM is one of the most applicable data mining 

algorithms. The main novelty of this method 

comes from the point that SVM is able to create a 

reliable performance along with a respectable 

generalization capacity [20], [21]. Accordingly, 

there is a high demand to apply this algorithm in 

different fields, e.g. pattern recognition, 

classification of data, and machine learning.[22]. 

The reason for this comes from the fact that SVM 

is capable of generating valuable outputs to 

answer a variety of problems occurring in 

different applications. For example, a number of 

SVM applications in SHM include damaged 

identification-based SVM [23], wavelet-based 

damage identification using SVM [24], non-linear 

multiclass SVM–based SHM for smart structures 

[25], and dams crack monitoring [26].  

The main goal of the simplest SVM model is to 

locate a linear hyperplane through the best 

margin. The best margin is defined as the 

maximum gap between two sets of data. To this 

end, a dataset can be considered containing circles 

and squares (xi,yi), i = 1,…, N including input data 

xi Є Rn and output (class label) yi Є R. Rn 

represents the N-dimensional vector space, and R 

indicates the 1D space that is {-1,+1}. The 

separating hyperplane, which is a linear 

discriminant function, is formulated as follows. 

(   )                         (1) 

where   represents an orthogonal vector and   

stands for a bias value.  

It should be noted that Eq. (1) cannot be 

considered as an adequate solution to define the 

separating hyperplane individually. Therefore, the 

optimal separating hyperplane is required to be 

obtained by solving an optimization problem, as 

defined in Eq. (2). In the same line, the linear 

SVM model divides the given dataset into two 

parts without any data point between them. As 

stated earlier, this maximal space between the 

aforementioned parts is called margin, and can be 

written as follows: 

 
Minimize 

to:  
 

 
‖ ‖  

(2) 

 
Subject 

to: 
  (      )     

         

and the margin can be formalized as follows: 

       
 

‖ ‖ 
 (3) 

However, as it can be observed in Figure 1, linear 

SVM cannot be used when the data cannot be 

separated linearly. Consequently, a non-linear 

discriminant function ϕ(x) is required to map the 

input data xi to a higher-dimensional feature 

space. The advantage of using the non-linear 

function is that the mapped data may be linearly 

separated using the following Equation instead of 

Eq. (1): 

(   (  ))      (4) 

Nevertheless, the non-linear mapping function 

does not generally allow a flexible recognition 

because even when the input data xi contains a 

reasonable dimension, the dimension of feature 

space may raise extremely. Then the calculation 

may become impossible, which is so-called “curse 

of dimensionality”. In order to overcome this 

limitation, an inner product of non-linear 

transformation, which is called kernel function 

k(x), can be used in order to avoid the 

computational problem. This part of the modelling 

is well-known as the “kernel trick”, and the kernel 

function is defined as follows:  

 (     )   (  ) (  )                 (5) 

Figure 1 presents a two-feature input space, where 

a kernel function is implemented to map the data 

to a three-feature space (higher-dimensional 

feature space).  

 
Figure 1. Mapping to higher-dimensional feature space. 
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The commonly used kernel functions in SVM, 

which are also employed in this work, are the 

Gaussian radial basis function (RBF) kernel, 

polynomial kernel, and sigmoid kernel, defined 

as: 

           (     )  ((     )   )
  (6) 

    (     )     ( 
‖     ‖

 

  
) (7) 

        (     )      ( (     )   ) (8) 

where σ is the width factor of the Gaussian radial 

basis function σ > 0, d = 1, 2,…, n and c ≥ 0. 

3.2. Experimental Test 

A model of steel-concrete composite bridge was 

constructed and fabricated in the laboratory (see 

Table 1 and Figure 2). The experimental modal 

analysis of the composite bridge was conducted in 

heavy dynamic laboratory, University of Malaya 

(UM), in order to generate the frequency response 

functions of the intact and damaged specimen by 

means of dynamic excitation source, data 

acquisition system, and measurement sensors. A 

IMV VE-50 Electrodynamic shaker and VA-ST-

03 power amplifier were employed as the 

dynamic excitation source. Besides, the OROS38 

signal analyzer with 32 channels, a PCB 208C02 

force transducer, and S100CS Wilcoxon single 

axis accelerometers were used as the data 

acquisition system and the measurement sensors, 

respectively. NVGate which is the OROS 

software platform, was employed in order to 

control all measurements. The setup of 

instruments for the experimental modal analysis is 

shown in Figure 3. 

Table 1. Parameters of the specimen. 
Element Parameter Value 

Steel 

I beam 

Flange width: 75 mm 

Section depth: 150 mm 

Flange thickness: 7 mm  

Web thickness:  5 mm 

Young’s Modulus: 2.1*1010 kg/m2 

Poisson’s ratio: 0.3 

Density: 7,850 kg/m3 

Concrete 
slab 

Length:  3200mm 

Width:  1200mm 

Depth: 100mm 

Density: 2400 kg/m3 

Strength: 37.43 MPa 

No. of beams: 3 

Shear stud 
connector 

Diameter of stud: 16 mm 
No. of studs: 16 (per beam) 

Spacing: 200 mm c/c 

Height: 75 mm 

Mesh 
reinforcement 

Diameter: 5 mm 

Spacing: 100 mm 

 

 

 

Figure 2. Experimental work: (a) layout plan of the composite bridge, (b) drawing of the experimental setup, and (c) physical 

observation of the vibration test. 

(a)   (c) 

(b) 
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Figure 3. Illustration of the experimental modal analysis. 

Figure 4(a) shows the arrangement of the 

accelerometers as well as the shaker location. As 

it can be seen in this figure, 48 nodes at the 

centerline of I section beams were selected in the 

role of sensor locations. Likewise, as it can also 

be observed in this figure, the shaker was located 

at point Number 19 due to the node points for the 

particular modes. 

 

 

 

Figure 4. (a) Positions of accelerometers and shaker, and (b) conducted damage cases. 
 

The experimental modal analysis of the intact 

specimen was conducted as a benchmark. Then 

various damage cases were imposed at two 

locations of the structure, i.e. mid-span and 

quarter-span of the middle steel I-beam (see 

Figure 4(b)). In this line, a total of 25 damage 

depths were conducted from a 3.00 mm severity 

up to a 75.00 mm depth. In detailed, the increment 

of damage depth was 3.00 mm, as shown in this 

figure. The outputs of the aforesaid process were 

employed in the function of input for modelling 

phase of data mining. 

4. Results and Discussions 

Modal parameters, i.e. natural frequencies of the 

intact and damaged cases of the composite bridge 

were collected from the experimental modal 

analysis. Table 2 and Figure 5 present the natural 

frequencies of the first mode to the fourth one in 

the undamaged and damaged test structure, 

respectively. The experimental results obtained 

indicate that in all modes, the natural frequencies 

decrease with increase in the damage severity. In 

this manner, the maximum drops of natural 

frequencies were 3.54% and 2.97% in the third 

and first modes, respectively. However, as it can 

clearly be seen in Figures 5(b) and 5(d), the 

changes of frequencies in modes 2 and 4 are less  

 

 

 

than the other modes. This behavior was plausible 

because both damage locations (mid-span and 

quarter-span) were the node points for the second 

and fourth flexural modes. 

  
Table 2. Frequencies of the undamaged test structure. 
1st Mode 

(f1) 
2nd Mode 

(f2) 
3rd Mode 

(f3) 
4th Mode 

(f4) 

31.60 Hz 255.19 Hz 389.75 Hz 558.59 Hz 
 

A numerical simulation using the finite element 

package, ABAQUS, was implemented in order to 

verify the experimental findings deliberating the 

first four modes. The finite element simulation 

was precisely modelled as per the test specimen. I 

section beams have been modeled operating 

general-purpose 4-node shell elements, known as 

S4R utilizing the 432 and 371 nodes and 

elements, respectively. In addition, 8-node linear 

brick elements, i.e. C3D8R with 7533 nodes and 

4800 elements were also used to build the girder 

deck model. For a better understanding, Figure 6 

shows the experimental and numerical results in 

the 75.00 mm damaged state. Accordingly, the 

comparison of the numerical simulation and the 

experimental work is presented in Figure 7. It can 

be seen that the difference between the numerical 

and experimental results is less than 5%, which 

indicates the validity of this research work.  

(a) 

(b) 
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Figure 5. Natural frequencies of intact and damaged structure in the 1st four modes: (a) f1, (b) f2, (c) f3, and (d) f4. 

 

 1st Mode 2nd Mode 3rd Mode 4th Mode 

N
u

m
er

ic
al

 

    
31.31 Hz 251.77 Hz 372.33 Hz 550.27 Hz 

E
xp

er
im

en
ta

l 

    
30.66 Hz 253.82 Hz 375.95 Hz 555.41 Hz 

Figure 6. Experimental and numerical first four mode shapes. 

 

 

 
Figure 7. Evaluation of the experimental and finite element simulation findings in the (a) 1st mode, (b) 2nd mode, (c) 3rd mode, 

and (d) 4th mode . 
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As explained earlier, the SVM models were 

conducted by means of various kernel functions 

consisting of Linear, Sigmoid, Polynomial, and 

RBF. The first four experimental natural 

frequencies of the intact structure along with the 

damaged states (e.g. fi, i = 1, 2, 3, 4) and the 

damage severities obtained from the laboratory 

works were considered as the inputs and the target 

variable of SVMs, respectively. Figure 8 

demonstrates the results of four patterns, i.e. 

SVM-Linear, SVM-RBF, SVM-Polynomial, and 

SVM-Sigmoid. As shown in this figure, amongst 

all patterns, SVM-Polynomial achieved the most 

accurate predicted outputs in the first four flexural 

modes. In order to offer an explanation, the kernel 

functions were used in order to bring the data 

from a lower dimension to a higher dimension. To 

this end, the SVM classifier divided the data with 

a new plane, i.e. hyperplane. Therefore, despite 

the better learning power in the RBF kernel 

amongst others, this local function could not 

efficiency provide a satisfying dissemination. 

Instead, the polynomial kernel, which is a global 

function, performed a superior data dissemination 

strategy. Nonetheless, the learning process of the 

polynomial function experienced a lower level of 

learning capacity. For more clarity, Figure 9 

indicates a comparison of the training and testing 

sets for all patterns. As it could be observed, 

among all the kernel functions, polynomial 

performed the best outputs. 

 
Figure 8. Comparison of outputs: (a) SVM-RBF, (b) SVM-Polynomial, (c) SVM-Sigmoid, and (d) SVM-Linear. 

 
Figure 9. Comparison between different kernel functions. 

Table 3 presents the predictor importance between 

the first four modes. According to this table, mode 

1 had the most significant role in predicting 

process among all inputs with 28%, 33%, 30%, 

and 25% importance for Linear SVM, RBF SVM, 

Polynomial SVM, and Sigmoid SVM, 

respectively. Then in the second stage, the third 

mode showed a higher rate of importance in 

comparison to the fourth mode. On the other hand, 

mode 2 had the lowest importance in creating the 

patterns with importance of 23%, 19%, 18%, and 

25% for Linear SVM, RBF SVM, Polynomial 

SVM, and Sigmoid SVM, respectively. This is 

due to the fact that mid-span, which was one of 

damage locations, was the node point for the 

second mode. 
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The performance of the patterns is required to 

evaluate the validity of the outcomes. To this end, 

the Mean Absolute Error (MAE), which is defined 

as bellow, was employed to determine the 

forecasting accuracy of all patterns. 

    
∑ |                  |
 
   

 
 (9) 

As explained earlier, the input data was separated 

into the training and testing segments. Table 4 

shows the modelling performance of each pattern 

in the training and testing sets. As it could be 

observed, the best MAE rates belonged to SVM-

Polynomial, which were 1.265 and 2.601 for the 

training and testing, respectively. In addition, the 

outcomes of correlation values confirmed that the 

Polynomial kernel function gave the best 

prediction performance to SVM model. 

 

Table 3. Predictor importance. 

 SVM-Linear SVM-RBF SVM-Polynomial SVM-Sigmoid 

Mode 1 0.28 0.33 0.30 0.25 

Mode 2 0.23 0.19 0.18 0.25 

Mode 3 0.26 0.27 0.31 0.25 

Mode 4 0.23 0.21 0.21 0.25 

 

Table 4. Performance of patterns. 

Model 
Mean absolute error Correlation 

Training Segment Testing Segment Training Segment Testing Segment 

SVM-RBF 15.590 12.186 0.978 0.983 

SVM-Polynomial 1.265 2.601 0.997 0.995 

SVM-Sigmoid 20.714 15.600 0.764 0.811 

SVM-Linear 4.981 3.994 0.977 0.982 
     

5. Conclusions 

In this work, we focused on the development of an 

advanced data mining-based damage detection 

approach suitable for continuous monitoring of 

the in-service structures. Different support vector 

machine models including linear-SVM through 

linear function and non-linear-SVM using kernel 

functions, i.e. polynomial, radial basis function, 

and sigmoid were conducted in this work. Based 

on the results obtained, it is confirmed that the 

proposed methodology is capable of forecasting 

the severity of damage in the composite bridge 

structures for the multiple-type damage scenarios.  

The effectiveness of the kernel-based patterns was 

examined by the vibration characteristics of the 

test structure obtained from the laboratory tests. It 

should be highlighted that the experimental work 

was verified by the numerical simulation. The 

results obtained showed that the SVM-Polynomial 

and SVM-Linear patterns with the 1.265 and 

4.981 MAE values in the training phase could 

provide the best solution, respectively. Likewise, 

the testing segment of the patterns proved the 

same result. It should also be emphasized that 

SVM-Polynomial delivered the most precise 

outcomes. It could also provide a good result for 

the minor damaged data. In contrast, SVM-

Sigmoid and SVM-RBF performed the less 

accurate outputs with the 20.714 and 15.590 MAE 

values in the training process, respectively. It is 

because the local kernel-based functions are 

capable of a lower dissemination ability in 

comparison with the global-based kernel 

functions. 
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 پل کامپوزیت مبتنی بر داده کاوی با استفاده از ماشین بردار پشتیبان در ایشناسایی آسیب سازه 
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 .دانشگاه مالایا، کووالالامپور، مالزی، مهندسی عمرانروه گ 1
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 چکیده:

هخای شبکه ای از حسگرها برای ثبت پاسخ متشکل از ها آوری دادهباشد: رویکردی جهت جمع پایش سلامت سازه شامل دو جزء می هاییکی از سیستم

، قخادر یمحاسخبات یها یفناور نیدتریاز جد یکی ی بعنوانده کاوسازه و روش تحقیقی برای کسب اطلاعات مفید در مورد وضعیت سازه. در این راستا، دا

معکخو   لیخو تحل هیتجز یها، روشگریطرف دباشد. از رها میحسگتوسط شده  یجمع آور یهاکشف اطلاعات ارزشمند از داده جهت به استخراج داده

بخرآوردن  یبخرای فخو  الخذکر و داده کخاو سخمیلازم اسخت کخه مکان. بنابراین به سرعت در حال توسعه است، مسئله بر یمبتن سمیمکانبعنوان یک  داده،

. در ایخن مقالخه، مخا روش تحقیقخی بخرای تشخخی  شود بی، ترکمانند پل ها دهیچیپهای ستمیدر س، بخصوص هاداده لیو تحل هیتجز روزافزون یتقاضا

ی یخک پخل کامزوزیخت برابا استفاده از داده کاوی  هامعکو  داده لیو تحل هیروش تجزبدین منظور، ه کردیم. ئآسیب مبتنی بر استراتژی های مذکور ارا

 سخهیمقا بکار رفتخه اسخت. بخرای الگوها دیتول یبرامشخصات ارتعاش  با استفاده ازان . جهت رسیدن به هدف، الگوریتم ماشین بردار پشتیبشودیاعمال م

ساخت الگوهخا اسختفاده  یو گوسین برا دیگموئیسی، ، چند جمله ایخطاز جمله توابع ، تابع کرنلیشده، از چهار  ینیب شیپ یهایخروج دقتو انسجام 

 .باشدکامزوزیتی دال برروی تیر می یهادر پل بیآس  یتشخ یبرا یشنهادیروش پی ریپذامکانبدست آمده بیانگر  جیتا. نشده است

 .، آنالیز مودال تجربیبانیبردار پشت نیماشداده کاوی، پایش سلامت سازه،  :کلمات کلیدی

 


